Cuproptosis-related genes are involved in immunodeficiency following ischemic stroke.
Archives of medical science : AMS
Introduction:Accumulating studies have shown that copper has a detrimental effect in cells, and the cuproptosis-related gene signatures have been constructed as clinical tools to predict prognosis in tumors. However, the heterogeneity of cuproptosis has not been fully investigated in ischemic stroke.Methods: Here, we combined the bulk RNA-seq and single cell-RNA-seq data for stroke to investigate the role of cuproptosis in stroke. Results:We identified the cuproptosis-related differentially expressed genes (CuDEGs) in ischemic stroke. Then, we tried to find the hub genes with the machine learning method and WGCNA. We highlighted four genes identified by these methods and proposed a potential diagnostic model in ischemic stroke. Conclusions:Our findings revealed cuproptosis-related hub genes, which could provide useful biomarkers in ischemic stroke.
10.5114/aoms/182909
Identification of 6 cuproptosis-related genes for active ulcerative colitis with both diagnostic and therapeutic values.
Medicine
Cuproptosis has been reported to affect a variety of diseases. Therefore, we aimed to examine the role of cuproptosis-related genes in active ulcerative colitis (UC). We acquired 2 datasets of active UC from the Gene Expression Omnibus database and created immune cell infiltrations to research immune cell dysregulation. Based on the cuproptosis gene set and differentially expressed genes (DEGs), we identified the differentially expressed genes of cuproptosis (CuDEGs). We then used 2 machine learning methods to screen hub CuDEGs. Subsequently, we performed validation on additional datasets and investigated the relationship between hub CuDEGs and drug treatments. Thirty-five controls with inactive UC and 90 patients with active UC were obtained from the training sets. A total of 9157 DEGs and 27 CuDEGs were identified, respectively. Immune cell infiltration analysis revealed that patients with active UC exhibited higher levels of activated dendritic cells and neutrophils as well as lower levels of CD8+ T cells, regulatory T cells (Tregs), and macrophage M2. A six-gene cuproptosis signature was identified using machine learning algorithms. We further validated that the 6 hub CuDEGs showed a strong correlation with active UC and acted as cuproptosis-related biomarkers of active UC. Moreover, the expression of ATOX1 was downregulated, and SUMF1, MT1G, ATP7B, FDX1, and LIAS expression was upregulated in the colonic mucosa of active UC patients who responded to golimumab or vedolizumab therapy. With the exception of ATP7B, the expression patterns of hub CuDEGs before and after infliximab treatment of patients with active UC were similar to those of golimumab and vedolizumab. Cuproptosis and active UC have a complex relationship, as illustrated in our study. ATOX1, SUMF1, MT1G, ATP7B, FDX1, and LIAS are cuproptosis-related hub genes of active UC. Our study opens new avenues for investigating UC progression and developing novel therapeutic potential targets for the disease.
10.1097/MD.0000000000035503
Tumor cuproptosis and immune infiltration improve survival of patients with hepatocellular carcinoma with a high expression of ferredoxin 1.
Frontiers in oncology
Background:Cuproptosis is a novel cell death pathway dependent on cellular copper ions and ferredoxin 1 (FDX1). Hepatocellular carcinoma (HCC) is derived from healthy liver as a central organ for copper metabolism. It remains no conclusive evidence whether cuproptosis is involved in survival improvement of patients with HCC. Method:A 365-liver hepatocellular carcinoma (LIHC) cohort with RNA sequencing data and paired clinical and survival information was obtained from the The Cancer Genome Atlas (TCGA) dataset. A retrospective cohort of 57 patients with HCC with stages I/II/III was collected by Zhuhai People's Hospital from August 2016 to January 2022. Low- or high-FDX1 groups were divided according to the median value of FDX1 expression. Cibersort, single-sample gene set enrichment analysis, and multiplex immunohistochemistry analyzed immune infiltration in LIHC and HCC cohorts. Cell proliferation and migration of HCC tissues and hepatic cancer cell lines were evaluated using the Cell Counting Kit-8. Quantitative real-time PCR and RNA interference measured and downregulated FDX1 expression. Statistical analysis was conducted by R and GraphPad Prism software. Results:High FDX1 expression significantly enhanced survival of patients with LIHC from the TCGA dataset, which was also demonstrated through a retrospective cohort with 57 HCC cases. Immune infiltration was different between the low- and high-FDX1 expression groups. Natural killer cells, macrophages, and B cells were significantly enhanced, and PD-1 expression was low in the high-FDX1 tumor tissues. Meanwhile, we found that a high expression of FDX1 decreased cell viability in HCC samples. HepG2 cells with FDX1 expression are sensitive to Cu, and interference of FDX1 promoted proliferation and migration of tumor cells. The consistent results were also demonstrated in Hep3B cells. Conclusion:This study reveals that cuproptosis and tumor immune microenvironment were together involved in improvement of survival in patients with HCC with a high expression of FDX1.
10.3389/fonc.2023.1168769
Development and validation of cuproptosis molecular subtype-related signature for predicting immune prognostic characterization in gliomas.
Journal of cancer research and clinical oncology
PURPOSE:Cuproptosis, a novel programmed cell death, plays an important role in glioma growth, angiogenesis, and immune response. Nonetheless, the role of cuproptosis-related genes (CRGs) in the prognosis and tumor microenvironment (TME) of gliomas remains unknown. METHODS:By non-negative matrix factorization consensus clustering, 1286 glioma patients were classified based on the mRNA expression levels of 27 CRGs and investigated the association of immune infiltration and clinical characteristics with cuproptosis subtypes. A CRG-score system was constructed using LASSO and multivariate Cox regression methods and validated in independent cohorts to predict the prognosis of glioma patients. RESULTS:Glioma patients were divided into two cuproptosis subtypes. Cluster C2 was enriched in immune-related pathways, had higher macrophage M2, neutrophils, and CD8 + T cells, and poorer prognosis compared with cluster C1 which was enriched in metabolism-related pathways. We further constructed and validated the ten-gene CRG risk scores. Glioma patients in the high CRG-score group had higher tumor mutation burden, higher TME scores, and poorer prognoses compared with the low CRG-score group. Additionally, the AUC value of the CRG-score was 0.778 in predicting the prognosis of gliomas. WHO grading, IDH mutation, 1p/19q codeletion, and MGMT methylation were significant differences between high and low CRG-score groups. CONCLUSION:This study demonstrated that CRG-score was related to immune cell infiltration and could accurately predict gliomas' prognosis. Our findings may provide a novel understanding of the potential role of cuproptosis molecular pattern and TME in the immune response and prognosis of glioma patients.
10.1007/s00432-023-05021-5
A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for acute myeloid leukemia.
Frontiers in oncology
Background:Cuproptosis is a type of programmed cell death that is involved in multiple physiological and pathological processes, including cancer. We constructed a prognostic cuproptosis-related long non-coding RNA (lncRNA) signature for acute myeloid leukemia (AML). Methods:RNA-seq and clinical data for AML patients were acquired from The Cancer Genome Atlas (TCGA) database. The cuproptosis-related prognostic lncRNAs were identified by co-expression and univariate Cox regression analysis. The least absolute shrinkage and selection operator (LASSO) was performed to construct a cuproptosis-related lncRNA signature, after which the AML patients were classified into two risk groups based on the risk model. Kaplan-Meier, ROC, univariate and multivariate Cox regression, nomogram, and calibration curves analyses were used to evaluate the prognostic value of the model. Then, expression levels of the lncRNAs in the signature were investigated in AML samples by quantitative polymerase chain reaction (qPCR). KEGG functional analysis, single-sample GSEA (ssGSEA), and the ESTIMATE algorithm were used to analyze the mechanisms and immune status between the different risk groups. The sensitivities for potential therapeutic drugs for AML were also investigated. Results:Five hundred and three lncRNAs related to 19 CRGs in AML samples from the TCGA database were obtained, and 21 differentially expressed lncRNAs were identified based on the 2-year overall survival (OS) outcomes of AML patients. A 4-cuproptosis-related lncRNA signature for survival was constructed by LASSO Cox regression. High-risk AML patients exhibited worse outcomes. Univariate and multivariate Cox regression analyses demonstrated the independent prognostic value of the model. ROC, nomogram, and calibration curves analyses revealed the predictive power of the signature. KEGG pathway and ssGSEA analyses showed that the high-risk group had higher immune activities. Lastly, AML patients from different risk groups showed differential responses to various agents. Conclusion:A cuproptosis-related lncRNA signature was established to predict the prognosis and inform on potential therapeutic strategies for AML patients.
10.3389/fonc.2022.966920
A novel defined risk signature of cuproptosis-related long non-coding RNA for predicting prognosis, immune infiltration, and immunotherapy response in lung adenocarcinoma.
Frontiers in pharmacology
Cuproptosis is a newly discovered non-apoptotic form of cell death that may be related to the development of tumors. Nonetheless, the potential role of cuproptosis-related lncRNAs in tumor immunity formation and patient-tailored treatment optimization of lung adenocarcinoma (LUAD) is still unclear. RNA sequencing and survival data of LUAD patients were downloaded from The Cancer Genome Atlas (TCGA) database for model training. The patients with LUAD in GSE29013, GSE30219, GSE31210, GSE37745, and GSE50081 were used for validation. The proofed cuproptosis-related genes were extracted from the previous studies. The Pearson correlation was applied to select cuproptosis-related lncRNAs. We chose differentially expressed cuproptosis-related lncRNAs in the tumor and normal tissues and allowed them to go to a Cox regression and a LASSO regression for a lncRNA signature that predicts the LUAD prognosis. Kaplan-Meier estimator, Cox model, ROC, tAUC, PCA, nomogram predictor, decision curve analysis, and real-time PCR were further deployed to confirm the model's accuracy. We examined this model's link to other regulated cell death forms. Applying TMB, immune-related signatures, and TIDE demonstrated the immunotherapeutic capabilities of signatures. We evaluated the relationship of our signature to anticancer drug sensitivity. GSEA, immune infiltration analysis, and function experiments further investigated the functional mechanisms of the signature and the role of immune cells in the prognostic power of the signature. An eight-lncRNA signature (TSPOAP1-AS1, AC107464.3, AC006449.7, LINC00324, COLCA1, HAGLR, MIR4435-2HG, and NKILA) was built and demonstrated owning prognostic power by applied to the validation cohort. Each signature gene was confirmed differentially expressed in the real world by real-time PCR. The eight-lncRNA signature correlated with 2321/3681 (63.05%) apoptosis-related genes, 11/20 (55.00%) necroptosis-related genes, 34/50 (68.00%) pyroptosis-related genes, and 222/380 (58.42%) ferroptosis-related genes. Immunotherapy analysis suggested that our signature may have utility in predicting immunotherapy efficacy in patients with LUAD. Mast cells were identified as key players that support the predicting capacity of the eight-lncRNA signature through the immune infiltrating analysis. In this study, an eight-lncRNA signature linked to cuproptosis was identified, which may improve LUAD management strategies. This signature may possess the ability to predict the effect of LUAD immunotherapy. In addition, infiltrating mast cells may affect the signature's prognostic power.
10.3389/fphar.2023.1146840
Development and validation of cuproptosis-related lncRNAs associated with pancreatic cancer immune microenvironment based on single-cell.
Frontiers in immunology
Background:Cuproptosis, a novel mode of cell death associated with the tricarboxylic acid (TCA) cycle, is relevant to the development of cancer. However, the impact of single-cell-based Cuproptosis-associated lncRNAs on the Tumor immune microenvironment (TIME) of Pancreatic adenocarcinoma (PAAD) and its potential value for individualized immunotherapy has not been clarified. Methods:14 immune-related CRGs were screened by exploring the interaction between differentially expressed Immune-Related Genes (IRGs) and Cuproptosis-Related Genes (CRGs) in PAAD. Next, the expression amount and expression distribution of CRGs in single-cell samples were analyzed by focusing on 7-CRGs with significant expressions. On the one hand, MAP2K2, SOD1, and VEGFA, which were significantly differentially expressed between PAAD sites and normal tissues adjacent to them, were subjected to immunohistochemical validation and immune landscape analysis. On the other hand, from these 7-CRGs, prognostic signatures of lncRNAs were established by co-expression and LASSO-COX regression analysis, and their prognostic value and immune relevance were assessed. In addition, this study not only validated the hub CRGs and the lncRNAs constituting the signature in a PAAD animal model treated with immunotherapy-based combination therapy using immunohistochemistry and qRT-PCR but also explored the potential value of the combination of targeted, chemotherapy and immunotherapy. Results:Based on the screening of 7-CRGs significantly expressed in a PAAD single-cell cohort and their co-expressed Cuproptosis-Related lncRNAs (CRIs), this study constructed a prognostic signature of 4-CRIs named CIR-score. A Nomogram integrating the CIR-score and clinical risk factors was constructed on this basis to predict the individualized survival of patients. Moreover, high and low-risk groups classified according to the median of signatures exhibited significant differences in clinical prognosis, immune landscape, bioenrichment, tumor burden, and drug sensitivity. And the immunohistochemical and qRT-PCR results of different mouse PAAD treatment strategies were consistent with the trend of inter-group variability in drug sensitivity of hub CRGs and CIR-score. The combination of immunotherapy, targeted therapy, and chemotherapy exhibited a better tumor suppression effect. Conclusion:CIR-score, as a Cuproptosis-related TIME-specific prognostic signature based on PAAD single cells, not only predicts the prognosis and immune landscape of PAAD patients but also provides a new strategy for individualized immunotherapy-based combination therapy.
10.3389/fimmu.2023.1220760
Cuproptosis-Related Genes Are Associated with Cell Cycle and Serve as the Prognostic Signature for Clear Cell Renal Cell Carcinoma.
Journal of clinical medicine
Cuproptosis is a newly discovered type of cell death. The role and potential mechanism of Cuproptosis-related genes (CRGs) in the prognosis of cancer patients are not fully understood. In this study, we included two cohorts of clear cell renal cell carcinoma patients, TCGA and E-MTAB-1980. The TCGA cohort is used as a training set to construct a CRG signature using the LASSO-cox regression analysis, and E-MTAB-1980 is used as a cohort for verification. A total of eight genes (FDX1, LIAS, LIPT1, DLAT, PDHA1, MTF1, GLS, CDKN2A) were screened to construct a prognostic model in the TCGA cohort. There is a significant difference in OS (p < 0.0001) between the high and low cuproptosis score group, and a similar difference is also observed in the OS (p = 0.0054) of the E-MTAB-1980 cohort. The area under the ROC curves (AUC) were 0.87, 0.82, and 0.78 at 1, 3, and 5 years in the TCGA cohort, respectively. Finally, gene set enrichment analysis revealed that CRGs were associated with cell cycle and mitotic signaling pathways.
10.3390/jcm11247507
Exploration of a screening model for intrahepatic cholangiocarcinoma patients prone to cuproptosis and mechanisms of the susceptibility of CD274-knockdown intrahepatic cholangiocarcinoma cells to cuproptosis.
Cancer gene therapy
Intrahepatic cholangiocarcinoma (ICC) is a form of liver cancer with poor long-term survival rates that requires novel therapeutic methods. Our team's previous research found that ICC patients prone to cuproptosis possessed a more satisfactory long-term prognosis and a more sensitive response to copper carrier Elesclomol. Thus, we aimed to identify new diagnostic and treatment strategies for ICC patients prone to cuproptosis and further explore the associated intracellular and extracellular mechanisms of ICC cells prone to cuproptosis. We employed FU-ICC (n = 255) as the training dataset, and validated our findings using SRRSH-ICC (from our center, n = 65), GSE26566 (n = 104), E-MTAB-6389 (n = 78), and scRNA-seq (n = 14) datasets. Single sample gene set enrichment analysis and subsequent unsupervised cluster analysis was conducted on the training dataset for the pan-programmed cell death gene set (including apoptosis, autophagy, ferroptosis, pyroptosis, necroptosis, and cuproptosis) to define and screen ICC patients prone to cuproptosis. We constructed a nomogram model using weighted gene co-expression network analysis and machine learning algorithms to predict ICC patients prone to cuproptosis, then explored its clinical value with multi-center transcriptome profiling. Furthermore, we validated the hub genes with in vitro and animal experiments to define ICC cells prone to cuproptosis. Ultimately, bulk and single-cell transcriptome profiling were utilized to explore the immune microenvironment of ICC cells prone to cuproptosis. Our nomogram model could help predict ICC patients prone to cuproptosis and possessed excellent prediction efficiency and clinical significance via internal and external verification. In vitro experiments demonstrated that ICC cells with siRNA-mediated knockdown of CD274 (PD-L1) and stimulation with elescomol-CuCl were prone to cuproptosis, and CD274-negative ICC cells could be defined as ICC cells prone to cuproptosis. The safety and feasibility of lenti-sh CD274+Elesclomol-CuCl as a therapeutic approach for ICC were verified using bioinformatics analysis and animal experiments. Bulk and single-cell transcriptome profiling indicated that the interactions between ICC cells prone to cuproptosis and monocytes/macrophages were particularly relevant. In conclusion, this study systematically and comprehensively explored cuproptosis in ICC for the first time. We constructed precise diagnostic and treatment strategies for ICC patients prone to cuproptosis and further explored the intracellular and extracellular mechanisms of ICC cells prone to cuproptosis. Further work with large prospective cohorts will help verify these conclusions.
10.1038/s41417-023-00673-4
A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for low grade glioma.
Frontiers in oncology
Background:As a common primary intracranial tumor, the diagnosis and therapy of low-grade glioma (LGG) remains a pivotal barrier. Cuproptosis, a new way induces cell death, has attracted worldwide attention. However, the relationship between cuproptosis and LGG remains unknown. Our study is all about finding out if there are any genes related to coproptosis that can be used to predict the outcome of LGG. Methods:RNA data and clinical information were selected from Cancer Genome Atlas (TCGA) datasets and the Genotype-Tissue Expression (GTEx), 5 lncRNAs (GAS5.AS1, MYLK.AS1, AC142472.1, AC011346.1, AL359643.3) were identified by Cox univariate and multivariate regression, as well as LASSO Cox regression. In the training and test sets, a dual validation of the predictive signature comprised of these 5 lncRNAs was undertaken. The findings demonstrate that the risk model is able to predict the survival regression of LGG patients and has a good performance in either the KM curve approach or the ROC curve. GO, GSEA and KEGG were carried out to explore the possible molecular processes that affecting the prognosis of LGG. The characteristics of immune microenvironment were investigated by using CIBERSORT, ESTIMATE and ssGSEA. Results:We identified five lncRNAs related with cuproptosis that were closely associated with the prognosis of LGG and used these five lncRNAs to develop a risk model. Using this risk model, LGG patients were then divided into high-risk and low-risk groups. The two patient groups had significantly distinct survival characteristics. Analyses of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the differential genes of the two patient groups were primarily concentrated in neural active ligand-receptor interaction and cytokine-cytokine receptor interaction. The ssGSEA score determined the information related to immune infiltration, and the two groups were differentially expressed in immune subpopulations such as T cells and B cells as well. Conclusion:Our study discovered 5 cuproptosis-related lncRNAs which contribute to predicting patients' survival of LGG and provide ideas for the exploration of new targets for LGG in the future.
10.3389/fonc.2022.1087762
Cuproptosis-related LncRNAs are correlated with immunity and predict prognosis in HNSC independent of TMB.
Frontiers in genetics
Cuproptosis is a novel cell death pathway, and the regulatory mechanism in head and neck squamous cell carcinoma (HNSC) remains to be explored. We determined whether cuproptosis-related lncRNAs (CRLs) could predict prognosis in HNSC. First, we identified 10 prognostic CRLs by Pearson correlation and univariate Cox regression analyses. Next, we constructed the CRLs prognostic model based on 5 CRLs screened by the least absolute shrinkage and selection operator (LASSO) Cox analysis. Following this, we calculated the risk score for HNSC patients and divided patients into high- and low-risk groups. In our prognostic model, HNSC patients with higher risk scores had poorer outcomes. Based on several prognostic features, a predictive nomogram was established. Furthermore, we investigated principal component analysis to distinguish two groups, and functional enrichment analysis of 176 differentially expressed genes (DEGs) between risk groups was performed. Finally, we analyzed relationships between tumor mutation burden (TMB) and risk scores. Cuproptosis-related lncRNAs can be applied to predict HNSC prognosis independent of TMB, which is closely correlated with tumor immunity.
10.3389/fgene.2023.1028044
A Cuproptosis-Related lncRNAs Signature Could Accurately Predict Prognosis in Patients with Clear Cell Renal Cell Carcinoma.
Analytical cellular pathology (Amsterdam)
Background:Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancers. As cuproptosis, a new cell death mechanism proposed recently, differs from all other known mechanisms regulating cell death, we aimed to create prognostic markers using cuproptosis-related long non-coding ribonucleic acids (RNAs; lncRNAs) and elucidate the molecular mechanism. Methods:Data from transcriptome RNA sequencing of ccRCC samples and the relevant clinical data were downloaded from The Cancer Genome Atlas, and Pearson's correlation analysis was implemented to obtain the cuproptosis-related lncRNAs. Then, univariate Cox, multivariate Cox, and Least Absolute Shrinkage and Selection Operator Cox analyses were performed to construct the risk signatures. The cuproptosis-related lncRNAs predictive signature was evaluated with receiver operating characteristic curves and subgroup analysis. Finally, Gene Set Enrichment Analysis (GSEA), single-sample GSEA (ssGSEA), tumor immune microenvironment (TIME), and immune checkpoints were performed to explore the relationship between immunity and patient prognosis. Results:Five cuproptosis-related lncRNAs, including FOXD2-AS1, LINC00460, AC091212.1, AC007365.1, and AC026401.3, were used to construct the signature. In the training and test sets, low-risk groups (as identified by a risk score lower than the median) demonstrated a better prognosis with an area under the curve for 1-, 3-, and 5-year survival being 0.793, 0.716, and 0.719, respectively. GSEA analysis suggested significant enrichment of the tricarboxylic acid cycle and metabolism-related pathways in the low-risk group. Besides, both ssGSEA and TIME suggested that the high-risk group exhibited more active immune infiltration. Conclusion:We proposed a cuproptosis-related lncRNAs signature, which had the potential for prognoses and prediction. Our findings might contribute to elucidating potential genomic biomarkers and targets for future therapies in the cuproptosis-related signaling pathways.
10.1155/2022/4673514
Identification of cuproptosis-related molecular subtypes as a biomarker for differentiating active from latent tuberculosis in children.
BMC genomics
BACKGROUND:Cell death plays a crucial role in the progression of active tuberculosis (ATB) from latent infection (LTBI). Cuproptosis, a novel programmed cell death, has been reported to be associated with the pathology of various diseases. We aimed to identify cuproptosis-related molecular subtypes as biomarkers for distinguishing ATB from LTBI in pediatric patients. METHOD:The expression profiles of cuproptosis regulators and immune characteristics in pediatric patients with ATB and LTBI were analyzed based on GSE39939 downloaded from the Gene Expression Omnibus. From the 52 ATB samples, we investigated the molecular subtypes based on differentially expressed cuproptosis-related genes (DE-CRGs) via consensus clustering and related immune cell infiltration. Subtype-specific differentially expressed genes (DEGs) were found using the weighted gene co-expression network analysis. The optimum machine model was then determined by comparing the performance of the eXtreme Gradient Boost (XGB), the random forest model (RF), the general linear model (GLM), and the support vector machine model (SVM). Nomogram and test datasets (GSE39940) were used to verify the prediction accuracy. RESULTS:Nine DE-CRGs (NFE2L2, NLRP3, FDX1, LIPT1, PDHB, MTF1, GLS, DBT, and DLST) associated with active immune responses were ascertained between ATB and LTBI patients. Two cuproptosis-related molecular subtypes were defined in ATB pediatrics. Single sample gene set enrichment analysis suggested that compared with Subtype 2, Subtype 1 was characterized by decreased lymphocytes and increased inflammatory activation. Gene set variation analysis showed that cluster-specific DEGs in Subtype 1 were closely associated with immune and inflammation responses and energy and amino acids metabolism. The SVM model exhibited the best discriminative performance with a higher area under the curve (AUC = 0.983) and relatively lower root mean square and residual error. A final 5-gene-based (MAN1C1, DKFZP434N035, SIRT4, BPGM, and APBA2) SVM model was created, demonstrating satisfactory performance in the test datasets (AUC = 0.905). The decision curve analysis and nomogram calibration curve also revealed the accuracy of differentiating ATB from LTBI in children. CONCLUSION:Our study suggested that cuproptosis might be associated with the immunopathology of Mycobacterium tuberculosis infection in children. Additionally, we built a satisfactory prediction model to assess the cuproptosis subtype risk in ATB, which can be used as a reliable biomarker for the distinguishment between pediatric ATB and LTBI.
10.1186/s12864-023-09491-2
A cuproptosis and copper metabolism-related gene prognostic index for head and neck squamous cell carcinoma.
Frontiers in oncology
Background:The purpose of this study was to identify the prognostic value of cuproptosis and copper metabolism-related genes, to clarify their molecular and immunological characteristics, and to elucidate their benefits in head and neck squamous cell carcinoma (HNSCC). Methods:The details of human cuproptosis and copper metabolism-related genes were searched and filtered from the msigdb database and the latest literature. To identify prognostic genes associated with cuproptosis and copper metabolism, we used least absolute shrinkage and selection operator regression, and this coefficient was used to set up a prognostic risk score model. HNSCC samples were divided into two groups according to the median risk. Afterwards, the function and immune characteristics of these genes in HNSCC were analyzed. Results:The 14-gene signature was constructed to classify HNSCC patients into low-risk and high-risk groups according to the risk level. In the The Cancer Genome Atlas (TCGA) cohort, the overall survival (OS) rate of the high-risk group was lower than that of the low-risk group (P < 0.0001). The area under the curve of the time-dependent Receiver Operator Characteristic (ROC) curve assessed the good performance of the genetic signature in predicting OS and showed similar performance in the external validation cohort. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment assays and Protein-Protein Interaction (PPI) protein networks have been used to explore signaling pathways and potential mechanisms that were markedly active in patients with HNSCC. Furthermore, the 14 cuproptosis and copper metabolism-related genes were significantly correlated with the immune microenvironment, suggesting that these genes may be linked with the immune regulation and development of HNSCC. Conclusions:Our results emphasize the significance of cuproptosis and copper metabolism as a predictive biomarker for HNSCC, and its expression levels seem to be correlated with immune- related features; thus, they may be a possible biomarker for HNSCC prognosis.
10.3389/fonc.2022.955336
Identification of Cuproptosis-Related Subtypes, Establishment of a Prognostic Signature and Characterization of the Tumor Microenvironment in Gastric Cancer.
International journal of general medicine
Purpose:Cuproptosis is a newly identified form of programmed cell death. We aimed to comprehensively discuss the correlation of cuproptosis with gastric cancer (GC) using bioinformatic methods. Patients and Methods:This study selected GC bulk and single-cell RNA sequencing profiles from public databases. Based on the enrichment pattern of cuproptosis-related gene sets (CRGSs), GC patients were classified into different cuproptosis subtypes. A series of systematic analyses was performed to investigate the correlation of cuproptosis subtype with biological function and immune cell infiltration. In addition, we established a CRGS risk score signature to quantify GC patients' risk level, and analyzed the signature's relationship with clinical features, tumor microenvironment (TME) and treatment responses. Genes used for the construction of the risk score model were also detected in GC tumor and normal tissues by real-time quantitative polymerase chain reaction (RT-qPCR). Results:First, analysis of scRNA-seq data revealed the alterations in CRGS enrichment scores for patients with GC and precancerous diseases. Then, based on large GC patient cohorts, two cuproptosis subtypes with significant differences in survival, biological function and TME were identified. Furthermore, we established a CRGS risk score signature. High-risk patients on the CRGS risk score signature with worse overall survival were characterized by higher immune and stromal contents in the TME, more advanced clinicopathological features, and better sensitivity to a wider range of anti-tumor drugs. Low-risk patients were correlated with higher tumor purity, and demonstrated more favorable clinical outcomes and higher sensitivity to immunotherapy. Conclusion:The current work elucidated that cuproptosis plays an important role in the regulation of TME landscapes in GC. Two cuproptosis subtypes with distinct TME characteristics were identified. In addition, the establishment of a CRGS risk score signature could provide novel insights into accurate prediction and personalized treatment for GC patients.
10.2147/IJGM.S404847
Creation of a Prognostic Model Using Cuproptosis-Associated Long Noncoding RNAs in Hepatocellular Carcinoma.
International journal of molecular sciences
Cuproptosis is an unusual form of cell death caused by copper accumulation in mitochondria. Cuproptosis is associated with hepatocellular carcinoma (HCC). Long noncoding RNAs (LncRNAs) have been shown to be effective prognostic biomarkers, yet the link between lncRNAs and cuproptosis remains unclear. We aimed to build a prognostic model of lncRNA risk and explore potential biomarkers of cuproptosis in HCC. Pearson correlations were used to derive lncRNAs co-expressed in cuproptosis. The model was constructed using Cox, Lasso, and multivariate Cox regressions. Kaplan-Meier survival analysis, principal components analysis, receiver operating characteristic curve, and nomogram analyses were carried out for validation. Seven lncRNAs were identified as prognostic factors. A risk model was an independent prognostic predictor. Among these seven lncRNAs, prostate cancer associated transcript 6 (PCAT6) is highly expressed in different types of cancer, activating Wnt, PI3K/Akt/mTOR, and other pathways; therefore, we performed further functional validation of PCAT6 in HCC. Reverse transcription-polymerase chain reaction results showed that PCAT6 was aberrantly highly expressed in HCC cell lines (HepG2 and Hep3B) compared to LO2 (normal hepatocytes). When its expression was knocked down, cells proliferated and migrated less. PCAT6 might be a potential biomarker for predicting prognosis in HCC.
10.3390/ijms24129987
The cuproptosis-related gene signature serves as a potential prognostic predictor for ovarian cancer using bioinformatics analysis.
Annals of translational medicine
Background:Studies have shown that copper is involved in the tumorigenesis and development of ovarian cancer. In this work, we aimed to build a prognostic classification system associated with cuproptosis to predict ovarian cancer prognosis. Methods:Information of ovarian cancer samples were acquired from The Cancer Genome Atlas (TCGA)-ovarian cancer and GSE26193 dataset. Cuproptosis-related genes were screened from previous research. ConsensusClusterPlus was applied to determine molecular subtypes, which were evaluated by tumor immune microenvironment analysis, TIDE algorithm, and functional enrichment analysis. Furthermore, limma analysis and univariate Cox analysis were used to construct a cuproptosis-related prognostic signature for ovarian cancer. Univariate and multivariate Cox regression analyses were used to analyze the independence of clinical factors and model. Results:A total of 15 genes related to cuproptosis were identified, and 2 clusters (C1 and C2) were determined. C1 had a better survival outcome, less advanced stage, enhanced immune infiltration, was more sensitive to immunotherapy, and showed enrichment in tricarboxylic acid (TCA)-related pathways. An 8 cuproptosis-associated gene signature was constructed, and the signature was verified in the GSE26193 dataset. A higher risk score of the cuproptosis-related gene signature was significantly correlated with worse overall survival (OS) (P<0.0001), which was validated in GSE26193 dataset successfully. Cox survival analysis showed that risk score was an independent predictor [hazard ratio (HR) =2.66, P<0.001]. Functional enrichment and tumor immune microenvironment analyses showed that high-risk patients tended to have immunologically sensitive tumors. Conclusions:The cuproptosis-related gene signature may serve as a potential prognostic predictor for ovarian cancer patients and may offer novel treatment strategies for ovarian cancer.
10.21037/atm-22-4546
Cuproptosis mediates copper-induced testicular spermatogenic cell death.
Asian journal of andrology
Cuproptosis, a novel mechanism of programmed cell death, has not been fully explored in the context of spermatogenic cells. This study investigated the potential involvement of cuproptosis in spermatogenic cell death using a mouse model of copper overload. Sixty male Institute of Cancer Research (ICR) mice were randomly divided into four groups that received daily oral gavage with sodium chloride (control) or copper sulfate (CuSO 4 ) at 50 mg kg -1 , 100 mg kg -1 , or 200 mg kg -1 , for 42 consecutive days. Mice subjected to copper overload exhibited a disruption in copper homeostasis. Additionally, significant upregulated expression of key cuproptosis factors was accompanied by a significant rise in the rates of testicular tissue cell apoptosis. Immunohistochemical analysis revealed the presence of ferredoxin 1 (Fdx1) in Sertoli cells, Leydig cells, and spermatogenic cells at various stages of testicular development, and the Fdx1-positive staining area was significantly increased in copper-overloaded mice. Mitochondrial dysfunction and decreased adenosine triphosphate levels were also observed, further implicating mitochondrial damage under cuproptosis. Further analyses revealed pathological lesions and blood-testis barrier destruction in the testicular tissue, accompanied by decreased sperm concentration and motility, in copper-overloaded mice. In summary, our results indicate that copper-overloaded mice exhibit copper homeostasis disorder in the testicular tissue and that cuproptosis participates in spermatogenic cell death. These findings provide novel insights into the pathogenic mechanisms underlying spermatogenic cell death and provide initial experimental evidence for the occurrence of cuproptosis in the testis.
10.4103/aja202383
A novel cuproptosis-related lncRNA nomogram to improve the prognosis prediction of gastric cancer.
Frontiers in oncology
Background:Cuproptosis is a copper-triggered modality of mitochondrial cell death and cuproptosis process may play important roles in gastric cancer development. However, little is known about cuproptosis-related lncRNAs in gastric adenocarcinoma (STAD). This study is aimed to investigate the potential prognostic signatures of cuproptosis-related lncRNAs in STAD. Methods:The Cancer Genome Atlas (TCGA) database were used to obtain gene expression profiles, clinicopathological, and OS information for STAD. Cuproptosis-related genes were collected based on previous studies and cuproptosis-related lncRNAs were screened out by co-expression analysis. The nomogram constructed by Cox regression analysis with the minimum absolute contraction and selection operator (lasso) algorithm. In addition, the potential response of ICB therapy and immune evasion incidence were estimated with Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Immune checkpoint expressions associated with risk scores were also analyzed. The correlation of immune checkpoint CD209 and HAVCR2 expressions associated with risk scores were experimentally testified by RT-qPCR, Western Blot, and IHC. Results:Patients were classified into high-risk and low-risk groups based on the risk score calculated in this model. The Kaplan-Meier survival curve analysis revealed that the high-risk group was associated with poor prognosis. Multivariate Cox regression analysis suggested that this lncRNA prediction model was an independent risk factor affecting the OS rate. Furthermore, ROC curve indicates that the nomogram was superior to traditional clinicopathological features in predicting STAD prognosis. Finally, functional enrichment analysis and immune checkpoint investigation revealed that the nomogram is notably associated with cholesterol metabolism and immune functions, RT-qPCR and Western Blotting demonstrated the co-expression relationship of LINC01150 with CD209 and HAVCR2. Conclusion:A novel cuproptosis-related lncRNAs signature impacts on the prognosis and immunological features of GC.
10.3389/fonc.2022.957966
Prognostic signature construction and immunotherapy response analysis for Uterine Corpus Endometrial Carcinoma based on cuproptosis-related lncRNAs.
Computers in biology and medicine
BACKGROUND:As a general female malignant tumor, Uterine Corpus Endometrial Carcinoma (UCEC) has high mortality and relapses. Cuproptosis was found to play an essential role in tumor by more and more researches. However, it is still unclear of the prognostic value and function of cuproptosis related Long non-coding RNA (lncRNA) in UCEC. METHODS:Sequencing data with the corresponding clinical data and cuproptosis-related genes (CRGs) data were obtained from the Cancer Gene Atlas (TCGA) database and cuproptosis related studies. Pearson test was applied to select cuproptosis-related lncRNAs (CRLs). Prognosis associated CRLs was identified by univariate Cox analysis and the predictors were determined by least absolute shrinkage and selection operator (Lasso)-Cox and multivariate Cox analyses to construct the cuproptosis-related lncRNA prognostic signature (CRLPS). The performance of the CRLPs was evaluated by consistency index (C-index) and Kaplan-Meier analysis. A nomogram model was constructed for survival prediction and the accuracy of the model was evaluated by calibration curve. Finally, immune related analyses were applied to predict immune responses and identify drugs with potential efficacy for the overall survival (OS). RESULTS:A total of 734 CRLs were found and 29 of them were identified as prognosis related lncRNAs. 12 CRLs were finally determined to build the CRLPS which revealed good ability on prognosis predicting. Subsequently, risk score of the CRLPS and grade were assessed as independent prognosis factors for UCEC, based on which the prognostic model provided the highest prediction accuracy of 99.7%. The calibration curve suggested that the prediction results consisted well with the observation. Enrichment analysis showed the CRLPS was mainly associated with tumor development and immune response. Patients in low tumor mutation burden (TMB) group had poorer OS. Significant difference was found in tumor immune dysfunction and exclusion (TIDE) score between different risk score groups. Finally, based on the CRLPs, drug sensitivity analysis identified nine anticancer drugs with potential efficacy on prognosis. CONCLUSION:Cuproptosis-related lncRNA prognostic signature was constructed for UCEC for the first time. Its high reliability and accuracy on predicting prognosis and immunotherapy response provided new perspective to explore the tumor mechanism and improve clinical prognosis. Nine discovered sensitive drugs provided important clues for personalized treatment of UCEC.
10.1016/j.compbiomed.2023.106905
Cuproptosis patterns in papillary renal cell carcinoma are characterized by distinct tumor microenvironment infiltration landscapes.
Frontiers in molecular biosciences
Cuproptosis is a novel kind of programmed cell death that has been linked to tumor development, prognosis, and responsiveness to therapy. Nevertheless, the precise function of cuproptosis-related genes (CRGs) in the tumor microenvironment (TME) remains unknown. We characterized the genetic and transcriptional changes of CRGs in papillary renal cell carcinoma (PRCC) samples and analyzed the expression patterns in two separate cohorts. We observed that two unique cuproptosis-related subgroups and three separate gene subgroups were connected with clinicopathological, prognostic, and TME features of patients. Then, a risk score for predicting overall survival (OS) was created and validated in patients with PRCC. To make the risk score more clinically useful, we created a nomogram that was very accurate. A lower risk score, which was associated with higher tumor mutation burden, and immune activity, suggested a better prognosis for OS. Additionally, the risk score was shown to be substantially linked with the drug's susceptibility to chemotherapeutic agents. Our extensive research of CRGs in PRCC identified possible roles for them in the TME, clinicopathological features, and overall survival. These findings may help advance our knowledge of CRGs in PRCC and pave the way for improved prognosis and the creation of more effective immunotherapy therapies.
10.3389/fmolb.2022.910928
Identification of cuproptosis-related patterns and construction of a scoring system for predicting prognosis, tumor microenvironment-infiltration characteristics, and immunotherapy efficacy in breast cancer.
Frontiers in oncology
Background:Cuproptosis, a recently discovered refreshing form of cell death, is distinct from other known mechanisms. As copper participates in cell death, the induction of cancer cell death with copper ionophores may emerge as a new avenue for cancer treatment. However, the role of cuproptosis in tumor microenvironment (TME) cell infiltration remains unknown. Methods:We systematically evaluated the cuproptosis patterns in The Cancer Genome Atlas (TCGA) database in breast cancer (BRCA) samples based on 10 cuproptosis-related genes (CRGs), and correlated these patterns with the prognosis and characteristics of TME cell infiltration. A principal component analysis algorithm was used to construct a cuproptosis score to quantify the cuproptosis pattern in individual tumors. Further, the relationships between the cuproptosis score and transcription background, clinical features, characteristics of TME cell infiltration, drug response, and efficacy of immunotherapy were assessed. Results:Two distinct cuproptosis patterns with distinct prognoses were identified; their TME characteristics were found to be consistent with the immune-excluded and immune-inflamed phenotypes, respectively. The cuproptosis patterns in individual patients were evaluated using the cuproptosis score based on the cuproptosis phenotype-related genes, contributing to distinguishing biological processes, clinical outcome, immune cell infiltration, genetic variation, and drug response. Univariate and multivariate Cox regression analyses verified this score as an independent prognostic predictor in BRCA. A high cuproptosis score, characterized by immune activation, suggests an inflamed tumor and immune-inflamed phenotype with poor survival and a low cuproptosis score, characterized by immune suppression, indicates a non-inflamed tumor and immune-excluded phenotype with better survival. Significant differences were observed in the IC50 between the high and low cuproptosis score groups receiving chemotherapy and targeted therapy drugs. In the two immunotherapy cohorts, patients with a higher cuproptosis score experienced considerable therapeutic advantages and clinical benefits. Conclusions:This study is the first to elucidate the prominent role of cuproptosis in the clinical outcome and the formation of TME diversity and complexity in BRCA. Estimating cuproptosis patterns in tumors could help predict the prognosis and characteristics of TME cell infiltration and guide more effective chemotherapeutic and immunotherapeutic strategies.
10.3389/fonc.2022.966511
Multiomics Analysis Reveals Cuproptosis-Related Signature for Evaluating Prognosis and Immunotherapy Efficacy in Colorectal Cancer.
Cancers
Cuproptosis is a copper-induced form of mitochondrial cell death which is engaged in the proliferation and migration of a variety of tumors. Nevertheless, the role of cuproptosis in tumor microenvironment (TME) remodeling and antitumor therapy is still poorly understood. We characterized two diverse cuproptosis-associated molecular isoforms in CRC which exhibit distinct prognostic and TME characteristics. Subsequently, we constructed a cuproptosis-associated prognostic model containing five genes and divided the patients into a high CPS-score group and a low CPS-score group. Univariate and multivariate Cox analyses showed that the CPS score could be used as an independent prognostic factor. The nomogram, and its consequent calibration curves, indicated that this prognostic signature had good predictive power for CRC. The analysis of single-cell sequencing data showed the significant expression of HES4 and SPHK1 in various immune and stromal (including fibroblasts) cells. Further studies showed that tumor mutational burden (TMB), high microsatellite instability (MSI-H) ratio, immune checkpoint blockade (ICB), and human leukocyte antigen (HLA) gene expression all positively correlated with the CPS score, predicting a better reaction to immunotherapy in high CPS-core patients. The CPS score constructed from cuproptosis subtypes can be used as a predictive tool to evaluate the prognosis of CRC patients and their response to immunotherapy.
10.3390/cancers15020387
Cuproptosis-related LncRNAs are potential prognostic and immune response markers for patients with HNSCC via the integration of bioinformatics analysis and experimental validation.
Frontiers in oncology
Introduction:Head and neck squamous cell carcinoma (HNSCC) is a malignant neoplasm typically induced by alcohol and tobacco consumption, ranked the sixth most prevalent cancer globally. This study aimed to establish a cuproptosis-related lncRNA predictive model to assess the clinical significance in HNSCC patients. Methods:The Cancer Genome Atlas (TCGA) database was utilized to download cuproptosis-related genes, lncRNAs profiles, and selected clinical information of 482 HNSCC samples. Cuproptosis-related lncRNAs were analyzed by Pearson correlation method, with the least absolute shrinkage and selection operator (LASSO) and univariate/multivariate Cox analyses performed to establish the cuproptosis-related lncRNA predictive model. Subsequently, the time-dependent receiver operating characteristics (ROC) and Kaplan-Meier analysis were applied to assess its prediction ability, and the model was verified by a nomogram, univariate/multivariate Cox analysis, and calibration curves. Furthermore, the principal component analysis (PCA), immune analysis, and gene set enrichment analyses (GSEA) were performed, and the 50% inhibitory concentration (IC50) prediction in the risk groups was calculated. Furthermore, the expression of six cuproptosis-related lncRNAs in HNSCC and paracancerous tissues was detected by quantitative real-time PCR (qRT-PCR). Results:A total of 467 lncRNAs were screened as cuproptosis-associated lncRNAs in HNSCC tissues to establish an eight cuproptosis-related lncRNA prognostic signature consisting of AC024075.3, AC090587.2, AC116914.2, AL450384.2, CDKN2A-DT, FAM27E3, JPX, and LNC01089. For the high-risk group, the results demonstrated a satisfactory predicting performance with considerably worse overall survival (OS). Multivariate Cox regression confirmed that the risk score was a reliable predictive factor (95% CI: 1.089-1.208, hazard ratio =1.147), with the area of 1-, 3-, and 5-year OS under the ROC curve of 0.690, 0.78524, and 0.665, respectively. The differential analysis revealed that JPX was significantly upregulated in HNSCC tissues, while AC024075.3, AC090587.2, AC116914.2, AL450384.2, CDKN2A-DT were downregulated in HNSCC tissues by qRT-PCR assays. In addition, this gene signature was also associated with some immune-related pathways and immune cell infiltration and affected the anti-cancer immune response. Furthermore, Bexarotene, Bleomycin, Gemcitabine, etc., were identified as potential therapeutic compounds for HNSCC. Discussions:This novel cuproptosis-related lncRNAs prognostic signature could predict prognosis and help propose novel individual therapeutic targets for HNSCC.
10.3389/fonc.2022.1030802
Identification and validation of a novel cuproptosis-related stemness signature to predict prognosis and immune landscape in lung adenocarcinoma by integrating single-cell and bulk RNA-sequencing.
Frontiers in immunology
Background:Cancer stem cells (CSCs) play vital roles in lung adenocarcinoma (LUAD) recurrence, metastasis, and drug resistance. Cuproptosis has provided a novel insight into the treatment of lung CSCs. However, there is a lack of knowledge regarding the cuproptosis-related genes combined with the stemness signature and their roles in the prognosis and immune landscape of LUAD. Methods:Cuproptosis-related stemness genes (CRSGs) were identified by integrating single-cell and bulk RNA-sequencing data in LUAD patients. Subsequently, cuproptosis-related stemness subtypes were classified using consensus clustering analysis, and a prognostic signature was constructed by univariate and least absolute shrinkage operator (LASSO) Cox regression. The association between signature with immune infiltration, immunotherapy, and stemness features was also investigated. Finally, the expression of CRSGs and the functional roles of target gene were validated . Results:We identified six CRSGs that were mainly expressed in epithelial and myeloid cells. Three distinct cuproptosis-related stemness subtypes were identified and associated with the immune infiltration and immunotherapy response. Furthermore, a prognostic signature was constructed to predict the overall survival (OS) of LUAD patients based on eight differently expressed genes (DEGs) with cuproptosis-related stemness signature (KLF4, SCGB3A1, COL1A1, SPP1, C4BPA, TSPAN7, CAV2, and CTHRC1) and confirmed in validation cohorts. We also developed an accurate nomogram to improve clinical applicability. Patients in the high-risk group showed worse OS with lower levels of immune cell infiltration and higher stemness features. Ultimately, further cellular experiments were performed to verify the expression of CRSGs and prognostic DEGs and demonstrate that SPP1 could affect the proliferation, migration, and stemness of LUAD cells. Conclusion:This study developed a novel cuproptosis-related stemness signature that can be used to predict the prognosis and immune landscape of LUAD patients, and provided potential therapeutic targets for lung CSCs in the future.
10.3389/fimmu.2023.1174762
ITGB1-mediated molecular landscape and cuproptosis phenotype induced the worse prognosis in diffuse gastric cancer.
Frontiers in oncology
Diffuse type gastric cancer was identified with relatively worse prognosis than other Lauren's histological classification. Integrin β1 (ITGB1) was a member of integrin family which played a markedly important role in tumorigenesis and progression. However, the influence of ITGB1 in diffuse gastric cancer (DGC) remains uncertain. Here, we leveraged the transcriptomic and proteomic data to explore the association between ITGB1 expression and clinicopathologic information and biological process in DGC. Cell phenotype experiments combined with quantitative-PCR (q-PCR) and western blotting were utilized to identify the potential molecular mechanism underling ITGB1.Transcriptomics and proteomics both revealed that the higher ITGB1 expression was significantly associated with worse prognosis in DGC, but not in intestinal GC. Genomic analysis indicated that the mutation frequency of significantly mutated genes of ARID1A and COL11A1, and mutational signatures of SBS6 and SBS15 were markedly increased in the ITGB1 low expression subgroup. The enrichment analysis revealed diverse pathways related to dysregulation of ITGB1 in DGC, especially in cell adhesion, proliferation, metabolism reprogramming, and immune regulation alterations. Elevated activities of kinase-ROCK1, PKACA/PRKACA and AKT1 were observed in the ITGB1 high-expression subgroup. The ssGSEA analysis also found that ITGB1 low-expression had a higher cuproptosis score and was negatively correlated with key regulators of cuproptosis, including FDX1, DLAT, and DLST. We further observed that the upregulated expression of mitochondrial tricarboxylic acid (TCA) cycle in the ITGB1 low-expression group. Reduced expression of ITGB1 inhibited the ability of cell proliferation and motility and also potentiated the cell sensitive to copper ionophores western blotting assay. Overall, this study revealed that ITGB1 was a protumorigenic gene and regulated tumor metabolism and cuproptosis in DGC.
10.3389/fonc.2023.1115510
Prognostic Significance of Cuproptosis-Related Gene Signatures in Breast Cancer Based on Transcriptomic Data Analysis.
Cancers
Breast cancer (BRCA) remains a serious threat to women's health, with the rapidly increasing morbidity and mortality being possibly due to a lack of a sophisticated classification system. To date, no reliable biomarker is available to predict prognosis. Cuproptosis has been recently identified as a new form of programmed cell death, characterized by the accumulation of copper in cells. However, little is known about the role of cuproptosis in breast cancer. In this study, a cuproptosis-related genes (CRGs) risk model was constructed, based on transcriptomic data with corresponding clinical information relating to breast cancer obtained from both the TCGA and GEO databases, to assess the prognosis of breast cancer by comprehensive bioinformatics analyses. The CRGs risk model was constructed and validated based on the expression of four genes (NLRP3, LIPT1, PDHA1 and DLST). BRCA patients were then divided into two subtypes according to the CRGs risk model. Furthermore, our analyses revealed that the application of this risk model was significantly associated with clinical outcome, immune infiltrates and tumor mutation burden (TMB) in breast cancer patients. Additionally, a new clinical nomogram model based on risk score was established and showed great performance in overall survival (OS) prediction, confirming the potential clinical significance of the CRGs risk model. Collectively, our findings revealed that the CRGs risk model can be a useful tool to stratify subtypes and that the cuproptosis-related signature plays an important role in predicting prognosis in BRCA patients.
10.3390/cancers14235771
Cuproptosis-related long noncoding RNAs predicts overall survival and reveal immune microenvironment of bladder cancer.
Heliyon
Background:Recently, a newly programmed cell death has been discovered, namely cuproptosis. It is considered a novel copper-dependent cell death model. Long non-coding RNA (lncRNA) influence the prognosis of bladder cancer. In this study, we established a scoring system based on 7 cuproptosis-related lncRNA to predict the prognosis and immune landscape of bladder cancer (BCa). Method:Gene expression and clinical data of 431 tissues were downloaded from The Cancer Genome Atlas (TCGA), including 19 normal samples and 419 cancer samples. All samples were randomly categorized into train and test cohorts. Cuproptosis-related lncRNA were distinguished. Then we conduct univariate COX and multivariate COX regression, paralleled with LASSO regression to cultivate a cuproptosis-related lncRNA risk model. Kaplan-Meier curves, scatter diagram, -index, ROC curves, nomogram, PCA analysis and univariate and multivariate Cox regression were used to test the accuracy of risk model and to predict patient survival. Additional, gene mutation status between high- and low-risk groups was calculated.GO and KEGG were used to access the DEGs (different expression genes)-related pathway.The ssGSEA and ESTIMATE algorithms were used to assess the immune function in different tumor samples. Besides, patient's response to immunotherapy and drug susceptibility were also been estimated. Results:7 cuproptosis-related lncRNA (LINC01184, LINC00513, LINC02443, SMARCA5-AS1, BDNF-AS, SOD2-OT1, HYI-AS1) were selected to construct the risk model in the train cohort. This model can well predict the overall survival (OS) in test group and entire cohort with different stage. Despite no significant different is observed in gene mutation between high- and low-risk group, different immune infiltration, different survival and sensitivity to drugs are discovered. Conclusion:We established a novel cuproptosis-related lncRNA risk model which can predict the outcome and immunotherapy response with satisfactory predictive effects. This risk model can provide a new insight into prognostic evaluation and may have potential to guide comprehensive treatment in bladder cancer.
10.1016/j.heliyon.2023.e21153
Cuproptosis-Related Genes CDK1 and COA6 Involved in the Prognosis Prediction of Liver Hepatocellular Carcinoma.
Disease markers
Background:Liver hepatocellular carcinoma (LIHC) is the most frequently seen type of primary liver cancer. Cuproptosis is a novel form of cell death highly associated with mitochondrial metabolism. However, the clinical impact and pertinent mechanism of cuproptosis genes in LIHC remain largely unknown. Methods:From public databases, we systematically assessed common genes from LIHC differentially expressed genes (DEGs) and cuproptosis-related genes using bioinformatics analysis. These common genes were then analyzed by enrichment analysis, mutation analysis, risk score model, and others to find candidate hub genes related to LIHC and cuproptosis. Next, hub genes were determined by expression, clinical factors, immunoassay, and prognostic nomogram. Results:Based on 129 cuproptosis-related genes and 3492 LIHC DEGs, we totally identified 21 downregulated and 18 upregulated common genes, and they were enriched in pathways, such as zinc ion homeostasis and oxidative phosphorylation. In the mutation analysis, missense mutation was the most common type in LIHC patients, and the common gene F5 had the highest mutation frequency. After LASSO-Cox regression analysis and prognostic analysis, CDK1, ABCB6, LCAT, and COA6 were identified as prognostic signature genes. Among them, ABCB6 and LCAT were lowly expressed in tumors, and CDK1 and COA6 were highly expressed in tumors. In addition, ABCB6 and LCAT were negatively correlated with 6 kinds of immune cells, while CDK1 and COA6 were positively correlated with them. CDK1 and COA6 were identified as hub genes related to LIHC by Cox regression analysis and prognostic nomogram. Conclusion:CDK1 and COA6 are two oncogenes in LIHC, which are involved in the molecular mechanism of cuproptosis and LIHC. Besides, CDK1 and COA6 can positively regulate the expressions of immune cells in LIHC. In clinical practice, they can be used as immunotherapeutic targets and prognostic predictors in LIHC, which sheds new light on the scientific fields of cuproptosis and LIHC.
10.1155/2023/5552798
Identification of cuproptosis-related biomarkers and analysis of immune infiltration in allograft lung ischemia-reperfusion injury.
Frontiers in molecular biosciences
Allograft lung ischemia-reperfusion injury (ALIRI) is a major cause of early primary graft dysfunction and poor long-term survival after lung transplantation (LTx); however, its pathogenesis has not been fully elucidated. Cell death is a mechanism underlying ALIRI. Cuproptosis is a recently discovered form of programmed cell death. To date, no studies have been conducted on the mechanisms by which cuproptosis-related genes (CRGs) regulate ALIRI. Therefore, we explored the potential biomarkers related to cuproptosis to provide new insights into the treatment of ALIRI. Datasets containing pre- and post-LTx lung biopsy samples and CRGs were obtained from the GEO database and previous studies. We identified differentially expressed CRGs (DE-CRGs) and performed functional analyses. Biomarker genes were selected using three machine learning algorithms. The ROC curve and logistic regression model (LRM) of these biomarkers were constructed. CIBERSORT was used to calculate the number of infiltrating immune cells pre- and post-LTx, and the correlation between these biomarkers and immune cells was analyzed. A competing endogenous RNA network was constructed using these biomarkers. Finally, the biomarkers were verified in a validation set and a rat LTx model using qRT-PCR and Western blotting. Fifteen DE-CRGs were identified. GO analysis revealed that DE-CRGs were significantly enriched in the mitochondrial acetyl-CoA biosynthetic process from pyruvate, protein lipoylation, the tricarboxylic acid (TCA) cycle, and copper-transporting ATPase activity. KEGG enrichment analysis showed that the DE-CRGs were mainly enriched in metabolic pathways, carbon metabolism, and the TCA cycle. , , , and were identified as potential biomarker genes. The AUC of the ROC curve for each biomarker was greater than 0.8, and the LRM provided an excellent classifier with an AUC of 0.96. These biomarkers were validated in another dataset and a rat LTx model, which exhibited good performance. In the CIBERSORT analysis, differentially expressed immune cells were identified, and the biomarkers were associated with the immune cells. , , , and may serve as predictors of cuproptosis and play an important role in the pathogenesis of cuproptosis in ALIRI.
10.3389/fmolb.2023.1269478
A novel cuproptosis-related lncRNA prognostic signature in thyroid cancer.
Biomarkers in medicine
We aimed to investigate the value of cuproptosis-related lncRNA in screening out high-risk thyroid cancer patients. RNA sequencing data of thyroid cancer were obtained from The Cancer Genome Atlas. A cuproptosis-related lncRNA signature was constructed by using Cox regression. Four cuproptosis-related lncRNAs were used to construct a survival prognosis model for thyroid cancer. The receiver operating characteristic curve showed that the area under the curve reached 0.830 at 1 year, 0.790 at 3 years and 0.824 at 5 years. The model may help to screen out thyroid cancer patients at high risk, and thus develop more appropriate treatment strategies.
10.2217/bmm-2023-0216
Identification and validation of a novel cuproptosis-related genes signature associated with prognosis, clinical implications and immunotherapy of hepatocellular carcinoma.
Frontiers in pharmacology
Cuproptosis is a novel type of regulated cell death and is reported to promote tumor occurrence and progression. However, whether a cuproptosis-related signature has an impact on hepatocellular carcinoma (HCC) is still unclear. We analyzed the transcriptome data of HCC from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database, and searched for tumor types with different cuproptosis patterns through consistent clustering of cuproptosis genes. We then constructed a Cuproptosis-Related Genes (CRGs)-based risk signature through LASSO COX regression, and further analyzed its impact on the prognosis, clinical characteristics, immune cell infiltration, and drug sensitivity of HCC. We identified the expression changes of 10 cuproptosis-related genes in HCC, and all the patients can be divided into two subtypes with different prognosis by applying the consensus clustering algorithm. We then constructed a cuproptosis-related risk signature and identified five CRGs, which were highly correlated with prognosis and representative of this gene set, namely , , , , and . Patients in the low CRGs signature group had a favorable prognosis. We further validated the CRGs signature in ICGC cohorts and got consistent results. Besides, we also discovered that the CRGs signature was significantly associated with a variety of clinical characteristics, different immune landscapes and drug sensitivity. Moreover, we explored that the high CRGs signature group was more sensitive to immunotherapy. Our integrative analysis demonstrated the potential molecular signature and clinical applications of CRGs in HCC. The model based on CRGs can precisely predict the survival outcomes of HCC, and help better guide risk stratification and treatment strategy for HCC patients.
10.3389/fphar.2023.1088993
Cuproptosis-related lncRNA signatures predict prognosis and immune relevance of kidney renal papillary cell carcinoma.
Frontiers in pharmacology
Kidney renal papillary cell carcinoma (KIRP) has a high mortality rate and a poor prognosis. Cu concentrations differed significantly between renal cancer tissues and adjacent normal tissues. Cuproptosis is a newly identified cell death. Long non-coding RNAs (lncRNAs) play a crucial role in the progression of KIRP. In this study, we focused on constructing and validating cuproptosis-related lncRNA signatures to predict the prognosis of KIRP patients and their immune correlation. We created prognosis models using Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) algorithm. We found that patients in the high-risk group had poorer overall survival (OS) and progression-free survival (PFS) and higher mortality. Risk score and stage are prognosis factors independent of other clinical features. Kaplan-Meier analysis, receiver operating characteristic (ROC) curves, and C-index curves showed that cuproptosis-related lncRNA signatures could more accurately predict the prognosis of patients. Functional enrichment analysis suggests that the function of differentially expressed genes (DEGs) is associated with KIRP development and immunity. In immune-related function analysis, we found a significant difference in parainflammation responses between high-risk and low-risk groups. The mutation frequencies of TTN, MET, KMT2C, PKHD1, SETD2, and KMT2D genes in the high-risk group were higher than those in the low-risk group, but the mutation frequencies of MUC16, KIAA109, CUBN, USH2A, DNAH8 and HERC2 genes were significantly lower than those in the low-risk group. Survival analysis of tumor mutation burden (TMB) and combined TMB-risk showed better OS in patients with high TMB. Immune infiltration and immune checkpoint analysis assessed the immune association of six high mutation frequency genes (TTN, MET, KMT2C, PKHD1, SETD2, and KMT2D) with KIRP. Finally, we performed a drug sensitivity analysis and screened 15 potential drugs that differed between high-risk and low-risk patients. In this study, we constructed and validated cuproptosis-related lncRNA signatures that can more accurately predict the prognosis of KIRP patients and provide new potential therapeutic targets and prognosis markers for KIRP patients.
10.3389/fphar.2022.1103986
Characterization of cuproptosis-related lncRNA landscape for predicting the prognosis and aiding immunotherapy in lung adenocarcinoma patients.
American journal of cancer research
Cuproptosis is a newly discovered mechanism of regulated cell death, which serves as a novel target for cancer therapy. Long non-coding RNAs (lncRNAs) play an important role in the initiation and progression of cancer cells; however, the relationship between cuproptosis and lncRNAs in tumorigenesis and cancer treatment has not been well established in lung adenocarcinoma (LUAD). Thus, it is important to clarify and characterize the cuproptosis-related lncRNA landscape in LUAD. In this study, cuproptosis-related lncRNAs was screened by Pearson correlation analysis. Then, univariate, Least Absolute Shrinkage and Selection Operator (LASSO), and multivariate Cox regression were conducted to identify 6 cuproptosis-related lncRNAs (AC090541.1, AC009226.1, NIFK-AS1, AC027097.2, AC026355.2, and AC106028.2) which were used to construct a cuproptosis-related lncRNA signature (CRLS). Multi-dimensional assessments including Kaplan-Meier analysis, receiver operating characteristics (ROC) curves, and principal component analysis (PCA) verified that the CRLS could reliably predict the prognosis and survival of LUAD patients. We further compared the immune cell infiltration, somatic mutation landscape, and functional enrichment pathways between the high and low CRLS groups. Patients with low CRLS scores had prolonged survival and were sensitive to immunotherapy, whereas patients with high CRLS scores might benefit better from chemotherapy. We further analyzed the individualized immunotherapeutic strategies and the candidate compounds for the potential clinical treatment. Moreover, the expression level of these 6 lncRNAs was examined experimentally in vitro by using quantitative real-time polymerase chain reaction (RT-qPCR). Additionally, one of the significantly differentially expressed lncRNAs, NIFK-AS1, was confirmed to suppress the proliferation and migration of LUAD by Cell Counting Kit-8 Assays (CCK-8), wound healing assay, and colony formation assays. Taken together, we established a CRLS that might be a promising tool for predicting the prognosis, guiding individualized treatment, and serving as a promising therapeutic target for patients with LUAD.
Novel cuproptosis-related lncRNAs can predict the prognosis of patients with multiple myeloma.
Translational cancer research
Background:Cuproptosis-related long-stranded non-coding RNAs (lncRNAs) have several implications for the prognosis of multiple myeloma (MM). This research aimed to construct a prognostic risk model for MM patients and explore the potential signaling pathways in the risk group. Methods:Cuproptosis-related lncRNAs were obtained from the co-expression analysis of cuproptosis-related genes and lncRNAs. Subsequently, twelve cuproptosis-related lncRNAs were selected to construct a prognostic risk model of MM patients by the least absolute shrinkage and selection operator (LASSO) regression. Then, the clinical data of these patients were randomly divided into the training group and the testing group. Next, patients were divided into the low- and high-risk groups according to the median risk score. The Kaplan-Meier survival analysis was performed to clarify the prognostic differences between risk subtypes. Besides, the Cox analysis was conducted to identify whether the risk score can be used as an independent prognostic factor. In addition, the receiver operating characteristic (ROC) curve analysis and the concordance index (C-index) curve analysis were performed to elucidate the value of risk score as a prognostic indicator. Finally, the differential risk analysis and functional enrichment analysis were carried out to identify the potential signaling pathways in the low- and high-risk groups. Results:The results demonstrated that the overall survival (OS) of patients in the high-risk group was shorter than that in the low-risk group. There were significant differences in the expression of genes in MM patients between the high- and low-risk groups. The Gene Ontology (GO) analysis results showed that the differentially expressed risk-related genes (DERGs) were mainly concentrated on the collagen-containing extracellular matrix. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results, the DERGs may be related to the neuroactive ligand-receptor interaction and mitogen-activated protein kinase (MAPK) signaling pathway, indicating that they may be involved in the progression of tumors. Conclusions:The findings of this study suggest that cuproptosis-related lncRNAs may be effective biomarkers for predicting the prognosis of MM patients, which is anticipated to contribute to the improvement of clinical outcomes.
10.21037/tcr-23-960
Potential impact of cuproptosis-related genes on tumor immunity in esophageal carcinoma.
Aging
Cuproptosis involves a direct interaction with the tricarboxylic acid (TCA) lipid acylation components. This process intricately intersects with post-transcriptional lipid acylation (LA) and is linked to mitochondrial respiration and LA metabolism. Copper ions form direct bonds with acylated DLAT, promoting DLAT oligomerization, reducing Fe-S cluster proteins, and inducing a protein-triggered toxic stress response that culminates in cell demise. Simultaneously, the importance of immune contexture in cancer progression and treatment has significantly increased. We assessed the expression of cuproptosis-related genes (CRGs) across TCGA and validated our findings using the GEO data. Consensus clustering divided esophageal cancer (ESCA) patients into two clusters based on the expression of 7 CRGs. We evaluated the expression of immune checkpoint inhibitor (ICI) targets and calculated the elevated tumor mutational burden (TMB). Weighted gene co-expression network analysis (WGCNA) identified genes associated with the expression of CRGs and immunity. Cluster 1 exhibited increased immune infiltration, higher expression of ICI targets, higher TMB, and a higher incidence of deficiency in mismatch repair-microsatellite instability-high status. WGCNA analysis identified 14 genes associated with the expression of CRGs and immune scores. ROC analysis revealed specific hub genes with strong predictive capabilities. The expression levels of SLC6A3, MITD1, and PDHA1 varied across different pathological stages; CCS, LIPT2, PDHB, and PDHA1 showed variation in response to radiation therapy; MITD1 and PDHA1 exhibited differences related to the pathological M stages of ESCA. CRGs influence the immune contexture and can potentially transform cold tumors into hot tumors in ESCA patients.
10.18632/aging.205391
A Cuproptosis-Related Gene Model For Predicting the Prognosis of Clear Cell Renal Cell Carcinoma.
Frontiers in genetics
Despite advances in its treatment, patients diagnosed with clear cell renal cell carcinoma (ccRCC) have a poor prognosis. The mechanism of cuproptosis has been found to differ from other mechanisms that regulate cell death, including apoptosis, iron poisoning, pyrophosphate poisoning, and necrosis. Cuproptosis is an essential component in the regulation of a wide variety of biological processes, such as cell wall remodeling and oxidative stress responses. However, cuproptosis-related genes' expression in ccRCC patients and their association with the patient's prognosis remain ambiguous. Evaluation of The Cancer Genome Atlas (TCGA) identified 11 genes associated with cuproptosis that were differently expressed in ccRCC and nearby nontumor tissue. To construct a multigene prognostic model, the prognostic value of 11 genes was assessed and quantified. A signature was constructed by least absolute shrinkage and selection operator (LASSO) Cox regression analysis, and this signature was used to separate ccRCC patients into different risk clusters, with low-risk patients having a much better prognosis. This five-gene signature, when combined with patients' clinical characteristics, might serve as one independent predictor of overall survival (OS) in ccRCC patients. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that cuproptosis-related genes were enriched in patients with ccRCC. Then, quantitative real-time PCR (qPCR) was employed to verify these genes' expression. Generally, research has indicated that cuproptosis-related genes are important in tumor immunity and can predict OS of ccRCC patients.
10.3389/fgene.2022.905518
Dexmedetomidine enables copper homeostasis in cerebral ischemia/reperfusion via ferredoxin 1.
Annals of medicine
Excessive oxygen free radicals and toxic substances are generated in cerebral ischemia-reperfusion (I/R) process. Dexmedetomidine (DEX), a common anesthetic and sedative drug, can considerably boost glutathione (GSH), which has anti-copper influx effects. Focusing on cuproptosis, the mechanism of DEX in the I/R was revealed. Using the I/R rat model, the effects of DEX and the copper chelator D-penicillamine on cerebral infarct volume, copper levels, mitochondrial respiration and membrane potential, GSH content, and enrichment of cuproptosis functional proteins were examined. The involvement of ferredoxin 1 (FDX1) in the DEX regulatory pathway was verified by overexpressing FDX1 . DEX could significantly reduce cerebral infarction in rats, reduce copper levels, maintain mitochondrial functions, increase GSH, and reduce the content of key proteins related to cuproptosis. These aspects were replicated and revealed that FDX1 overexpression partially reversed the impacts of DEX. Together, cuproptosis occurs in the brain I/R process and DEX can enhance cell survival by blocking the primary pathway mediated by FDX1.KEY MESSAGESDexmedetomidine reduces cerebral infarction in the I/R rat models.Dexmedetomidine reduces cuproptosis in the I/R rat models.FDX1, an upstream of protein fatty acylation, mediates regulation of Dexmedetomidine.
10.1080/07853890.2023.2209735
Identification of immunological characteristics and cuproptosis-related molecular clusters in Rheumatoid arthritis.
International immunopharmacology
BACKGROUND:Rheumatoid arthritis (RA) is a chronic autoimmune disease characterised by progressive articular damage, functional loss, and comorbidities. The relationship between cuproptosis, a form of programmed cell death, and RA remains unknown. Therefore, this study aimed to explore cuproptosis-related molecular clusters in RA. METHODS:Gene expression profiles of GSE93272 were downloaded from the Gene Expression Omnibus to identify the expression profiles of cuproptosis regulators and the immune infiltration characteristics of RA. The molecular clusters of cuproptosis-related genes and the related immune cell infiltration were explored. Cluster-specific differentially expressed genes were identified using the weighted gene co-expression network analysis. Further, an external dataset (GSE15573) was used, and an enzyme-linked immunosorbent assay was performed to validate the predictive efficiency. RESULTS:Thirteen cuproptosis-related genes and activated immune responses were identified between patients with RA and controls. Immune infiltration revealed significant immunological heterogeneity in the two cuproptosis-related molecular clusters in RA. Functional enrichment indicated that Cluster1 and Cluster2 were predominantly enriched in the toll-like receptor signalling pathway and regulation of autophagy, respectively. Further, the performance of FAM96A and CGRRF1 genes in the external validation dataset was observed to be relatively satisfactory (area under the receiver operating characteristic curve = 0.687 and 0.674, respectively). Based on our serum samples, FAM96A and CGRRF1 both exhibited higher expression levels in patients with RA (p = 0.001; p = 0.000). CONCLUSIONS:Our study systematically illustrated the involvement of cuproptosis in the progression of RA, and explored the pathogenic mechanisms and novel therapeutic strategies for RA, targeting FAM96A and CGRRF1.
10.1016/j.intimp.2023.110804
Molecular subtypes based on cuproptosis-related genes and immune profiles in lung adenocarcinoma.
Frontiers in genetics
Recent studies have identified several molecular subtypes of lung adenocarcinoma (LUAD) that have different prognoses to help predict the efficacy of immunotherapy. However, the prognostic prediction is less than satisfactory. Alterations in intracellular copper levels may affect the tumor immune microenvironment and are linked to cancer progression. Previous studies have identified some genes related to cuproptosis. The characteristics of the cuproptosis molecular subtypes have not been thoroughly studied in LUAD. The transcriptomic data and clinical information of 632 LUAD patients were used to investigate the LUAD molecular subtypes that are associated with the cuproptosis-related genes (CRGs), the tumor immune microenvironment, and stemness. The cuproptosis score was constructed using univariate Cox regression and the minor absolute shrinkage and selection operator (LASSO) to quantify the prognostic characteristics. Three different molecular subtypes related to cuproptosis, with different prognoses, were identified in LUAD. Cluster A had the highest cuproptosis score and the worst prognosis. Patients in the high cuproptosis score group had a higher somatic mutation frequency and stemness scores. Patients in the low cuproptosis score group had more immune infiltration and better prognosis. Molecular subtypes of LUAD based on CRGs reflect the differences in LUAD patients. The cuproptosis score can be used as a promising biomarker, which is of great significance to distinguish the relationship between cuproptosis and the immune microenvironment. The cuproptosis signature based on the cuproptosis score and clinical characteristics of individual patients will be useful for guiding immunotherapy in LUAD.
10.3389/fgene.2022.1006938
Exploring the role of LIAS-related cuproptosis in systemic lupus erythematosus.
Lupus
BACKGROUND:Cuproptosis is a novel mode of cell death, which is strongly related to energy metabolism in mitochondria and regulated by protein lipoylation. Currently, the molecular mechanisms of cuproptosis-related genes (CRGs) involved in systemic lupus erythematosus (SLE) largely remained unclear, our study is aimed to explore the mechanisms of cuproptosis and CRGs involved in SLE. METHODS:Bulk RNA-seq datasets were collected to display the expressions of CRGs in peripheral blood mononuclear cells (PBMCs) of SLE and healthy individuals, and then ROC analysis was used to establish the diagnostic models of CRGs. Next, the immune infiltration analyses were applied to reveal the difference of immune cells infiltration in LIAS-low and LIAS-high group. Additionally, WGCNA analysis was performed to find the gene modules significantly correlated with the LIAS expression level. We also performed the functional enrichment analyses for LIAS-related gene modules to determine the potential pathways involved in the development of SLE. Finally, scRNA-seq dataset was used to cluster immune cell subsets, reveal the activated pathways, and study cell-cell interactions in LIAS-low and LIAS-high cells. RESULT:We found CDKN2A was significantly increased and LIAS was significantly decreased in SLE patients compared with healthy individuals. The AUC score showed that LIAS had a great diagnostic value than other CRGs. Additionally, the results of immune infiltration analyses showed that immune cells proportion were diverse in LIAS-low and LIAS-high samples. The gene sets related to LIAS expression level were involved in dephosphorylation of JAK1 by SHP1, phosphorylation of STAT2, cytokine signaling in immune system, expression of interferon-alpha and beta, inhibition of JAK kinase activity by SOCS1/3, and so on. Finally, the results of cell-cell communication showed that CCL- (CCL5 + CCR1) and ANNEXIN- (ANXA1 + FPR1) might play an essential role in the communication network between LIAS-low and LIAS-high cells. CONCLUSION:Above findings inferred that LIAS-mediated cuproptosis might involve in a comprehensive cellular and molecular mechanism to cause the occurrence and development of SLE.
10.1177/09612033231211429
Adrenomedullin/FOXO3 enhances sunitinib resistance in clear cell renal cell carcinoma by inhibiting FDX1 expression and cuproptosis.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Cuproptosis, a new type of copper-induced cell death, is involved in the antitumor activity and resistance of multiple chemotherapeutic drugs. Our previous study revealed that adrenomedullin (ADM) was engaged in sunitinib resistance in clear cell renal cell carcinoma (ccRCC). However, it has yet to be investigated whether and how ADM regulates sunitinib resistance by cuproptosis. This study found that the ADM expression was elevated in sunitinib-resistant ccRCC tissues and cells. Furthermore, the upregulation of ADM significantly enhanced the chemoresistance of sunitinib compared with their respective control. Moreover, cuproptosis was involved in ADM-regulated sunitinib resistance by inhibiting mammalian ferredoxin 1 (FDX1) expression. Mechanically, the upregulated ADM activates the p38/MAPK signaling pathway to promote Forkhead box O3 (FOXO3) phosphorylation and its entry into the nucleus. Consequently, the increased FOXO3 in the nucleus inhibited FDX1 transcription and cell cuproptosis, promoting chemoresistance. Collectively, cuproptosis has a critical effector role in ccRCC progress and chemoresistance and thus is a relevant target to eradicate the cell population of sunitinib resistance.
10.1096/fj.202300474R
Development of a cuproptosis-related signature for prognosis prediction in lung adenocarcinoma based on WGCNA.
Translational lung cancer research
Background:Cuproptosis is a novel mitochondrial respiration-dependent cell death mechanism induced by copper that can kill cancer cells via copper carriers in cancer therapy. However, the clinical significance and prognostic value of cuproptosis in lung adenocarcinoma (LUAD) remains unclear. Methods:We performed a comprehensive bioinformatics analysis of the cuproptosis gene set, including copy number aberration, single-nucleotide variation, clinical characteristics, survival analysis, etc. Cuproptosis-related gene set enrichment scores (cuproptosis Z-scores) were calculated in The Cancer Genome Atlas (TCGA)-LUAD cohort using single-sample gene set enrichment analysis (ssGSEA). Modules significantly associated with cuproptosis Z-scores were screened by weighted gene co-expression network analysis (WGCNA). The hub genes of the module were then further screened by survival analysis and least absolute shrinkage and selection operator (LASSO) analysis, in which TCGA-LUAD (497 samples) and GSE72094 (442 samples) were used as the training and validation cohorts, respectively. Finally, we analyzed the tumor characteristics, immune cell infiltration levels, and potential therapeutic agents. Results:Missense mutation and copy number variant (CNV) events were general in the cuproptosis gene set. We identified 32 modules, of which the MEpurple (107 genes) and MEpink (131 genes) modules significantly positively and negatively correlated with cuproptosis Z-scores, respectively. We identified 35 hub genes significantly related to overall survival and constructed a prognostic model consisting of 7 cuproptosis-related genes in patients with LUAD. Compared with the low-risk group, patients in the high-risk group had a worse overall survival and gene mutation frequency, as well as significantly higher tumor purity. In addition, infiltration of immune cells was also significantly different between the 2 groups. Furthermore, the correlation between the risk scores and half-maximum inhibitory concentration (IC50) of antitumor drugs in the Genomics of Drug Sensitivity in Cancer (GDSC) v. 2 database was explored, revealing differences in drug sensitivity across the 2 risk groups. Conclusions:Our study provided a valid prognostic risk model for LUAD and improved understanding of its heterogeneity, which may aid in the development of personalized treatment strategies.
10.21037/tlcr-23-157
Comprehensive Analysis of Cuproptosis-Related Genes in Prognosis and Immune Infiltration of Hepatocellular Carcinoma Based on Bulk and Single-Cell RNA Sequencing Data.
Cancers
Background: Studies on prognostic potential and tumor immune microenvironment (TIME) characteristics of cuproptosis-related genes (CRGs) in hepatocellular carcinoma (HCC) are limited. Methods: A multigene signature model was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. The cuproptosis-related multivariate cox regression analysis and bulk RNA-seq-based immune infiltration analysis were performed. The results were verified using two cohorts. The enrichment of CRGs in T cells based on single-cell RNA sequencing (scRNA-seq) was performed. Real-time polymerase chain reaction (RT-PCR) and multiplex immunofluorescence staining were performed to verify the reliability of the conclusions. Results: A four-gene risk scoring model was constructed. Kaplan−Meier curve analysis showed that the high-risk group had a worse prognosis (p < 0.001). The time-dependent receiver operating characteristic (ROC) curve showed that the OS risk score prediction performance was good. These results were further confirmed in the validation queue. Meanwhile, the Tregs and macrophages were enriched in the cuproptosis-related TIME of HCC. Conclusions: The CRGs-based signature model could predict the prognosis of HCC. Treg and macrophages were significantly enriched in cuproptosis-related HCC, which was associated with the depletion of proliferating T cells.
10.3390/cancers14225713
Construction of cuproptosis‑associated prognostic signature in colon adenocarcinoma based on bioinformatics and RT‑qPCR analysis.
Oncology letters
Colon adenocarcinoma (COAD) is the most common pathological subtype of colon cancer with a high degree of malignancy. Cuproptosis is a newly discovered copper-dependent cell death pattern distinguished from all the other known programmed cell death. Hence, it can be used as a potential therapeutic target for cancer. The present study aimed to clarify the relationship between cuproptosis and prognosis of COAD. The variations of 12 cuproptosis-associated genes based on 623 patients with COAD were comprehensively identified. It was found that 8 out of 12 were differentially expressed in tumors and normal tissues and showed a higher prognostic value. Therefore, two molecular subtypes were explored and the subtype A, with higher expression of cuproptosis-associated genes, showed more enrichment of immune pathways and survival advantage over those with lower cuproptosis-associated genes expression. The risk score and a nomogram predicting pattern were constructed to quantify a single patient and the risk score could serve as an independent prognostic factor by multivariate Cox regression analysis (P<0.001, HR: 1.350, 95% CI: 1.189-1.534). The expression levels of key prognostic genes ( and ) was analyzed by HCT-116 colon cancer cells and HT-29 colorectal cancer cells using reverse transcription-quantitative PCR. The high-risk group, characterized by higher immune infiltration, increased microsatellite instability-high, high tumor mutation burden and high expression level of immune checkpoints, indicated higher drug sensitivity. In conclusion, our analysis confirms the potential role of cuproptosis-associated genes in the prognosis of COAD and it will provide new ideas for immunotherapy.
10.3892/ol.2023.13677
Comprehensive analysis of cuproptosis in immune response and prognosis of osteosarcoma.
Frontiers in pharmacology
Copper-induced cell death, a form of apoptosis, has been extensively investigated in human diseases. Recent studies on the mechanisms underlying copper-induced cell death have provided innovative insights into copper-related toxicity in cells, and this form of programmed cell death was termed cuproptosis. Herein, we conducted a comprehensive analysis to determine the specific role of cuproptosis in osteosarcoma. Using consensus clustering analysis, patients with osteosarcoma from the TARGET database were classified into subgroups with distinct cuproptosis-based molecular patterns. Accordingly, these patients displayed diverse clinicopathological features, survival outcomes, tumor microenvironment (TME) characteristics, immune-related scores, and therapeutic responses. Furthermore, we constructed a cuproptosis-based risk signature and nomogram, as well as developed a cuproptosis score for improved patient characterization. The prognostic model and cuproptosis score were well validated and confirmed to efficiently distinguish high- and low-risk patients, thereby affording great predictive value. Finally, we verified the abnormal expression of prognostic CUG in OS patients by immunohistochemistry. In conclusion, we suggest that cuproptosis may play an important role in regulating the tumor microenvironment features, tumor progression and the long-term prognosis of osteosarcoma.
10.3389/fphar.2022.992431
Construction of cuproptosis signature based on bioinformatics and experimental validation in clear cell renal cell carcinoma.
Journal of cancer research and clinical oncology
BACKGROUND:Cuproptosis was defined as a novel nonapoptotic cell death pathway and its potential function in clear cell renal cell carcinoma (ccRCC) remains unclear. METHODS:We obtained gene expression profiles, somatic mutation and corresponding clinical information of 881 ccRCC samples from 3 cohorts including the cancer genome atlas cohort, GSE29609 cohort and CheckMate 025 cohort. As described in the latest published article, we enrolled 16 genes as cuproptosis-related genes (CRGs). We explored the expression level, variants and copy number variation of the CRGs. Univariate and multi-variate regression were utilized to assess the prognostic significance of the CRGs. Non-negative matrix factorization was used to identify potential subgroup and gene set variation analysis was used to explore the potential biological functions. CIBERSORT, ESTIMATE algorithm and single sample gene set enrichment analysis were used to evaluate the tumor microenvironment. In vitro experiments including CCK-8, transwell and wound healing assays were utilized to explore the potential biological function of DLAT in ccRCC. RESULTS:We found that except for CDKN2A, the CRGs were positively associated with patients' OS. Cuproptosis cluster, cuproptosis gene cluster and cuproptosis score were established, respectively, and higher cuproptosis score was significantly associated with a worse OS in ccRCC (p < 0.001). The area under the receiver operating characteristic curve of the cuproptosis-related nomogram at 1 year, 3 years, 5 years was 0.858, 0.821 and 0.78, respectively. In addition, we found that the cuproptosis score was positively associated with PDCD1, CTLA4 expression level, thus the cuproptosis score may also reflect the dysfunction of tumor infiltrating immune cells. In vitro experiments indicated that overexpression of DLAT could inhibited the migration and proliferation ability of ccRCC cells. CONCLUSION:Our findings identify a novel cuproptosis-related signature and the cuproptosis characteristics may influence the anti-tumor immunity though complex regulating networks, and thus cuproptosis may play a role in developing novel therapeutic target of ccRCC.
10.1007/s00432-023-05259-z
A novel cuproptosis-related signature predicts prognosis and immunotherapy efficacy in lung adenocarcinoma.
American journal of translational research
BACKGROUND:Lung adenocarcinoma (LUAD) is the leading histological subtype of lung cancer worldwide, causing high annual mortality. Tsvetkov et al. recently found a new form of regulated cell death, termed cuproptosis. The prognostic value of cuproptosis-related gene signature in LUAD remains uncertain. METHODS:A training cohort is identified by the TCGA-LUAD dataset, whereas validation cohorts one and two are identified by GSE72094 and GSE68465, respectively. GeneCard and GSEA were used to extract genes related to cuproptosis. Cox regression, Kaplan-Meier regression, and LASSO regression were used to construct a gene signature. The model's applicability was evaluated by Kaplan-Meier estimators, Cox models, ROC, and tAUC across two independent validation cohorts. We examined the model's connections with other forms of regulated cell death. The immunotherapy ability of the signature was demonstrated by applying TMB, immune relevant signatures, and TIDE. The GSEA and immune infiltration analysis offer a better understanding of how the signature functions and the role of immune cells in its prognostic power. RESULTS:A ten-gene signature was built and demonstrated owning prognostic power by being applied to the validation cohorts. The GSEA uncovered that the unfolded protein response, glycolysis/gluconeogenesis, and MYC were highly related to the gene signature. The ten-gene signature is closely related to related genes of apoptosis, necroptosis, pyroptosis, and ferroptosis. Our signature may have utility in predicting immunotherapy efficacy in LUADs. Mast cells were identified as key players that support the predicting capacity of the ten-gene signature through the immune infiltrating analysis. CONCLUSIONS:The novel ten-gene signature associated with apoptosis in cuproptosis that we obtained may contribute to improved LUAD management strategies and the ability to predict response to LUAD immunotherapy. It is suggested that mast cell infiltration might be related to the prognostic power of this signature.
Cuproptosis key gene FDX1 is a prognostic biomarker and associated with immune infiltration in glioma.
Frontiers in medicine
Recent studies have found that the protein encoded by the gene is involved in mediating Cuproptosis as a regulator of protein lipoylation and related to immune response process of tumors. However, the specific biological function of in glioma is currently unclear. To explore the potential function of , this study explored the correlation between the expression of in cancers and survival prognosis by analyzing the public databases of GEPIA and Cbioportal. Immune infiltration was analyzed by the TIMER2.0 database in tumors. The possible biological processes and functions of FDX1-related in glioma were annotated through gene enrichment. Relationship between Cuproptosis and autophagy was explored through gene co-expression studies. Summary and conclusions of this study: (1) FDX1 is highly expressed in gliomas and associated with poor prognosis in low-grade gliomas (LGG). (2) Gene annotation indicates that FDX1 is mainly involved in the tumor protein lipoylation and cell death. (3) expression is positively correlated with the infiltration of immune cells. (4) and , two other genes involved in lipoylation, may be unidentified marker gene for Cuproptosis. And the Cuproptosis genes related to FDX1 were positively correlated with the expression of autophagy marker genes , , and . This evidence suggests that there may be some interaction between FDX1 mediated Cuproptosis and autophagy. In summary, FDX1 may serve as a potential immunotherapy target and prognostic marker for Glioma.
10.3389/fmed.2022.939776
Cuproptosis-related gene SLC31A1 is a potential predictor for diagnosis, prognosis and therapeutic response of breast cancer.
American journal of cancer research
Cuproptosis is a recently reported novel way of cell death. A comprehensive study regarding expression, function and mechanism of cuproptosis-related genes in breast cancer is still absent. In this work, a series of analyses were employed and SLC31A1 was selected as the most potential cuproptosis-related gene in breast cancer, which was statistically upregulated and possessed significant abilities to predict diagnosis, prognosis and drug response. Moreover, SLC31A1 was significantly positively correlated with different immune cell infiltration levels, immune cell biomarkers or immune checkpoints in breast cancer. Upstream G2E3-AS1/let-7a-5p and CDKN2B-AS1/let-7b-5p pathways were found to be responsible for SLC31A1 upregulation in breast cancer based on competing endogenous RNA mechanism. Furthermore, we found that SLC31A1 overexpression might be also induced by its high copy number level in breast cancer. Collectively, our current data elucidated that cuproptosis-related SLC31A1 might be a promising diagnostic/prognostic biomarker and drug responsive predictor in breast cancer.
Cuproptosis status affects treatment options about immunotherapy and targeted therapy for patients with kidney renal clear cell carcinoma.
Frontiers in immunology
The development of immunotherapy has changed the treatment landscape of advanced kidney renal clear cell carcinoma (KIRC), offering patients more treatment options. Cuproptosis, a novel cell death mode dependent on copper ions and mitochondrial respiration has not yet been studied in KIRC. We assembled a comprehensive cohort of The Cancer Genome Atlas (TCGA)-KIRC and GSE29609, performed cluster analysis for typing twice using seven cuproptosis-promoting genes (CPGs) as a starting point, and assessed the differences in biological and clinicopathological characteristics between different subtypes. Furthermore, we explored the tumor immune infiltration landscape in KIRC using ESTIMATE and single-sample gene set enrichment analysis (ssGSEA) and the potential molecular mechanisms of cuproptosis in KIRC using enrichment analysis. We constructed a cuproptosis score (CUS) using the Boruta algorithm combined with principal component analysis. We evaluated the impact of CUS on prognosis, targeted therapy, and immunotherapy in patients with KIRC using survival analysis, the predictions from the Cancer Immunome Atlas database, and targeted drug susceptibility analysis. We found that patients with high CUS levels show poor prognosis and efficacy against all four immune checkpoint inhibitors, and their immunosuppression may depend on . However, the high-CUS group showed higher sensitivity to sunitinib, axitinib, and elesclomol. Sunitinib monotherapy may reverse the poor prognosis and result in higher progression free survival. Then, we identified two potential CPGs and verified their differential expression between the KIRC and the normal samples. Finally, we explored the effect of the key gene on the proliferation of KIRC cells and confirmed the presence of cuproptosis in KIRC cells. We developed a targeted therapy and immunotherapy strategy for advanced KIRC based on CUS. Our findings provide new insights into the relationship among cuproptosis, metabolism, and immunity in KIRC.
10.3389/fimmu.2022.954440
Cuproptosis and Immune-Related Gene Signature Predicts Immunotherapy Response and Prognosis in Lung Adenocarcinoma.
Life (Basel, Switzerland)
Cuproptosis and associated immune-related genes (IRG) have been implicated in tumorigenesis and tumor progression. However, their effects on lung adenocarcinoma (LUAD) have not been elucidated. Therefore, we investigated the impact of cuproptosis-associated IRGs on the immunotherapy response and prognosis of LUAD using a bioinformatical approach and in vitro experiments analyzing clinical samples. Using the cuproptosis-associated IRG signature, we classified LUAD into two subtypes, cluster 1 and cluster 2, and identified three key cuproptosis-associated IRGs, NRAS, TRAV38-2DV8, and SORT1. These three genes were employed to establish a risk model and nomogram, and to classify the LUAD cohort into low- and high-risk subgroups. Biofunctional annotation revealed that cluster 2, remarkably downregulating epigenetic, stemness, and proliferation pathways activity, had a higher overall survival (OS) and immunoinfiltration abundance compared to cluster 1. Real-time quantitative PCR (RT-qPCR) validated the differential expression of these three genes in both subgroups. scRNA-seq demonstrated elevated expression of NRAS and SORT1 in macrophages. Immunity and oncogenic and stromal activation pathways were dramatically enriched in the low-risk subgroup, and patients in this subgroup responded better to immunotherapy. Our data suggest that the cuproptosis-associated IRG signature can be used to effectively predict the immunotherapy response and prognosis in LUAD. Our work provides enlightenment for immunotherapy response assessment, prognosis prediction, and the development of potential prognostic biomarkers for LUAD patients.
10.3390/life13071583
Construction of cuproptosis-related gene signature to predict the prognosis and immunotherapy efficacy of patients with bladder cancer through bioinformatics analysis and experimental validation.
Frontiers in genetics
A new form of cell death, copper-dependent cell death (termed cuproptosis), was illustrated in a recent scientific study. However, the biological function or prognostic value of cuproptosis regulators in bladder cancer (BLCA) remains unknown. Sequencing data obtained from BLCA samples in TCGA and GEO databases were preprocessed for analysis. Biological function and immune cell infiltration levels evaluated by gene set variation analysis (GSVA) were employed to calculate enrichment scores. Iteration least absolute shrinkage and selection operator (LASSO) and COX regression model were employed to select feature genes and construct a novel cuproptosis-related (CR) score signature. The genomics of drug sensitivity in cancer (GDSC) and tumor immune dysfunction and exclusion (TIDE) analysis were used to predict the chemotherapy and immunotherapy efficacy for BLCA patients. The relative expression of the genes involved in the signature was also verified by real-time quantitative PCR (qRT-PCR) in cell lines and tissues. Expression abundance and the prognostic value of cuproptosis regulators proved that cuproptosis might play a vital part in the carcinogenesis of BLCA. GSVA revealed that cuproptosis regulators might be associated with metabolism and metastasis-related pathways such as TGF-β, protein secretion, oxidative Phosphorylation, MYC targets, MTORC1, and adipogenesis pathways. CR scores could predict the prognosis and evaluate the chemotherapy and immunotherapy efficacies of BLCA. CR scores were positively correlated with EMT, MYC, MTORC1, HEDGEHOG, and E2F signaling pathways; meanwhile, they were negatively correlated with several immune cell infiltration levels such as CD8 T cells, γδT cells, and activated dendritic cells. Several GEO datasets were used to validate the power of prognostic prediction, and a nomogram was also established for clinical use. The expressions of DDX10, RBM34, and RPL17 were significantly higher in BLCA cell lines and tissues in comparison with those in the corresponding normal controls. Cuproptosis might play an essential role in the progression of BLCA. CR scores could be helpful in the investigation of prognostic prediction and therapeutic efficacy and could make contributions to further studies in BLCA.
10.3389/fgene.2022.1074981
Cuproptosis scoring model predicts overall survival and assists in immunotherapeutic decision making in pancreatic carcinoma.
Frontiers in genetics
Cuproptosis is a newly identified form of non-apoptotic cell death that is associated with the progression and treatment responses in pancreatic adenocarcinoma (PAAD). However, its impact on oncology and tumor microenvironment (TME) remains unclear. Hub genes were identified using least absolute shrinkage and selection operator (LASSO) Cox regression for 25 newly reported cuproptosis-related regulators and subjected to stepwise regression to obtain cuproptosis-related score (CuRS). Additionally, the clinical significance, functional status, role on TME, and genomic variation of CuRS were further examined systematically. A CuRS model incorporating TRAF2, TRADD, USP21, FAS, MLKL, TNFRSF10B, MAPK8, TRAF5, and RIPK3 was developed. The stability and accuracy of this risk model as an independent prognostic factor for PAAD were confirmed in the training and external validation cohorts. Patients in the high-CuRS group had "cold" tumors with active tumor proliferation and immunosuppression, whereas those in the low-CuRS group comprised "hot" tumors with active immune function and cell killing capacity. Additionally, patients in the high-CuRS group carried fewer genomic copy number variations (CNVs) and greater somatic mutations. Furthermore, patients in the low- and high-CuRS groups exhibited increased sensitivity to immunotherapy and chemotherapy, respectively. We developed and validated a robust CuRS model based on cuproptosis to assess patients' prognoses and guide clinical decision-making. Overall, the findings of this study are expected to contribute to the comprehensive understanding of cuproptosis and facilitate precise treatment of PAAD.
10.3389/fgene.2022.938488
A novel cuproptosis-related lncRNA signature predicts the prognosis and immunotherapy for hepatocellular carcinoma.
Cancer biomarkers : section A of Disease markers
BACKGROUND:Hepatocellular carcinoma (HCC) is one of the most serious malignant tumors with a poor prognosis worldwide. Cuproptosis is a novel copper-dependent cell death form, involving mitochondrial respiration and lipoylated components of the tricarboxylic acid (TCA) cycle. Long non-coding RNAs (lncRNAs) have been demonstrated to affect the tumorigenesis, growth, and metastasis of HCC. OBJECTIVE:We explored the potential roles of cuproptosis-related lncRNAs in predicting the prognosis for HCC. METHODS:The RNA-seq transcriptome data, mutation data, and clinical information data of HCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression analyses were performed to identify a prognostic cuproptosis-related lncRNA signature. The receiver operating characteristic (ROC) analysis was used to evaluate the predictive value of the lncRNA signature for HCC. The enrichment pathways, immune functions, immune cell infiltration, tumor mutation burden, and drug sensitivity were also analyzed. RESULTS:We constructed a prognostic model consisting of 8 cuproptosis-related lncRNAs for HCC. The patients were divided into high-risk group and low-risk group according to the riskscore calculated using the model. Kaplan-Meier analysis revealed that the high-risk lncRNA signature was correlated with poor overall survival [hazard ratio (HR) =1.009, 95% confidence interval (CI) = 1.002-1.015; p= 0.010)] of HCC. A prognostic nomogram incorporated the lncRNA signature and clinicopathological features were constructed and showed favorable performance for predicting prognosis of HCC patients. In addition, the most immune-related functions were significantly different between the high-risk and low-risk groups. Tumor mutation burden (TMB) and immune checkpoints were also expressed differently between the two risk groups. Finally, HCC patients with low-risk score were more sensitive to several chemotherapy drugs. CONCLUSIONS:The novel cuproptosis-related lncRNA signature could be used to predict prognosis and evaluate the effect of chemotherapy for HCC.
10.3233/CBM-220259
A Novel Cuproptosis-Related Signature Identified DLAT as a Prognostic Biomarker for Hepatocellular Carcinoma Patients.
World journal of oncology
Background:Hepatocellular carcinoma (HCC) is the most common type of liver cancers, with more than a million cases per year by 2025. Cuproptosis is a novel form of programmed cell death, and is caused by mitochondrial lipoylation and destabilization of iron-sulfur proteins triggered by copper, which was considered as a key player in various biological processes. However, the roles of cuproptosis-related genes (CRGs) in HCC remain largely unknown. Methods:In the present study, we constructed and validated a four CRGs signature for predicting the overall survival (OS) of HCC patients in both The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Results:Patients with high CRGs risk score showed shorter OS than those with low CRGs risk score. Functional analysis suggested that the CRGs-based prognostic signature was associated with metabolism remodeling which facilitated liver cancer progression. In addition, reduced infiltration of CD8 T cells and increased macrophages were found in HCCs from patients with high CRGs risk score. As one of the four CRGs, higher expression of dihydrolipoamide S-acetyltransferase (DLAT) was accompanied by higher expression of program death ligand 1 (PD-L1) in HCC. Further, we confirmed that DLAT was up-regulated and correlated with poor prognosis in a clinical HCC cohort. Conclusion:In conclusion, our study constructed a four CRGs signature prognostic model and identified DLAT as an independent prognostic factor for HCC, thus providing new clues for understanding the association between cuproptosis and HCC.
10.14740/wjon1529
A Novel Cuproptosis-Associated Gene Signature to Predict Prognosis in Patients with Pancreatic Cancer.
BioMed research international
Background:Pancreatic cancer (PAAD) is a malignant tumor with a poor prognosis and lacks sensitive biomarkers for diagnosis and targeted therapy. Cuproptosis, a recently proposed form of cell death based on cellular copper ion concentration, plays a key role in cancer biology. This study is aimed at constructing a risk model for predicting the prognosis of PAAD patients based on cuproptosis-related genes. Methods:Pancreatic-related data from UCSC-TCGA and UCSC-GTEx databases were extracted for analysis, and TCGA-PAAD samples were randomly divided into the training and validation groups. Pearson correlation analysis was used to obtain cuproptosis-related genes coexpressed with 19 copper death genes. Univariate Cox and Lasso regression analyses were used to obtain cuproptosis-related prognostic genes. Multivariate Cox regression analysis was used to construct the final prognostic risk model. The risk score curve, Kaplan-Meier survival curves, and ROC curve were used to evaluate the predictive ability of the Cox risk model. Finally, the functional annotation of the risk model was obtained through enrichment analysis. Results:The Cox risk model has an eight prognostic cuproptosis-related gene signature. Kaplan-Meier survival curves demonstrated that the high-risk group had a shorter survival time. The ROC curve of the risk score was well created to predict one-, three-, and five-year survival rates, and AUC of the risk score was higher than other clinical characteristics. Cox regression analysis revealed that the risk score has an independent prognostic value for PAAD. GSEA reveals specific tumor pathways associated with the risk model (Myc targets v1, mTORC1 signaling, and E2F targets). Conclusions:We constructed a prognostic model containing eight cuproptosis-related genes (AKR1B10, KLHL29, PROM2, PIP5K1C, KIF18B, AMIGO2, MRPL3, and PI4KB) that can accurately predict the prognosis of PAAD patients. The results will provide new perspectives for individualized outcome prediction and new therapy development for PAAD patients.
10.1155/2023/3419401
Cuproptosis-related molecular patterns and gene (ATP7A) in hepatocellular carcinoma and their relationships with tumor immune microenvironment and clinical features.
Cancer reports (Hoboken, N.J.)
BACKGROUND:Cuproptosis has been studied in various aspects as a new form of cell death. AIMS:We hope to explore the molecular patterns and genes related to cuproptosis in evaluating and predicting the prognosis of hepatocellular carcinoma (HCC), as well as the impact of tumor immune microenvironment. METHODS AND RESULTS:Sixteen cuproptosis related gene (CRGs) and cuproptosis related molecular and gene characteristics were comprehensively analyzed from 492 HCC samples. Cuproptosis related molecular patterns were generated by consensus clustering algorithm, including cuproptosis clusters, cuproptosis gene clusters (CGC) and cuproptosis score (CS). The characteristics of tumor microenvironment (TME) and tumor immune cells were described by the ssGSEA and ESTIMATE algorithms. Cuproptosis score was established to assess the clinical characteristics, prognostic and immunotherapy. The role and mechanism of CRG (ATP7A) in HCC, as well as its relationship with TME and immune checkpoints, have been further explored. The results of somatic mutation, copy number variations (CNV), and CRGs expression in HCC suggested the CRGs might participate in the HCC oncogenesis. The cuproptosis clusters were closely related to the clinical pathological characteristics, biological processes, and prognosis of HCC. The three CGC was revealed to be consistent with the three immune infiltration characterizations, including immune-high, immune-mid, and immune-low subtypes. Higher CS was characterized by decreased TMB, activated immunity, higher immune cell proportion score (IPS) and better overall survival (OS), which indicated higher CS was immune-high type and with better treatment effect and prognosis. The ATP7A had the highest hazard ratio (HR = 1.465, p < .001), was high expression in HCC tissues and with a shorter 5-year OS. Knocking down ATP7A could enhance intracellular copper concentration, cause a decrease in DLAT expression, and induce cuproptosis and inhibit cell proliferation and migration. ATP7A was also positively correlated with most cancer immune cells and immune checkpoints. CONCLUSION:Taken together, this research revealed the cuproptosis related molecular patterns and genes associated with the clinical pathological characteristics, TME phenotype and prognosis of HCC. The CS will further deepen our understanding of the TME characteristics of HCC, and the involvement of ATP7A in cuproptosis will provide new ideas for predicting HCC prognosis and immunotherapy.
10.1002/cnr2.1904
Cuproptosis-related molecular subtypes direct T cell exhaustion phenotypes and therapeutic strategies for patients with lung adenocarcinoma.
Frontiers in pharmacology
T cell exhaustion (TEX) heterogeneity leads to unfavorable immunotherapeutic responses in patients with cancer. Classification of TEX molecular phenotypes is pivotal to overcoming TEX and improving immunotherapies in the clinical setting. Cuproptosis is a novel form of programmed cell death associated with tumor progression. However, the relation between cuproptosis-related genes (CuRGs) and the different TEX phenotypes has not been investigated in lung adenocarcinoma (LUAD). Unsupervised hierarchical clustering and principal component analysis (PCA) algorithm were performed to determine CuRGs-related molecular subtypes and scores for patients with LUAD. The tumor immune microenvironment (TIME) landscape in these molecular subtypes and scores was estimated using ESTIMATE and ssGSEA algorithms. Furthermore, TEX characteristics and phenotypes were evaluated in distinct molecular subtypes and scores through GSVA and Spearman correlation analysis. Finally, TIDE scores, immunophenoscore, pRRophetic, GSE78220, and IMvigor210 datasets were employed to appraise the distinguishing capacity of CuRGscore in immunotherapy and pharmacotherapy effectiveness. We identified three CuRGclusters, three geneClusters, and CuRGscore based on 1012 LUAD transcriptional profiles from five datasets. Compared with other molecular subtypes, CuRGcluster B, geneCluster C, and low-CuRGscore group with good prognosis presented fewer TEX characteristics, including immunosuppressive cells infiltration and TEX-associated gene signatures, signal pathways, checkpoint genes, transcription and inflammatory factors. These molecular subtypes were also responsive in distinguishing TEX phenotype in the terminal, GZMK+, and OXPHOS- TEX subtypes, but not the TCF7+ TEX subtype. Notably, copper importer and exporter, SLC31A1 and ATP7B, were remarkably associated with four TEX phenotypes and nine checkpoint genes such as , , , , , , , , , indicating that cuproptosis was involved in the development of TEX and immunosuppressive environment in patients with LUAD. Moreover, CuRGscore was significantly related to the TIDE score, immunophenoscore, and terminal TEX score (Spearman R = 0.62, < 0.001) to effectively predict immunotherapy and drug sensitivity in both training and external validation cohorts. Our study demonstrated the extensive effect of cuproptosis on TEX. CuRGs-related molecular subtypes and scores could illuminate the heterogeneity of TEX phenotype as reliable tools in predicting prognosis and directing more effective immunotherapeutic and chemotherapeutic strategies for patients with LUAD.
10.3389/fphar.2023.1146468
Establishment of a prognostic signature for lung adenocarcinoma using cuproptosis-related lncRNAs.
BMC bioinformatics
OBJECTIVE:To establish a prognostic signature for lung adenocarcinoma (LUAD) based on cuproptosis-related long non-coding RNAs (lncRNAs), and to study the immune-related functions of LUAD. METHODS:First, transcriptome data and clinical data related to LUAD were downloaded from the Cancer Genome Atlas (TCGA), and cuproptosis-related genes were analyzed to identify cuproptosis-related lncRNAs. Univariate COX analysis, least absolute shrinkage and selection operator (LASSO) analysis, and multivariate COX analysis were performed to analyze the cuproptosis-related lncRNAs, and a prognostic signature was established. Second, univariate COX analysis and multivariate COX analysis were performed for independent prognostic analyses. Receiver operating characteristic (ROC) curves, C index, survival curve, nomogram, and principal component analysis (PCA) were performed to evaluate the results of the independent prognostic analyses. Finally, gene enrichment analyses and immune-related function analyses were also carried out. RESULTS:(1) A total of 1,297 cuproptosis-related lncRNAs were screened. (2) A LUAD prognostic signature containing 13 cuproptosis-related lncRNAs was constructed (NIFK-AS1, AC026355.2, SEPSECS-AS1, AL360270.1, AC010999.2, ABCA9-AS1, AC032011.1, AL162632.3, LINC02518, LINC0059, AL031600.2, AP000346.1, AC012409.4). (3) The area under the multi-indicator ROC curves at 1, 3, and 5 years were AUC1 = 0.742, AUC2 = 0.708, and AUC3 = 0.762, respectively. The risk score of the prognostic signature could be used as an independent prognostic factor that was independent of other clinical indicators. (4) The results of gene enrichment analyses showed that 13 biomarkers were primarily related to amoebiasis, the wnt signaling pathway, hematopoietic cell lineage. The ssGSEA volcano map showed significant differences between high- and low-risk groups in immune-related functions, such as human leukocyte antigen (HLA), Type_II_IFN_Reponse, MHC_class_I, and Parainflammation (P < 0.001). CONCLUSIONS:Thirteen cuproptosis-related lncRNAs may be clinical molecular biomarkers for the prognosis of LUAD.
10.1186/s12859-023-05192-5
Copper Homeostasis Based on Cuproptosis-Related Signature Optimizes Molecular Subtyping and Treatment of Glioma.
Molecular neurobiology
Copper is essential in living organisms and crucial to various physiological processes. Normal physiological conditions are in a state of copper homeostasis to ensure normal biochemical and metabolic processes. Dysregulation of copper homeostasis has been associated with multiple diseases, especially cancer. Cuproptosis is a copper-dependent cell death mediated by excess copper or homeostasis dysregulation. Elesclomol is a common inducer of cuproptosis, carrying copper into the cell and producing excess copper. Cuproptosis modulates tumor proliferation-related signaling pathways and is closely associated with remodeling the tumor microenvironment. In gliomas, the role of cuproptosis and copper homeostasis needs to be better characterized. This study systematically analyzed cuproptosis-related genes (CRGs) and constructed a cuproptosis signature for gliomas. The signature closely links the subtypes and clinical features of glioma patients. The results showed a greater tendency toward dysregulation of copper homeostasis as the malignant grade of glioma patients increased. In addition, CRGs-signature effectively predicted the sensitivity of glioma cells to elesclomol and verified that elesclomol inhibited glioma mainly through inducing cellular cuproptosis. In summary, we found different copper homeostatic features in gliomas and verified the anticancer mechanism of elesclomol, which provides a theoretical basis for developing novel therapeutic strategies for gliomas.
10.1007/s12035-023-03893-9
Cuproptosis-associated genes (CAGs) contribute to the prognosis prediction and potential therapeutic targets in hepatocellular carcinoma.
Cellular signalling
BACKGROUND:Cuproptosis is a novel form of cell death that exhibits close association with mitochondrial respiration and occurs through distinct mechanisms compared to previously characterized forms of cell death. However, the precise impact of cuproptosis-associated genes (CAGs) on prognosis, immune profiles, and treatment efficacy in hepatocellular carcinomas (HCC) remains poorly understood. METHODS:A comprehensive analysis of CAGs in hepatocellular carcinoma (HCC) prognosis was conducted using genomic data from HCC patients. Consensus clustering analysis was performed to determine molecular subtypes related to cuproptosis in HCC. The single-sample gene set enrichment analysis (ssGSEA) algorithm was applied to quantify the infiltration levels of immune cells, while the "ESTIMATE" package was employed to calculate tumor purity, stromal scores, and immune scores in the tumor microenvironment (TME). Principal component analysis (PCA) algorithm was utilized to construct a risk score related to CAGs. Finally, CCK8, wound healing, Transwell migration/invasion, EDU and xenograft model were employed to explore the potential oncogenic role of MTF1. RESULTS:Three distinct patterns of cuproptosis modification were identified, each associated with unique functional enrichments, clinical characteristics, immune cell infiltration, immune checkpoints, tumor microenvironment (TME), and prognosis. A CAGs-related risk score (Cuscore) was developed to predict prognosis in TCGA and validated in GSE76427 and ICGC datasets. Notably, patients with a low Cuscore had better prognoses and were more likely to benefit from immunotherapy.Additionally, the high Cuscore group in HCC also revealed three potential therapeutic targets (TUBA1B, CDC25B, and CSNK2A1) as well as several therapeutic compounds. Moreover, the experiment measured the expression levels of six prognosis-related CAGs, wherein knockdown of MTF1 exhibited suppression of proliferation, invasion, and migration formation in HCC cell lines. CONCLUSION:The findings have enhanced our comprehension of the cuproptosis characteristics in HCC, and stratification based on CuScore may potentially enhance the prediction of patients' prognosis and facilitate the development of effective and innovative treatment strategies.
10.1016/j.cellsig.2024.111072
Identification and study of cuproptosis-related genes in prognostic model of multiple myeloma.
Hematology (Amsterdam, Netherlands)
BACKGROUND:Multiple myeloma (MM) is a highly heterogeneous disease. Cuproptosis is a novel mode of death that is closely associated with several diseases, such as hepatocellular carcinoma. However, its role in MM is unknown. METHODS:MM transcriptomic and clinical data were obtained from UCSC Xena and gene expression omnibus (GEO) databases. Following MM samples were divided into different subtypes based on the cuproptosis genes, the differentially expressed genes (DEGs) among different subtypes, namely, candidate cuproptosis related genes were analyzed by univariate Cox and least absolute shrinkage and selection operator (LASSO) regression to construct a cuproptosis-related risk model. After the independent prognostic analysis was performed, a nomogram was constructed. Finally, Functional enrichment analysis and immune infiltration analysis were performed in the high- and low-risk groups, potential therapeutic agents were then predicted. RESULTS:The 784 MM samples in UCSC Xena cohorts were divided into three different subtypes, and 4 out of 346 candidate cuproptosis related genes, namely CDKN2A, BCL3, KCNA3 and TTC14 were used to construct a risk model. Risk score was considered a reliable independent prognostic factor for MM patients. It was investigated that the pathway of cell cycle was significantly enriched in the high-risk group. In addition, immune score, ESTIMATE score and cytolytic activity were significantly different between different risk groups, as well as 13 immune cells such as memory B cells. Nine drugs were predicted in our study. CONCLUSION:A cuproptosis-related prognostic model was constructed, which may have a potential guiding role in the treatment of MM.
10.1080/16078454.2023.2249217
LncRNAs signatures associated with cuproptosis predict the prognosis of endometrial cancer.
Frontiers in genetics
Endometrial cancer (UCEC) is the sixth most common cancer in women, and although surgery can provide a good prognosis for early-stage patients, the 5-year overall survival rate for women with metastatic disease is as low as 16%. Long non-coding RNAs (LncRNAs) are thought to play an important role in tumor progression. Cuproptosis is a recently discovered form of cell death in which copper binds directly to the lipoacylated component of the tricarboxylic acid (TCA) cycle. The aggregation of these copper-bound listed mitochondrial proteins and the loss of Fe-S cluster proteins trigger proteotoxic stress, which leads to cell death. Therefore, the aim of this work was to investigate the role of Cuproptosis-related LncRNAs signaling in clinical prognostic prediction and immunotherapy, as well as the relationship between tumor mutation burden. Genomic, clinical and mutational data of endometrial cancer patients were presented in the TCGA database, and cuproptosis-related genes obtained from related studies. Coexpression analysis and Cox regression analysis were used to construct prognostic features. Patients were divided into high risk group and low risk group, and then ROC, survival rate, risk curve, principal component analysis, independent prognostic analysis and clinical subgroup model validation were performed to observe the prognostic value of characteristics. Subsequently, the GO and genomic KEGG enrichment and immune-related functions of LncRNAs as well as the tumor mutation burden were analyzed. In 548 UCEC case data, we identified five associated LncRNAs co-expressed with cuproptosis genes, and we found that high-risk patients had poorer overall survival (OS), progression-free survival (PFS), and higher mortality. Independent prognostic analysis, ROC showed that the LncRNAs associated with cuproptosis could accurately predict the prognosis of patients. Enrichment analysis revealed that the biological functions of LncRNAs were related to tumorigenesis. We also discovered suppression of immune-related functions in high-risk patients with oncogene mutations, higher tumor mutation burden in low-risk patients, and longer overall survival in patients with higher tumor mutation burden. The identification of five LncRNAs associated with cuproptosis can accurately predict the prognosis of patients with endometrial cancer, and may provide a new perspective for clinical application and immunotherapy.
10.3389/fgene.2023.1120089
A novel cuproptosis-related molecular pattern and its tumor microenvironment characterization in colorectal cancer.
Frontiers in immunology
Cuproptosis, or copper-induced cell death, has been reported as a novel noncanonical form of cell death in recent times. However, the potential roles of cuproptosis in the alteration of tumor clinicopathological features and the formation of a tumor microenvironment (TME) remain unclear. In this study, we comprehensively analyzed the cuproptosis-related molecular patterns of 1,274 colorectal cancer samples based on 16 cuproptosis regulators. The consensus clustering algorithm was conducted to identify cuproptosis-related molecular patterns and gene signatures. The ssGSEA and ESTIMATE algorithms were used to evaluate the enrichment levels of the infiltrated immune cells and tumor immune scores, respectively. The cuproptosis score was established to assess the cuproptosis patterns of individuals with principal component analysis algorithms based on the expression of cuproptosis-related genes. Three distinct cuproptosis patterns were confirmed and demonstrated to be associated with distinguishable biological processes and clinical prognosis. Interestingly, the three cuproptosis patterns were revealed to be consistent with three immune infiltration characterizations: immune-desert, immune-inflamed, and immune-excluded. Enhanced survival, activation of immune cells, and high tumor purity were presented in patients with low cuproptosisScore, implicating the immune-inflamed phenotype. In addition, low scores were linked to high tumor mutation burden, MSI-H and high CTLA4 expression, showing a higher immune cell proportion score (IPS). Taken together, our study revealed a novel cuproptosis-related molecular pattern associated with the TME phenotype. The formation of cuproptosisScore will further strengthen our understanding of the TME feature and instruct a more personalized immunotherapy schedule in colorectal cancer.
10.3389/fimmu.2022.940774
Cuproptosis-Related lncRNA Gene Signature Establishes a Prognostic Model of Gastric Adenocarcinoma and Evaluate the Effect of Antineoplastic Drugs.
Genes
BACKGROUND:One of the most frequent malignancies of the digestive system is stomach adenocarcinoma (STAD). Recent research has demonstrated how cuproptosis (copper-dependent cell death) differs from other cell death mechanisms that were previously understood. Cuproptosis regulation in tumor cells could be a brand-new treatment strategy. Our goal was to create a cuproptosis-related lncRNA signature. Additionally, in order to evaluate the possible immunotherapeutic advantages and drug sensitivity, we attempted to study the association between these lncRNAs and the tumor immune microenvironment of STAD tumors. METHODS:The TCGA database was accessed to download the RNA sequencing data, genetic mutations, and clinical profiles for TCGA STAD. To locate lncRNAs related to cuproptosis and build risk-prognosis models, three techniques were used: co-expression network analysis, Cox-regression techniques, and LASSO techniques. Additionally, an integrated methodology was used to validate the models' predictive capabilities. Then, using GO and KEGG analysis, we discovered the variations in biological functions between each group. The link between the risk score and various medications for STAD treatment was estimated using the tumor mutational load (TMB) and tumor immune dysfunction and rejection (TIDE) scores. RESULT:We gathered 22 genes linked to cuproptosis based on the prior literature. Six lncRNAs related to cuproptosis were used to create a prognostic marker (AC016394.2, AC023511.1, AC147067.2, AL590705.3, HAGLR, and LINC01094). After that, the patients were split into high-risk and low-risk groups. A statistically significant difference in overall survival between the two groups was visible in the survival curves. The risk score was demonstrated to be an independent factor affecting the prognosis by both univariate and multivariate Cox regression analysis. Different risk scores were substantially related to the various immunological states of STAD patients, as further evidenced by immune cell infiltration and ssGSEA analysis. The two groups had differing burdens of tumor mutations. In addition, immunotherapy was more effective for STAD patients in the high-risk group than in the low-risk group, and risk scores for STAD were substantially connected with medication sensitivity. CONCLUSIONS:We discovered a marker for six cuproptosis-associated lncRNAs linked to STAD as prognostic predictors, which may be useful biomarkers for risk stratification, evaluation of possible immunotherapy, and assessment of treatment sensitivity for STAD.
10.3390/genes13122214
Identification of cuproptosis-related gene signature to predict prognosis in lung adenocarcinoma.
Frontiers in genetics
Studies have reported that coppers are involved in the tumorigenesis and development of tumor. In herein, we aimed to construct a prognostic classification system for lung adenocarcinoma (LUAD) associated with cuproptosis. Samples information of LUAD were acquired from The Cancer Genome Atlas (TCGA) and GSE31210 dataset. Cuproptosis-related genes were screened from previous research. ConsensusClusterPlus was applied to determine molecular subtypes, which evaluated by genome analysis, tumor immune microenvironment analysis, immunotherapy, functional enrichment analysis. Furthermore, univariate Cox analysis combined with Lasso analysis were employed to construct a cuproptosis-related risk model for LUAD. 14 genes related to cuproptosis phenotype were identified, and 2 clusters (C1 and C2) were determined. Among which, C1 had better survival outcome, less advanced stages, enhanced immune infiltration and enriched in TCA related pathways. A 7 cuproptosis-associated genes risk model was constructed, and the performance was verified in the GSE31210 dataset. A higher RiskScore was significantly correlated with worse overall survival, advanced stages. Cox survival analysis showed that RiskScore was an independent predictor. High-risk group patients had weakened immune infiltration, less likely to benefit from immunotherapy and was more sensitived to immunotherapy. The cuproptosis-related gene signature could serve as potential prognostic predictors for LUAD patients and may provide clues for the intervention of cuproptosis induced harm and targeted anti-tumor application.
10.3389/fgene.2022.1016871
Cuproptosis-related gene PDHX and heat stress-related HSPD1 as potential key drivers associated with cell stemness, aberrant metabolism and immunosuppression in esophageal carcinoma.
International immunopharmacology
BACKGROUND:Heat stress is fundamental to esophageal carcinoma (ESCA) oncogenesis and progression. Heat stress damages epithelial structure, causing aberrant 'cell death-repair' patterns of esophagus cells and thereby driving tumor occurrence and progression. However, due to the distinctive functions and crosstalk of regulatory cell death (RCD) patterns, the specific cell deaths in ESCA malignancy are still unclear. METHODS:We analyzed the key regulatory cell death genes involved in heat stress and ESCA progression by using The Cancer Genome Atlas-ESCA database. The least absolute shrinkage and selection operator (LASSO) algorithm was used to filter the key genes. The one-class logistic regression (OCLR) and quanTIseq methods were used to evaluate the cell stemness and immune cell infiltration in ESCA samples. Cell counting kit-8 (CCK8) and wound healing assays were performed to assess the proliferation and migration of cells. RESULTS:We found that cuproptosis may be a potential risk factor of heat stress-related ESCA. Two interrelated genes, HSPD1 and PDHX, were associated with heat stress and cuproptosis and played a role in cell survival, proliferation, migration, metabolism and immunosuppression. CONCLUSIONS:We found that cuproptosis promoted ESCA related to heat stress, offering a new therapeutic opportunity to treat this malignant disorder.
10.1016/j.intimp.2023.109942
A cuproptosis-related LncRNA signature: Integrated analysis associated with biochemical recurrence and immune landscape in prostate cancer.
Frontiers in genetics
As a new form of regulated cell death, cuproptosis differs profoundly from apoptosis, ferroptosis, pyroptosis, and necroptosis. The correlation between cuproptosis and long non-coding RNAs (lncRNAs) has been increasingly studied recently. In this study, a novel cuproptosis-related lncRNA prognostic signature was developed to investigate biochemical recurrence (BCR) and tumor immune landscape in prostate cancer (PCa). The transcriptome data and clinicopathologic information of PCa patients were downloaded from The Cancer Genome Atlas (TCGA). Pearson's correlation analysis was applied to identify lncRNAs associated with cuproptosis. Based on Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) regression analysis, we developed a cuproptosis-related lncRNA prognostic model (risk score) to predict the BCR of PCa patients. Additionally, we also constructed a nomogram with the risk score and clinicopathologic features. The biological function, tumor mutation burden (TMB), immune cell infiltration, expression levels of immune checkpoint genes, and anti-cancer drug sensitivity were investigated. We constructed and validated the cuproptosis-related lncRNA signature prognostic model (risk score) by six crlncRNAs. All patients were divided into the low- and high-risk groups based on the median risk score. The Kaplan-Meier (KM) survival analysis revealed that the high-risk group had shorter BCR-free survival (BCRFS). The risk score has been proven to be an independent prognostic factor of BCR in PCa patients. In addition, a nomogram of risk scores and clinicopathologic features was established and demonstrated an excellent predictive capability of BCR. The ROC curves further validated that this nomogram had higher accuracy of predicting the BCR compared to other clinicopathologic features. We also found that the high-risk group had higher TMB levels and more infiltrated immune cells. Furthermore, patients with high TMB in the high-risk group were inclined to have the shortest BCRFS. Finally, patients in the high-risk group were more susceptible to docetaxel, gefitinib, methotrexate, paclitaxel, and vinblastine. The novel crlncRNA signature prognostic model shows a greatly prognostic prediction value of BCR for PCa patients, extends our thought on the association of cuproptosis and PCa, and provides novel insights into individual-based treatment strategies for PCa.
10.3389/fgene.2023.1096783
A novel cuproptosis-related prognostic signature and potential value in HCC immunotherapy.
Frontiers in molecular biosciences
Copper metabolism plays an important role in the tumor microenvironment, and cuproptosis is the last discovered programmed cell death process. However, the potential mechanism of cuproptosis in regulating the immune microenvironment of HCC remains unclear. A total of 716 HCC patients with complete mRNA expression and survival information were collected from three public HCC cohorts (TCGA-LIHC cohort, = 370; GSE76427 cohort, = 115; ICGC-LIRI cohort, = 231). The unsupervised clustering analysis (NMF) was performed to identify three different cuproptosis-related subtypes. The univariate-Cox, lasso-Cox and multivariate-Cox regression analyses were performed to screen the cuproptosis related and construct the cuproptosis-related prognosis signature (Cu-PS). The immune cell infiltration was estimated by both CIBERSORT and MCPcounter algorithms. This study identified three distinct cuproptosis-related metabolic patterns, which presented different pathway enrichment and immune cell infiltration. The Cu-PS, a 5-genes (C7, MAGEA6, HK2, CYP26B1 and EPO) signature, was significantly associated with TNM stage, tumor mutational burden (TMB), drugs sensitivity, and immunotherapies response. This study performed a multi-genetic analysis of cuproptosis-related genes and further explored the regulatory mechanism of cuproptosis in HCC. The Cu-PS might be a useful biomarker for predicting immunotherapy response and enhancing the diagnosis and treatment of HCC.
10.3389/fmolb.2022.1001788
A novel cuproptosis-related lncRNAs signature predicts prognostic and immune of bladder urothelial carcinoma.
Frontiers in genetics
Bladder Urothelial Carcinoma (BLCA) remains the most common urinary system tumor, and its prognosis is poor. Cuproptosis is a recently discovered novel cell death involved in the development of tumor cells. However, the use of cuproptosis to predict the prognosis and immunity of Bladder Urothelial Carcinoma remains largely unclear, and this study was designed to verify cuproptosis-related long non-coding RNAs (lncRNAs) to estimate the prognosis and immunity of Bladder Urothelial Carcinoma. In our study, we first defined the expression of cuproptosis-related genes (CRGs) in BLCA, and 10 CRGs were up- or downregulated. We then constructed a co-expression network of cuproptosis-related mRNA and long non-coding RNAs using RNA sequence data from The Cancer Genome Atlas Bladder Urothelial Carcinoma (TCGA-BLCA), clinical features and mutation data from BLCA patients to obtain long non-coding RNAs by Pearson analysis. Afterward, univariate and multivariate COX analysis identified 21 long non-coding RNAs as independent prognostic factors and used these long non-coding RNAs to construct a prognostic model. Then, survival analysis, principal component analysis (PCA), immunoassay, and comparison of tumor mutation frequencies were performed to verify the accuracy of the constructed model, and GO and KEGG functional enrichment analysis was used to verify further whether cuproptosis-related long non-coding RNAs were associated with biological pathways. The results showed that the model constructed with cuproptosis-related long non-coding RNAs could effectively evaluate the prognosis of BLCA, and these long non-coding RNAs were involved in numerous biological pathways. Finally, we performed immune infiltration, immune checkpoint and drug sensitivity analyses on four genes (TTN, ARID1A, KDM6A, RB1) that were highly mutated in the high-risk group to evaluate the immune association of risk genes with BLCA. In conclusion, the cuproptosis-related lncRNA markers constructed in this study have evaluation value for prognosis and immunity in BLCA, which can provide a certain reference for the treatment and immunity of BLCA.
10.3389/fgene.2023.1148430
Cuproptosis-Related lncRNAs are Biomarkers of Prognosis and Immune Microenvironment in Head and Neck Squamous Cell Carcinoma.
Frontiers in genetics
Cuproptosis is a new type of cell death that induces protein toxic stress and eventually leads to cell death. Hence, regulating cuproptosis in tumor cells is a new therapeutic approach. However, studies on cuproptosis-related long noncoding RNA (lncRNA) in head and neck squamous cell carcinoma (HNSC) have not been found. This study aimed to explore the cuproptosis-related lncRNAs prognostic marker and their relationship to immune microenvironment in HNSC by using bioinformatics methods. RNA sequencing, genomic mutations, and clinical data of TCGA_HNSC were downloaded from The Cancer Genome Atlas. HNSC patients were randomly assigned to either a training group or a validation cohort. The least absolute shrinkage and selection operator Cox regression and multivariate Cox regression models were used to determine the prognostic model in the training cohort, and its independent prognostic effect was further confirmed in the validation and entire cohorts. Based on previous literature, we collected 19 genes associated with cuproptosis. Afterward, 783 cuproptosis-related lncRNAs were obtained through coexpression. Cox model revealed and constructed eight cuproptosis-related lncRNAs prognostic marker (AL132800.1, AC090587.1, AC079160.1, AC011462.4, AL157888.1, GRHL3-AS1, SNHG16, and AC021148.2). Patients were divided into high- and low-risk groups based on the median risk score. The Kaplan-Meier survival curve revealed that the overall survival between the high- and low-risk groups was statistically significant. The receiver operating characteristic curve and principal component analysis demonstrated the accurate prognostic ability of the model. Univariate and multivariate Cox regression analysis showed that risk score was an independent prognostic factor. In addition, we used multivariate Cox regression to establish a nomogram of the predictive power of prognostic markers. The tumor mutation burden showed significant differences between the high- and low-risk groups. HNSC patients in the high-risk group responded better to immunotherapy than those in the low-risk group. We also found that risk scores were significantly associated with drug sensitivity in HNSC. In summary, our study identified eight cuprotosis-related lncRNAs signature of HNSC as the prognostic predictor, which may be promising biomarkers for predicting the benefit of HNSC immunotherapy as well as drug sensitivity.
10.3389/fgene.2022.947551
A novel cuproptosis-related gene signature for predicting prognosis in cervical cancer.
Frontiers in genetics
Cuproptosis, a form of copper-induced cell death, can be a promising therapeutic target for refractory cancers. Hence, we conducted this research to explore the association between cuproptosis and prognosis in cervical cancer (CC). For constructing a prognostic signature based on cuproptosis-related genes from TCGA database, the least absolute shrinkage and selection operator Cox regression was utilized. The GSE44001 cohort was utilized for validation. A total of nine cuproptosis-related genes showed distinct expression in CC and normal samples in TCGA-GTEx cohort. Two risk groups were identified based on a seven-gene signature. A significant decrease in overall survival was observed in the high-risk group ( < 0.001). The risk score (HR = 2.77, 95% CI = 1.58-4.86) was an autocephalous predictor with a better predictive ability than the clinical stage. Functional analysis indicated that immune activities were suppressed more in the high-risk group than in the low-risk group. A total of 11 candidate compounds targeting the signature were identified. A total of seven cuproptosis-related gene signatures were constructed to predict prognosis and propose a new therapeutic target for patients with CC.
10.3389/fgene.2022.957744
Cuproptosis-related lncRNA: Prediction of prognosis and subtype determination in clear cell renal cell carcinoma.
Frontiers in genetics
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma, accounting for approximately 70% of all RCC cases. Cuproptosis, a novel mechanism of cell death, may be a potential target for intervention in tumor development. Cuproptosis-related prognostic lncRNAs were identified by co-expression analysis and univariable Cox regression. Five lncRNA profiles were obtained by LASSO regression analysis, and a model with high accuracy was constructed to assess the prognosis of ccRCC patients based on these cuproptosis-related lncRNAs. Survival analysis and time-dependent ROC curves were performed for the and groups, and the results confirmed the high accuracy of the model in predicting the prognosis of ccRCC patients. Immunoassay, principal component analysis (PCA), and drug sensitivity analysis were also performed for different risk categories. Finally, we classified ccRCC patients into two different subtypes by consistent class clustering, and performed immune checkpoint activation, tumor microenvironment analysis, PCA, and drug sensitivity analysis for different subtypes. We developed a prognostic model using five cuproptosis-associated lncRNAs, which was found to be highly accurate in predicting ccRCC patients' prognosis. Immunotherapy may be more beneficial to the hyper-risk category and the C2 subtype. The results of this study confirm that five cuproptosis-associated lncRNAs can be used as potential prognostic markers for ccRCC.
10.3389/fgene.2022.958547
A cuproptosis-related gene signature and associated regulatory axis in stomach adenocarcinoma based on bioinformatics analysis.
Medicine
Stomach adenocarcinoma (STAD) is a highly aggressive and extremely heterogeneous gastric cancer characterized by high morbidity and mortality. Cuproptosis, a copper (Cu)-triggered modality of mitochondrial cell death, could regulate tumor proliferation and metastasis. Least absolute shrinkage and selection operator cox regression analysis was constructed to develop a prognostic cuproptosis-related signature. A lncRNA-miRNA-mRNA regulatory axis was performed to explore cuproptosis-related mechanism for STAD. The expression of FDX1, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A was upregulated in STAD versus normal tissue. We also summarized single nucleotide variants and copy number variation landscape of cuproptosis-related gene in STAD. Further analysis demonstrated that STAD patients with high expression of CDKN2A, DLD, GLS, and MTF1 and low expression of DLAT, FDX1, PDHA1 and PDHB had a poor overall survival (OS) and post progression survival (PPS) rate. By performing least absolute shrinkage and selection operator cox regression analysis, we constructed a cuproptosis-related prognostic signature for STAD. Further analysis demonstrated a significant correlation between FDX1 expression and immune cell infiltration, tumor mutational burden (TMB) score, microsatellite instability (MSI) score and drug sensitivity. Univariate and multivariate analysis indicated FDX1 expression and clinical stage as independent factors affecting the prognosis of STAD patients. We also identified a lncRNA MALAT1/miR-328-3p/FDX1 regulatory axis for STAD. Multi-omics approaches were performed to develop a cuproptosis-related signature with 2 genes (FDX1 and MTF1) for STAD. We also identified a lncRNA MALAT1/miR-328-3p/FDX1 regulatory axis for STAD.
10.1097/MD.0000000000034230
A cuproptosis-related lncRNAs risk model to predict prognosis and guide immunotherapy for lung adenocarcinoma.
Annals of translational medicine
Background:Cuproptosis, one of the newest forms of cell death induction, is attracting mounting attention. However, the role of cuproptosis in lung cancer is currently unclear. In this study, we constructed a prognostic signature utilizing cuproptosis-related long noncoding RNAs (CRL) in lung adenocarcinoma (LUAD) and researched its clinical and molecular function. Methods:RNA-related and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed CRLs were screened using the 'limma' package of R software. We used coexpression analysis and univariate Cox analysis to further identify prognostic CRLs. Applying least absolute shrinkage and selection operator (LASSO) regression and Cox regression models, a prognostic risk model based on 16 prognostic CRLs was constructed. To validate prognostic CRL function in LUAD, vitro experiments were conducted to explore the expression of GLIS2-AS1, LINC01230, and LINC00592 in LUAD. Subsequently, according to a formula, patients in the training, test, and overall groups were split into high- and low-risk groups. Kaplan-Meier and receiver operating characteristic (ROC) analyses were applied to assess the predictability of the risk model. Finally, the associations between risk signature and immunity-related analysis, somatic mutation, principal component analysis (PCA), enriched molecular pathways, and drug sensitivity was investigated. Results:A cuproptosis-related long noncoding RNAs (lncRNAs) signature was constructed. Using quantitative polymerase chain reaction (qPCR) trial, we verified that the expressions of GLIS2-AS1, LINC01230, and LINC00592 in LUAD cell lines and tissues were consistent with the above screening results. Based on this signature, a total of 471 LUAD samples from TCGA data set were split into two risk groups based on the computed risk score. The risk model showed a better capacity in predicting prognosis than traditional clinicopathological features. Moreover, significant differences were found in immune cell infiltration, drug sensitivity, and immune checkpoint expression between the two risk groups. Conclusions:The CRLs signature was shown to be a prospective biomarker to forecast prognosis in patients with LUAD and presents new insights for personalized treatment of LUAD.
10.21037/atm-22-3195
The Cuproptosis-Related Long Noncoding RNA Signature Predicts Prognosis and Immune Cell Infiltration in Hepatocellular Carcinoma.
Journal of oncology
Background:Hepatocellular carcinoma (HCC), ranking as one of the most common malignant tumors, is one of the leading causes of cancer death, with a poor prognosis. Cuproptosis, a novel programmed cell death modality that has just been confirmed recently, may play an important role in HCC prognosis. Long noncoding RNA (LncRNA) is a key participant in tumorigenesis and immune responses. It may be of great significance to predict HCC based on cuproptosis genes and their related LncRNA. Methods:The sample data on HCC patients were obtained from The Cancer Genome Atlas (TCGA) database. Combined with cuproptosis-related genes collected from the literature search, expression analysis was carried out to find cuproptosis genes and their related LncRNAs significantly expressed in HCC. The prognostic model was constructed by least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression. The feasibility of these signature LncRNAs used for the evaluation of the overall survival rate in HCC patients as independent factors was investigated. The expression profile of cuproptosis, immune cell infiltration, and the status of somatic mutation were analyzed and compared. Results:A prognostic model of HCC consisting of seven cuproptosis gene-related LncRNA signatures was constructed. Multiple verification methods have showed that this model can accurately predict the prognosis of HCC patients. It was showed that the classified high-risk group under the risk score of this model had worse survival status, more significant expression of the immune function, and higher mutation frequency. During the analysis, the cuproptosis gene CDKN2A was found to be most closely related to LncRNA DDX11-AS1 in the expression profile of HCC patients. Conclusion:The cuproptosis-related signature LncRNA in HCC was identified, on the basis of which a model was constructed, and it was verified that it can be used to predict the prognosis of HCC patients. The potential role of these cuproptosis-related signature LncRNAs as new targets for disease therapy in antagonizing HCC development was discussed.
10.1155/2023/9557690
Identification of cuproptosis-related subtypes, characterization of immune microenvironment infiltration, and development of a prognosis model for osteoarthritis.
Frontiers in immunology
Background:Osteoarthritis (OA) is a prevalent chronic joint disease with an obscure underlying molecular signature. Cuproptosis plays a crucial role in various biological processes. However, the association between cuproptosis-mediated immune infifiltration and OA progression remains unexplored. Therefore, this study elucidates the pathological process and potential mechanisms underlying cuproptosis in OA by constructing a columnar line graph model and performing consensus clustering analysis. Methods:Gene expression profifile datasets GSE12021, GSE32317, GSE55235, and GSE55457 of OA were obtained from the comprehensive gene expression database. Cuproptosis signature genes were screened by random forest (RF) and support vector machine (SVM). A nomogram was developed based on cuproptosis signature genes. A consensus clustering was used to distinguish OA patients into different cuproptosis patterns. To quantify the cuproptosis pattern, a principal component analysis was developed to generate the cuproptosis score for each sample. Single-sample gene set enrichment analysis (ssGSEA) was used to provide the abundance of immune cells in each sample and the relationship between these significant cuproptosis signature genes and immune cells.To quantify the cuproptosis pattern, a principal component analysis technique was developed to generate the cuproptosis score for each sample. Cuproptosis-related genes were extracted and subjected to differential expression analysis to construct a disease prediction model and confifirmed by RT-qPCR. Results:Seven cuproptosis signature genes were screened (DBT, LIPT1, GLS, PDHB, FDX1, DLAT, and PDHA1) to predict the risk of OA disease. A column line graph model was developed based on these seven cuproptosis signature genes, which may assist patients based on decision curve analysis. A consensus clustering method was used to distinguish patients with disorder into two cuproptosis patterns (clusters A and B). To quantify the cuproptosis pattern, a principal component analysis technique was developed to generate the cuproptosis score for each sample. Furthermore, the OA characteristics of patients in cluster A were associated with the inflflammatory factors IL-1b, IL-17, IL-21, and IL-22, suggesting that the cuproptosis signature genes play a vital role in the development of OA. Discussion:In this study, a risk prediction model based on cuproptosis signature genes was established for the fifirst time, and accurately predicted OA risk. In addition, patients with OA were classifified into two cuproptosis molecule subtypes (clusters A and B); cluster A was highly associated with Th17 immune responses, with higher IL-1b, IL-17, and IL-21 IL-22 expression levels, while cluster B had a higher correlation with cuproptosis. Our analysis will help facilitate future research related cuproptosis-associated OA immunotherapy. However, the specifific mechanisms remain to be elucidated.
10.3389/fimmu.2023.1178794
Cuproptosis-related gene FDX1 as a prognostic biomarker for kidney renal clear cell carcinoma correlates with immune checkpoints and immune cell infiltration.
Frontiers in genetics
Kidney renal clear cell carcinoma (KIRC) is not sensitive to radiotherapy and chemotherapy, and only some KIRC patients can benefit from immunotherapy and targeted therapy. Cuproptosis is a new mechanism of cell death, which is closely related to tumor progression, prognosis and immunity. The identification of prognostic markers related to cuproptosis in KIRC may provide targets for treatment and improve the prognosis of KIRC patients. Ten cuproptosis-related genes were analyzed for differential expression in KIRC-TCGA and a prognostic model was constructed. Nomogram diagnostic model was used to screen independent prognostic molecules. The screened molecules were verified in multiple datasets (GSE36895 and GSE53757), and in KIRC tumor tissues by RT-PCR and immunohistochemistry (IHC). Clinical correlation of cuproptosis-related independent prognostic molecules was analyzed. According to the molecular expression, the two groups were divided into high and low expression groups, and the differences of immune checkpoint and tumor infiltrating lymphocytes (TILs) between the two groups were compared by EPIC algorithm. The potential Immune checkpoint blocking (ICB) response of high and low expression groups was predicted by the "TIDE" algorithm. FDX1 and DLAT were protective factors, while CDKN2A was a risk factor. FDX1 was an independent prognostic molecule by Nomogram, and low expressed in tumor tissues compared with adjacent tissues ( < 0.05). FDX1 was positively correlated with CD274, HAVCR2, PDCD1LG2, and negatively correlated with CTLA4, LAG3, and PDCD1. The TIDE score of low-FDX1 group was higher than that of high-FDX1 group. The abundance of CD4 T cells, CD8 T cells and Endothelial cells in FDX1-low group was lower than that in FDX1-high group ( < 0.05). FDX1, as a key cuproptosis-related gene, was also an independent prognostic molecule of KIRC. FDX1 might become an interesting biomarker and potential therapeutic target for KIRC.
10.3389/fgene.2023.1071694
Genetic analysis of cuproptosis subtypes and immunological features in severe influenza.
Microbial pathogenesis
The mechanisms regulating cuproptosis in severe influenza are still unknown. We aimed to identify the molecular subtypes of cuproptosis and immunological characteristics associated with severe influenza in patients requiring invasive mechanical ventilation (IMV). The expression of cuproptosis modulatory factors and immunological characteristics of these patients were analyzed using the public datasets (GSE101702, GSE21802, and GSE111368) from the Gene Expression Omnibus (GEO). Seven cuproptotic-associated genes (ATP7B, ATP7A, FDX1, LIAS, DLD, MTF1, DBT) related to active immune responses were identified in patients suffering from severe and non-severe influenza and two cuproptosis-associated molecular subtypes were discovered in severe influenza patients. Singe-set gene set expression analysis (SsGSEA) indicated that compared with subtype 2, subtype 1 was characterized by reduced adaptive cellular immune responses and increased neutrophil activation. Gene set variation assessment revealed that cluster-specific differentially expressed genes (DEGs) in subtype 1 were involved in autophagy, apoptosis, oxidative phosphorylation, and T cell, immune, and inflammatory responses, amongst others. The random forest (RF) model revealed the most differentiating efficiency with relatively small residual and root mean square error and an increased area under the curve value (AUC = 0.857). Lastly, a five-gene-based RF model (CD247, GADD45A, KIF1B, LIN7A, HLA_DPA1) was established, which showed satisfactory efficiency in the test datasets GSE111368 (AUC = 0.819). Nomogram calibration and decision curve analysis demonstrated its accuracy for the prediction of severe influenza. This study suggests that cuproptosis might be associated with the immunopathology of severe influenza. Additionally, an efficient model for the prediction of cuproptosis subtypes was developed which will contribute to the prevention and treatment of severe influenza patients needing IMV.
10.1016/j.micpath.2023.106162
A novel cuproptosis-related prognostic gene signature in adrenocortical carcinoma.
Journal of clinical laboratory analysis
BACKGROUND:Adrenocortical carcinoma (ACC) is an aggressive and rare malignant tumor associated with poor outcomes. Cuproptosis, a new pattern of cell death, relies on mitochondrial respiration and is associated with protein lipoylation. Increasing evidence has demonstrated the potential roles of cuproptosis in several tumor entities. However, the relationship between cuproptosis and ACC remains unclear. METHODS:In total, 10 cuproptosis-related genes (CRGs) of patients with ACC were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases and differential expression analysis of CRGs was analyzed. Functional enrichment of the CRGs was performed and protein-protein interaction analysis was utilized to explore the association between the CRGs. Cuproptosis-related risk score (CRRS) was constructed by Lasso Cox regression and validated. RESULTS:In the current study, the alteration and expression patterns of 10 CRGs in TCGA-ACC datasets were analyzed. We identified different expression patterns of CRGs in ACCs, discovered strong associations between CRGs and ACCs, and found that the CRGs were associated with immune infiltration in ACCs. A CRRS was created thereafter to predict overall survival (OS). CRRS = (0.083103718) *FDX1 + (-0.278423862) *LIAS+(0.090985682) *DLAT+(-0.018784047) *PDHA1 + (0.297218951) *MTF1 + (0.310197964) *CDKN2A. Patients were divided into high- and low-risk groups based on their CRRS, and independent prognostic factors were investigated. Finally, CDKN2A and FDX1 were found to be independent prognostic predictors of patients with ACC. CONCLUSIONS:CDKN2A and FDX1 are independent prognostic predictors of patients with ACC. Cuproptosis may play a role in the development of ACC, providing a new perspective on therapeutic strategies related to CRGs for cancer prevention and treatment.
10.1002/jcla.24981
Type-I AIE Photosensitizer Loaded Biomimetic System Boosting Cuproptosis to Inhibit Breast Cancer Metastasis and Rechallenge.
ACS nano
Cuproptosis shows good application prospects in tumor therapy. However, the copper efflux mechanism and highly expressed intracellular reducing substances can inhibit the cuproptosis effects. In this study, a platelet vesicle (PV) coated cuprous oxide nanoparticle (CuO)/TBP-2 cuproptosis sensitization system (PTC) was constructed for multiple induction of tumor cuproptosis. PTC was prepared by physical extrusion of AIE photosensitizer (TBP-2), CuO, and PV. After the biomimetic modification, PTC can enhance its long-term blood circulation and tumor targeting ability. Subsequently, PTC was rapidly degraded to release copper ions under acid conditions and hydrogen peroxides in tumor cells. Then, under light irradiation, TBP-2 quickly enters the cell membrane and generates hydroxyl radicals to consume glutathione and inhibit copper efflux. Accumulated copper can cause lipoylated protein aggregation and iron-sulfur protein loss, which result in proteotoxic stress and ultimately cuproptosis. PTC treatment can target and induce cuproptosis in tumor cells in vitro and in vivo, significantly inhibit lung metastasis of breast cancer, increase the number of central memory T cells in peripheral blood, and prevent tumor rechallenge. It provides an idea for the design of nanomedicine based on cuproptosis.
10.1021/acsnano.3c00326
Cuproptosis-related immune checkpoint gene signature: Prediction of prognosis and immune response for hepatocellular carcinoma.
Frontiers in genetics
Immune checkpoint genes (ICGs), the foundation of immunotherapy, are involved in the incidence and progression of hepatocellular carcinoma (HCC). Cuproptosis is characterized by copper-induced cell death, and this novel cell death pathway has piqued the interest of researchers in recent years. It is worth noting that there is little information available in the literature to determine the relationship between cuproptosis and anti-tumor immunity. We identified 39 cuproptosis-related ICGs using ICGs co-expressed with cuproptosis-related genes. A prognostic risk signature was constructed using the Cox regression and the least absolute shrinkage and selection operator analysis methods. The signature was built using the Cancer Genome Atlas (TCGA)-Liver Hepatocellular Carcinoma database. The TCGA and International Cancer Genome Consortium cohorts were classified into two groups; the low- and high-risk groups were determined using a prognostic signature comprised of five genes. The multivariate Cox regression analysis revealed that the signature could independently predict overall survival. Furthermore, the level of immune infiltration analysis revealed the robustness of the prognostic signature-immune cell infiltration relationship observed for Tregs, macrophages, helper T cells, and naive B cells. Both groups showed significant differences in immune checkpoint expression levels. The gene enrichment analysis was used for characterization, and the results revealed that enriching various pathways such as PI3K-AKT-mTOR signaling, glycolysis, Wnt/beta-catenin signaling, and unfolded protein response could potentially influence the prognosis of patients with HCC and the level of immune infiltration. The sensitivity of the two groups of patients to various drug-targeted therapy methods and immunotherapy was analyzed. In conclusion, the findings presented here lay the foundation for developing individualized treatment methods for HCC patients. The findings also revealed that studying the cuproptosis-based pathway can aid in the prognosis of HCC patients. It is also possible that cuproptosis contributes to developing anti-tumor immunity in patients.
10.3389/fgene.2022.1000997
Construction and validation of a cuproptosis-related lncRNA signature for the prediction of the prognosis of LUAD and LUSC.
Scientific reports
Lung cancer is one of the most prevalent malignant tumors worldwide, with lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) accounting for the majority of cases. Cuproptosis, tumor immune microenvironment (TIME) and long non-coding RNA (lncRNA) have been demonstrated to be associated with tumorigenesis. The objective of the present study was to develop a novel cuproptosis-related lncRNA signature to assess the association between cuproptosis and TIME in patients with LUAD or LUSC and to predict prognosis. Based on the outputs of the least absolute shrinkage and selection operator regression model, a cuproptosis-related lncRNA signature was developed. Kaplan-Meier survival curves were generated to confirm the predictive ability of the signature. Univariate and multivariate analysis was also performed to determine the association between overall survival and this signature and other clinical characteristics, and a nomogram was created. Additionally, the relationship between the signature, TIME, tumor mutation burden and m6A methylation was established. The results of the present study revealed that 8 cuproptosis-related lncRNAs were associated with the prognosis of patients with LUAD and LUSC. This novel cuproptosis-related lncRNA signature is associated with TIME and m6A methylation in LUAD and LUSC and can predict prognosis with accuracy.
10.1038/s41598-023-29719-1
Identification of cuproptosis-related subtypes, cuproptosis-related gene prognostic index in hepatocellular carcinoma.
Frontiers in immunology
Cuproptosis is a novel form of cell death, correlated with the tricarboxylic acid (TCA) cycle. However, the metabolic features and the benefit of immune checkpoint inhibitor (ICI) therapy based on cuproptosis have not yet been elucidated in Hepatocellular carcinoma (HCC). First, we identified and validated three cuproptosis subtypes based on 10 cuproptosis-related genes (CRGs) in HCC patients. We explored the correlation between three cuproptosis subtypes and metabolism-related pathways. Besides, a comprehensive immune analysis of three cuproptosis subtypes was performed. Then, we calculated the cuproptosis-related gene prognostic index (CRGPI) score for predicting prognosis and validated its predictive capability by Decision curve analysis (DCA). We as well explored the benefit of ICI therapy of different CRGPI subgroups in two anti-PD1/PD-L1 therapy cohorts (IMvigor210 cohort and GSE176307). Finally, we performed the ridge regression algorithm to calculate the IC50 value for drug sensitivity and Gene set enrichment analysis (GSEA) analysis to explore the potential mechanism. We found that cluster A presented a higher expression of FDX1 and was correlated with metabolism, glycolysis, and TCA cycle pathways, compared with the other two clusters. HCC patients with high CRGPI scores had a worse OS probability, and we further found that the CRGPI-high group had high expression of PD1/PDL1, TMB, and better response (PR/CR) to immunotherapy in the IMvigor210 cohort and GSE176307. These findings highlight the importance of CRGPI serving as a potential biomarker for both prognostic and immunotherapy for HCC patients. Generally, our results provide novel insights about cuproptosis into immune therapeutic strategies.
10.3389/fimmu.2022.989156
Identification of cuproptosis-related long non-coding ribonucleic acid signature as a novel prognosis model for colon cancer.
American journal of cancer research
Cuproptosis is a novel type of cell death that may play a vital role in preventing various types of cancer. Studies examining cuproptosis are limited, and the cuproptosis-related lncRNAs (long non-Coding ribonucleic acids) involved in the regulation of colon cancer remain unclear. This study aimed to identify the prognostic signature of cupronosis-related lncRNAs and explore their potential molecular functions in colon cancer. Data on the clinical correlation were obtained from The Cancer Genome Atlas (TCGA) database. The differentially expressed cuproptosis-related long non-coding ribonucleic acids (lncRNAs) were analyzed using the "limma" package. Then, the prognostic cuproptosis-related lncRNA signature (CupRLSig) was identified through univariate Cox and co-expression analyses, and a prognostic model was constructed based on CupRLSig using the least absolute shrinkage selection operator (LASSO) algorithm and Cox regression analysis. The Kaplan-Meier survival curve and receiver operating characteristic (ROC) curve were used for evaluating the model's capacity for prognosis prediction. In addition, the immune landscape, and drug sensitivity of CupRLSig were analyzed. Finally, the functions of AL512306.3 and ZEB1-AS1 were verified through in vitro experiments. The high- or low-risk groups were classified according to the risk score. The signature-based risk score showed a stronger ability to predict patient's survival compared with the traditional clinicopathological features. In addition, immune responses, such as inflammation-promoting response and T-cell co-inhibition, were significantly different between the two groups. Moreover, chemotherapy drugs or inhibitors, such as axitinib, cisplatin, doxorubicin, and elesclomol, may be considered as potential therapeutic drugs for patients in high-risk groups. Finally, inhibition of AL512306.3 and ZEB1-AS1 significantly suppressed the cell proliferation in colon cancer cells. These results provide novel insights into the pathogenesis of colon cancer and offer promising biomarkers with the potential to guide research on carcinogenesis and cancer treatment.
Cuproptosis associated genes affect prognosis and tumor microenvironment infiltration characterization in lung adenocarcinoma.
American journal of cancer research
Cuproptosis, a newly discovered mechanism of programmed cell death, is important for detailing the metabolic aspects of cancer progression and thereby guiding cancer therapy. An exciting era of translational medicine has led to the rapid development of countless immunotherapeutic strategies. The existing successful cancer immunotherapies have sparked new hope for patients with solid and hematologic malignancies. Hence, it is important to characterize the link between the cuproptosis process and the immunity status in the tumor microenvironment (TME) in Lung Adenocarcinoma (LUAD), which may be able to predict patient's prognosis. In this study, we systematically assessed 10 cuproptosis-associated genes (CAGs) and comprehensively characterized the relationship between cuproptosis and the molecular characteristics and immune cell infiltration of tumor tissue, prognosis and clinical treatment of patients. Subsequently, the CAG_score for predicting overall survival (OS) was established and its reliable predictive ability in LUAD patients was confirmed. Next, we created a highly reliable nomogram to facilitate the clinical viability of the CAG_score. The low CAG_score group, with lower immune cell infiltration, and mutation burden, had a significantly superior OS, which was associated with a better response to immunotherapy. The present study revealed that cuproptosis play a significant role in TME regulation in LUAD. Collectively, we identified a prognostic CAGs-related signature for LUAD patients. This signature may contribute to clarifying the characteristics of TME and enable the exploration of more potent immunotherapy strategies.
Cuproptosis-related gene signature stratifies lower-grade glioma patients and predicts immune characteristics.
Frontiers in genetics
Cuproptosis is the most recently discovered type of regulated cell death and is mediated by copper ions. Studies show that cuproptosis plays a significant role in cancer development and progression. Lower-grade gliomas (LGGs) are slow-growing brain tumors. The majority of LGGs progress to high-grade glioma, which makes it difficult to predict the prognosis. However, the prognostic value of cuproptosis-related genes (CRGs) in LGG needs to be further explored. mRNA expression profiles and clinical data of LGG patients were collected from public sources for this study. Univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression model were used to build a multigene signature that could divide patients into different risk groups. The differences in clinical pathological characteristics, immune infiltration characteristics, and mutation status were evaluated in risk subgroups. In addition, drug sensitivity and immune checkpoint scores were estimated in risk subgroups to provide LGG patients with precision medication. We found that all CRGs were differentially expressed in LGG and normal tissues. Patients were divided into high- and low-risk groups based on the risk score of the CRG signature. Patients in the high-risk group had a considerably lower overall survival rate than those in the low-risk group. According to functional analysis, pathways related to the immune system were enriched, and the immune state differed across the two risk groups. Immune characteristic analysis showed that the immune cell proportion and immune scores were different in the different groups. High-risk group was characterized by low sensitivity to chemotherapy but high sensitivity to immune checkpoint inhibitors. The current study revealed that the novel CRG signature was related to the prognosis, clinicopathological features, immune characteristics, and treatment perference of LGG.
10.3389/fgene.2022.1036460
Identification of cuproptosis-related gene SLC31A1 and upstream LncRNA-miRNA regulatory axis in breast cancer.
Scientific reports
Mounting evidence indicate that cuproptosis, a novel form of programmed cell death, contributes to cancer development and progression. However, a comprehensive analysis regarding the expressions, functions, and regulatory network of cuproptosis-related genes is still lacking. In the present work, cuproptosis-related genes, upstream miRNAs and lncRNAs, and clinical data of breast cancer from TCGA database were analyzed by R language including Cox regression analysis, correlation calculation, ROC curve construction, and survival evaluation, and were further verified by public-available databases. Chemosensitivity and immune infiltration were also evaluated by online tools. SLC31A1 was significantly increased in breast cancer samples than those in normal tissues. SLC31A1 was negatively related to a favorable outcome in breast cancer, and the AUC value increased with the prolongation of follow-up time. LINC01614 and miR-204-5p were potential upstream regulators of SLC31A1. Moreover, SLC31A1 was significantly positively correlated with different immune cells infiltration, immune cell biomarkers, and immune checkpoints in breast cancer. SLC31A1 was a potential cuproptosis-related gene in breast cancer, which was significantly upregulated and was able to predict diagnosis, prognosis, chemosensitivity, and immune infiltration. LINC01640/miR-204-5p/SLC31A1 might be a significant and promising axis during cuproptosis in breast cancer.
10.1038/s41598-023-45761-5
Comprehensive multiomics analysis of cuproptosis-related gene characteristics in hepatocellular carcinoma.
Frontiers in genetics
The mechanism of copper-induced cell death, which is called cuproptosis, has recently been clarified. However, the integrated role of cuproptosis-related genes in hepatocellular carcinoma (HCC) and its relationship with immune characteristics are still completely unknown. In this study, the expression, genetic, and transcriptional regulation states of 16 cuproptosis-related genes in HCC were systematically investigated. An unsupervised clustering method was used to identify distinct expression patterns in 370 HCC patients from the TCGA-HCC cohort. Differences in functional characteristics among different expression clusters were clarified by gene set variation analysis (GSVA). The abundances of immune cells in each HCC sample were calculated by the CIBERSORT algorithm. Next, a cuproptosis-related risk score was established based on the significant differentially expressed genes (DEGs) among different expression clusters. A specific cluster of HCC patients with poor prognosis, an inhibitory immune microenvironment, and high expression levels of immune checkpoint molecules was identified based on the expression of the 16 cuproptosis-related genes. This cluster of patients could be well-identified by a cuproptosis-related risk score system. The prognostic value of this risk score was validated in the training and two validation cohorts (TCGA-HCC, China-HCC, and Japan-HCC cohorts). Moreover, the overall expression status of the cuproptosis-related genes and the genes used to establish the cuproptosis-related risk score in specific cell types of the tumor microenvironment were preliminarily clarified by single-cell RNA (scRNA) sequencing data. These results indicated that cuproptosis-related genes play an important role in HCC, and targeting these genes may ameliorate the inhibitory immune microenvironment to improve the efficacy of immunotherapy with immune checkpoint inhibitors (ICIs).
10.3389/fgene.2022.942387
Identification of immune infiltration and cuproptosis-related molecular clusters in tuberculosis.
Frontiers in immunology
Background:Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection. Cuproptosis is a novel cell death mechanism correlated with various diseases. This study sought to elucidate the role of cuproptosis-related genes (CRGs) in TB. Methods:Based on the GSE83456 dataset, we analyzed the expression profiles of CRGs and immune cell infiltration in TB. Based on CRGs, the molecular clusters and related immune cell infiltration were explored using 92 TB samples. The Weighted Gene Co-expression Network Analysis (WGCNA) algorithm was utilized to identify the co-expression modules and cluster-specific differentially expressed genes. Subsequently, the optimal machine learning model was determined by comparing the performance of the random forest (RF), support vector machine (SVM), generalized linear model (GLM), and eXtreme Gradient Boosting (XGB). The predictive performance of the machine learning model was assessed by generating calibration curves and decision curve analysis and validated in an external dataset. Results:11 CRGs were identified as differentially expressed cuproptosis genes. Significant differences in immune cells were observed in TB patients. Two cuproptosis-related molecular clusters expressed genes were identified. Distinct clusters were identified based on the differential expression of CRGs and immune cells. Besides, significant differences in biological functions and pathway activities were observed between the two clusters. A nomogram was generated to facilitate clinical implementation. Next, calibration curves were generated, and decision curve analysis was conducted to validate the accuracy of our model in predicting TB subtypes. XGB machine learning model yielded the best performance in distinguishing TB patients with different clusters. The top five genes from the XGB model were selected as predictor genes. The XGB model exhibited satisfactory performance during validation in an external dataset. Further analysis revealed that these five model-related genes were significantly associated with latent and active TB. Conclusion:Our study provided hitherto undocumented evidence of the relationship between cuproptosis and TB and established an optimal machine learning model to evaluate the TB subtypes and latent and active TB patients.
10.3389/fimmu.2023.1205741
Cuproptosis-associated ncRNAs predict breast cancer subtypes.
PloS one
BACKGROUND:Cuproptosis is a novel copper-dependent mode of cell death that has recently been discovered. The relationship between Cuproptosis-related ncRNAs and breast cancer subtypes, however, remains to be studied. METHODS:The aim of this study was to construct a breast cancer subtype prediction model associated with Cuproptosis. This model could be used to determine the subtype of breast cancer patients. To achieve this aim, 21 Cuproptosis-related genes were obtained from published articles and correlation analysis was performed with ncRNAs differentially expressed in breast cancer. Random forest algorithms were subsequently utilized to select important ncRNAs and build breast cancer subtype prediction models. RESULTS:A total of 94 ncRNAs significantly associated with Cuproptosis were obtained and the top five essential features were chosen to build a predictive model. These five biomarkers were differentially expressed in the five breast cancer subtypes and were closely associated with immune infiltration, RNA modification, and angiogenesis. CONCLUSION:The random forest model constructed based on Cuproptosis-related ncRNAs was able to accurately predict breast cancer subtypes, providing a new direction for the study of clinical therapeutic targets.
10.1371/journal.pone.0299138
Identification of cuproptosis-related lncRNAs for prognosis and immunotherapy in glioma.
Journal of cellular and molecular medicine
Glioma is a highly invasive primary brain tumour, making it challenging to accurately predict prognosis for glioma patients. Cuproptosis is a recently discovered cell death attracting significant attention in the tumour field. Whether cuproptosis-related genes have prognostic predictive value has not been clarified. In this study, uni-/multi-variate Cox and Lasso regression analyses were applied to construct a risk model based on cuproptosis-related lncRNAs using TCGA and CGGA cohorts. A nomogram was constructed to quantify individual risk, including clinical and genic characteristics and risk. GO and KEGG analyses were used to define functional enrichment of DEGs. Tumour mutation burden (TMB) and immune checkpoint analyses were performed to evaluate potential responses to ICI therapy. Ten prognostic lncRNAs were obtained from Cox regression. Based on the median risk score, patients were divided into high- and low-risk groups. Either for grade 2-3 or for grade 4, glioma patients with high-risk exhibited significant poorer prognoses. The risk was an independent risk factor associated with overall survival. The high-risk group was functionally associated with immune responses and cancer-related pathways. The high-risk group was associated with higher TMB scores. The expression levels of many immune checkpoints in the high-risk group were significantly higher than those in the low-risk group. Differentiated immune pathways were primarily enriched in the IFN response, immune checkpoint and T-cell co-stimulation pathways. In conclusion, we established a risk model based on cuproptosis-related lncRNAs showing excellent prognostic prediction ability but also indicating the immuno-microenvironment status of glioma.
10.1111/jcmm.17603
A novel cuproptosis-related diagnostic gene signature and differential expression validation in atherosclerosis.
Molecular biomedicine
Atherosclerosis (AS) is a major contributor to morbidity and mortality worldwide. However, the molecular mechanisms and mediator molecules involved remain largely unknown. Copper, which plays an essential role in cardiovascular disease, has been suggested as a potential risk factor. Copper homeostasis is closely related to the occurrence and development of AS. Recently, a new cell death pathway called cuproptosis has been discovered, which is driven by intracellular copper excess. However, no previous studies have reported a relationship between cuproptosis and AS. In this study, we integrated bulk and single-cell sequencing data to screen and identify key cuproptosis-related genes in AS. We used correlation analysis, enrichment analysis, random forest, and other bioinformatics methods to reveal their relationships. Our findings report, for the first time, the involvement of cuproptosis-related genes FDX1, SLC31A1, and GLS in atherogenesis. FDX1 and SLC31A1 were upregulated, while GLS was downregulated in atherosclerotic plaque. Receiver operating characteristic curves demonstrate their potential diagnostic value for AS. Additionally, we confirm that GLS is mainly expressed in vascular smooth muscle cells, and SLC31A1 is mainly localized in macrophages of atherosclerotic lesions in experiments. These findings shed light on the cuproptosis landscape and potential diagnostic biomarkers for AS, providing further evidence about the vital role of cuproptosis in atherosclerosis progression.
10.1186/s43556-023-00131-5
Deciphering the contributions of cuproptosis in the development of hypertrophic scar using single-cell analysis and machine learning techniques.
Frontiers in immunology
Hypertrophic scar (HS) is a chronic inflammatory skin disease characterized by excessive deposition of extracellular matrix, but the exact mechanisms related to its formation remain unclear, making it difficult to treat. This study aimed to investigate the potential role of cuproptosis in the information of HS. To this end, we used single-cell sequencing and bulk transcriptome data, and screened for cuproptosis-related genes (CRGs) using differential gene analysis and machine learning algorithms (random forest and support vector machine). Through this process, we identified a group of genes, including ATP7A, ULK1, and MTF1, as novel therapeutic targets for HS. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to confirm the mRNA expression of ATP7A, ULK1, and MTF1 in both HS and normal skin (NS) tissues. We also constructed a diagnostic model for HS and analyzed the immune infiltration characteristics. Additionally, we used the expression profiles of CRGs to perform subgroup analysis of HS. We focused mainly on fibroblasts in the transcriptional profile at single-cell resolution. By calculating the cuproptosis activity of each fibroblast, we found that cuproptosis activity of normal skin fibroblasts increased, providing further insights into the pathogenesis of HS. We also analyzed the cell communication network and transcription factor regulatory network activity, and found the existence of a fibroblast-centered communication regulation network in HS, where cuproptosis activity in fibroblasts affects intercellular communication. Using transcription factor regulatory activity network analysis, we obtained highly active transcription factors, and correlation analysis with CRGs suggested that CRGs may serve as potential target genes for transcription factors. Overall, our study provides new insights into the pathophysiological mechanisms of HS, which may inspire new ideas for the diagnosis and treatment.
10.3389/fimmu.2023.1207522
Characterization of a cuproptosis-related signature to evaluate immune features and predict prognosis in colorectal cancer.
Frontiers in oncology
Purpose:Cuproptosis is a newly discovered type of cell death. Little is known about the roles that cuproptosis related genes (CRGs) play in colorectal cancer (CRC). The aim of this study is to evaluate the prognostic value of CRGs and their relationship with tumor immune microenvironment. Methods:TCGA-COAD dataset was used as the training cohort. Pearson correlation was employed to identify CRGs and paired tumor-normal samples were used to identify those CRGs with differential expression pattern. A risk score signature was constructed using LASSO regression and multivariate Cox stepwise regression methods. Two GEO datasets were used as validation cohorts for confirming predictive power and clinical significance of this model. Expression patterns of seven CRGs were evaluated in COAD tissues. experiments were conducted to validate the expression of the CRGs during cuproptosis. Results:A total of 771 differentially expressed CRGs were identified in the training cohort. A predictive model termed riskScore was constructed consisting of 7 CRGs and two clinical parameters (age and stage). Survival analysis suggested that patients with higher riskScore showed shorter OS than those with lower (0.0001). ROC analysis revealed that AUC values of cases in the training cohort for 1-, 2-, and 3-year survival were 0.82, 0.80, 0.86 respectively, indicating its good predictive efficacy. Correlations with clinical features showed that higher riskScore was significantly associated with advanced TNM stages, which were further confirmed in two validation cohorts. Single sample gene set enrichment analysis (ssGSEA) showed that high-risk group presented with an immune-cold phenotype. Consistently, ESTIMATE algorithm analysis showed lower immune scores in riskScore-high group. Expressions of key molecules in riskScore model are strongly associated with TME infiltrating cells and immune checkpoint molecules. Patients with a lower riskScore exhibited a higher complete remission rate in CRCs. Finally, seven CRGs involved in riskScore were significantly altered between cancerous and paracancerous normal tissues. Elesclomol, a potent copper ionophore, significantly altered expressions of seven CRGs in CRCs, indicating their relationship with cuproptosis. Conclusions:The cuproptosis-related gene signature could serve as a potential prognostic predictor for colorectal cancer patients and may offer novel insights into clinical cancer therapeutics.
10.3389/fonc.2023.1083956
Cuproptosis-related lncRNAs predict the prognosis and immune response in hepatocellular carcinoma.
Clinical and experimental medicine
Cuproptosis has been recently used to indicate unique biological processes triggered by Cu action as a new term. This study aimed to explore the relationship between cuproptosis-related lncRNA and hepatocellular carcinoma (HCC) with regard to immunity and prognosis. RNA sequencing and the clinical data were downloaded from the TCGA database. The cuproptosis-related genes were sorted out through literature study. The cuproptosis-related IncRNA signature was identified by Cox regression analysis and the least absolute shrinkage and selection operator analysis. The K-M survival analysis, receiver operating characteristic analysis, and C-index analysis were adopted to evaluate the prognostic prediction performance of the signature. The functional enrichment, immune infiltration and tumor mutation analysis were further analyzed. Subsequently, we predicted the differences in chemosensitivity from tumor gene expression levels for some chemotherapy drugs. The prognostic signature consisting of 5 overall survival-related CUPlncRNAs. It showed an extraordinary ability to predict the prognoses of patients with HCC. The signature can predict the abundance of immune cell infiltration, immune functions, expression of immune checkpoint inhibitors, m6A genes, which was supported by the GO biological process and KEGG analysis. And it may also have a guiding effect in the sensitivity of different chemotherapeutic drugs and tumor mutation burden. We constructed a new cuproptosis-related lncRNA signature for HCC patients. The model can be used for prognostic prediction and immune evaluation, providing a reference for immunotherapies and targeted therapies.
10.1007/s10238-022-00892-3
Identification of cuproptosis-associated subtypes and signature genes for diagnosis and risk prediction of Ulcerative colitis based on machine learning.
Frontiers in immunology
Background:Ulcerative colitis (UC) is a chronic and debilitating inflammatory bowel disease that impairs quality of life. Cuproptosis, a recently discovered form of cell death, has been linked to many inflammatory diseases, including UC. This study aimed to examine the biological and clinical significance of cuproptosis-related genes in UC. Methods:Three gene expression profiles of UC were obtained from the Gene Expression Omnibus (GEO) database to form the combined dataset. Differential analysis was performed based on the combined dataset to identify differentially expressed genes, which were intersected with cuproptosis-related genes to obtain differentially expressed cuproptosis-related genes (DECRGs). Machine learning was conducted based on DECRGs to identify signature genes. The prediction model of UC was established using signature genes, and the molecular subtypes related to cuproptosis of UC were identified. Functional enrichment analysis and immune infiltration analysis were used to evaluate the biological characteristics and immune infiltration landscape of signature genes and molecular subtypes. Results:Seven signature genes (ABCB1, AQP1, BACE1, CA3, COX5A, DAPK2, and LDHD) were identified through the machine learning algorithms, and the nomogram built from these genes had excellent predictive performance. The 298 UC samples were divided into two subtypes through consensus cluster analysis. The results of the functional enrichment analysis and immune infiltration analysis revealed significant differences in gene expression patterns, biological functions, and enrichment pathways between the cuproptosis-related molecular subtypes of UC. The immune infiltration analysis also showed that the immune cell infiltration in cluster A was significantly higher than that of cluster B, and six of the characteristic genes (excluding BACE1) had higher expression levels in subtype B than in subtype A. Conclusions:This study identified several promising signature genes and developed a nomogram with strong predictive capabilities. The identification of distinct subtypes of UC enhances our current understanding of UC's underlying pathogenesis and provides a foundation for personalized diagnosis and treatment in the future.
10.3389/fimmu.2023.1142215
A cuproptosis-related lncRNA signature for predicting prognosis and immunotherapy response of lung adenocarcinoma.
Hereditas
BACKGROUND:Copper-induced cell death (cuproptosis) is a new regulatory cell death mechanism. Long noncoding RNAs (lncRNAs) are related to tumor immunity and metastasis. However, the correlation of cuproptosis-related lncRNAs with the immunotherapy response and prognosis of lung adenocarcinoma (LUAD) patients is not clear. METHODS:We obtained the clinical characteristics and transcriptome data from TCGA-LUAD dataset (containing 539 LUAD and 59 paracancerous tissues). By utilizing LASSO-penalized Cox regression analysis, we identified a prognostic signature composed of cuproptosis-related lncRNAs. This signature was then utilized to segregate patients into two different risk categories based on their respective risk scores. The identification of differentially expressed genes (DEGs) between high- and low-risk groups was carried out using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We evaluated the immunotherapy response by analyzing tumor mutational burden (TMB), immunocyte infiltration and Tumor Immune Dysfunction and Exclusion (TIDE) web application. The "pRRophetic" R package was utilized to conduct further screening of potential therapeutic drugs for their sensitivity. RESULTS:We ultimately identified a prognostic risk signature that includes six cuproptosis-related lncRNAs (AP003778.1, AC011611.2, CRNDE, AL162632.3, LY86-AS1, and AC090948.1). Compared with clinical characteristics, the signature was significantly correlated with prognosis following the control of confounding variables (HR = 2.287, 95% CI = 1.648-3.174, p ˂ 0.001), and correctly predicted 1-, 2-, and 3-year overall survival (OS) rates (AUC value = 0.725, 0.715, and 0.662, respectively) in LUAD patients. In terms of prognosis, patients categorized as low risk exhibited more positive results in comparison to those in the high-risk group. The enrichment analysis showed that the two groups had different immune signaling pathways. Immunotherapy may offer a more appropriate treatment option for high-risk patients due to their higher TMB and lower TIDE scores. The higher risk score may demonstrate increased sensitivity to bexarotene, cisplatin, epothilone B, and vinorelbine. CONCLUSIONS:Based on cuproptosis-related lncRNAs, we constructed and validated a novel risk signature that may be used to predict immunotherapy efficacy and prognosis in LUAD patients.
10.1186/s41065-023-00293-w
A Cuproptosis-Related LncRNA Risk Model for Predicting Prognosis and Immunotherapeutic Efficacy in Patients with Hepatocellular Carcinoma.
Biochemical genetics
Cuproptosis is a novel programmed cell death pathway that is initiated by direct binding of copper to lipoylated tricarboxylic acid (TCA) cycle proteins. Recent studies have demonstrated that cuproptosis-related genes regulate tumorigenesis. However, the potential role and clinical significance of cuproptosis-related long noncoding RNAs (lncRNAs) in hepatocellular carcinoma (HCC) have not been established. We performed a bioinformatics analyses of RNA-sequencing data of HCC patients extracted from The Cancer Genome Atlas (TCGA) dataset to identify and validate a cuproptosis-related lncRNA prognostic signature. Furthermore, we analyzed the clinical significance of the prognostic signature of cuproptosis-related lncRNA in predicting the immunotherapeutic efficacy and the status of the tumor immune microenvironment. The RNA-sequencing data, genomic mutations, and clinical information were downloaded for 374 HCC samples and 50 normal liver samples from TCGA-Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset. Co-expression analysis of Gene-lncRNA pairs with 49 known cuproptosis-related prognostic genes was used to define cuproptosis-related prognostic lncRNAs. We performed the LASSO algorithm and univariate and multivariate Cox regression analysis, respectively, to gradually identify the prognostic risk models of cuproptosis-related lncRNA based on the TCGA-LIHC dataset. Subsequently, the predictive performance of the model was evaluated using receiver operation characteristic (ROC) curves, Kaplan-Meier survival curves, and prognostic nomogram. The analysis of gene-lncRNA co-expression with 49 known cuproptosis-related genes identified 1359 cuproptosis-related lncRNAs in the TCGA-LIHC data set. A prognostic model was constructed with nine cuproptosis-related prognostic lncRNAs (AC007998.3, AC003086.1, AC009974.2, IQCH-AS1, LINC0256 1, AC105345.1, ZFPM2-AS1, AL353708.1 and WAC-AS1) using LASSO regression and Cox regression analyses. Risk scores were calculated for all HCC patient samples based on the four cuproptosis-related lncRNA prognostic models. All HCC patients were divided into high-risk and low-risk subgroups according to a 1:1 ratio column. The Kaplan-Meier survival curve analysis showed that the overall survival rate (OS) of the high-risk group patients was significantly lower than that of the low-risk group. The principal component analysis (PCA) confirmed that the prognostic lncRNA model accurately distinguished between high- and low-risk HCC patients. Furthermore, regression analysis as well as ROC curves confirmed the prognostic value of the risk score. A nomogram with risk scores and other clinicopathological characteristics was constructed. The nomogram accurately predicted the probability of 1-, 3-, and 5-year OS in HCC patients. Tumor mutation burden (TMB) scores were higher for high-risk patients than for low-risk patients. HCC patients in the low-risk group showed lower TIDE scores and greater sensitivity to antitumor drugs than those in the high-risk group. Tumor immune responses and tumor immune cell infiltration were significantly different between the high-risk and low-risk groups of patients with HCC. Our study identified a 9-cuproptosis-related lncRNA signature that accurately predicted prognosis, immunotherapeutic efficacy, and the status of the tumor immune microenvironment in HCC patients. Therefore, this cuproptosis-related lncRNA risk model is a potential prognostic biometric feature in HCC and shows high clinical value in identifying HCC patients who are potentially responsive to immunotherapy.
10.1007/s10528-023-10539-x
Cuproptosis-related genes prediction feature and immune microenvironment in major depressive disorder.
Heliyon
Background:Major depressive disorder (MDD) is a severe, unpredictable, ill-cured, relapsing neuropsychiatric disorder. A recently identified type of death called cuproptosis has been linked to a number of illnesses. However, the influence of cuproptosis-related genes in MDD has not been comprehensively assessed in prior study. Aim:This investigation intends to shed light on the predictive value of cuproptosis-related genes for MDD and the immunological microenvironment. Methods:GSE38206, GSE76826, GSE9653 databases were used to analyze cuproptosis regulators and immune characteristics. To find the genes that were differently expressed, weighted gene co-expression network analysis was employed. We calculated the effectiveness of the random forest model, generalized linear model, and limit gradient lifting to arrive at the best machine prediction model. Nomogram, calibration curve, and decision curve analysis were used to show the anticipated MDD's accuracy. Results:This study found that there were activated immune responses and cuproptosis-related genes that were dysregulated in people with MDD compared to healthy controls. Considering the test performance of the learned model and validation on subsequent datasets, the RF model (including OSBPL8, VBP1, MTM1, ELK3, and SLC39A6) was considered to have the best discriminative performance. (AUC = 0.875). Conclusion:Our study constructed a prediction model to predict MDD risk and clarified the potential connection between cuproptosis and MDD.
10.1016/j.heliyon.2023.e18497
Novel Cuproptosis-Related Gene Signature for Precise Identification of High-Risk Populations in Low-Grade Gliomas.
Mediators of inflammation
Background:Patients with low-grade glioma (LGG) have wildly varying average lifespans. However, no effective way exists for identifying LGG patients at high risk. Cuproptosis is a recently described form of cell death associated with the abnormal aggregation of lipid acylated proteins. Few investigations have been conducted on cuproptosis-associated genes and LGG thus far. The purpose of this research is to establish a predictive model for cuproptosis-related genes in order to recognise LGG populations at high risk. Methods:We analyzed 926 LGGs from 2 public datasets, all of which were RNA sequencing datasets. On the basis of immune scores, the LGG population was split into different risk categories with X-tile. LASSO and Cox regressions were employed to filter cuproptosis-associated genes and construct prediction models. The accuracy of the predictive models was measured by using TCGA internal validation set and the CGGA external validation set. In addition, LGG immune cell infiltration was viewed using CIBERSORT and ssGSEA algorithms and correlation analysis was done with cuproptosis-related genes. Finally, immune escape capacity in LGG low- and high-risk groups was evaluated using the TIDE method. Results:The prediction model constructed by four cuproptosis-related genes was used to identify high-risk populations in LGG. It performed well in training and all validation sets (AUC values: 0.915, 0.894, and 0.774). Meanwhile, we found that FDX1 and ATP7A in the four cuproptosis-related genes were positively correlated with immune response, while GCSH and ATP7B were opposite. In addition, the high immune score group had a lower TIDE score, indicating that their immune escape capacity was weak. Conclusion:High-risk individuals in LGG can be reliably identified by the model based on cuproptosis-related genes. Furthermore, cuproptosis is closely related to tumor immune microenvironment, which gives a novel approach to treating LGG.
10.1155/2023/6232620
A cuproptosis-related lncRNA signature for predicting prognosis and immune response in hepatocellular carcinoma.
Heliyon
Background:Hepatocellular carcinoma (HCC) has a high incidence and poor prognosis. Cuproptosis is a novel type of cell death, which differs from previously reported types of cell death such as apoptosis, autophagy, proptosis, ferroptosis, necroptosis, etc. Long non-coding RNAs (lncRNAs) play multiple roles in HCC. Methods:We downloaded information from The Cancer Genome Atlas (TCGA) database, and obtained cuproptosis-related genes from published studies. The cuproptosis-related lncRNAs were obtained by correlation analysis, and subsequently used to construct a prognostic cuproptosis-related lncRNA signature. Analyses of overall survival (OS), progression-free survival (PFS), receiver operating characteristic (ROC) curve with the area under the curve (AUC) values and the index of concordance (c-index) curve were used to evaluate the signature. The tumor microenvironment (TME) was analyzed by ESTIMATE algorithm. The immune cell data was downloaded from the Tumor Immune Estimation Resource (TIMER) 2.0 database. Immune-related pathways were analyzed by single-sample gene set enrichment analysis (ssGSEA) algorithm. Immunophenoscore (IPS) scores from The Cancer Immunome (TCIA) database were used to evaluate immunotherapy response. The "pRRophetic" was employed to screen drugs for high-risk patients. The candidate lncRNA expression levels were detected by Real Time Quantitative PCR. Results:We constructed a cuproptosis-related lncRNA signature containing seven lncRNAs: AC125437.1, PCED1B-AS1, PICSAR, AP001372.2, AC027097.1, LINC00479, and SLC6A1-AS1. This signature had excellent accuracy, and was independent of the stratification of clinicopathological features. Further study showed that high-risk tumors under this signature had higher TMB, fewer TME components and higher tumor purity. The tumors with high risk were not enriched in immune cell infiltration or immune process pathways, and high-risk patients had a poor response to immunotherapy. Moreover, 29 drugs such as sorafenib, dasatinib and paclitaxel were screened for high-risk HCC patients to improve their prognosis. The expression levels of the candidate lncRNAs in HCC tissue were significantly increased (except PCED1B-AS1). Conclusions:Our prognostic cuproptosis-related lncRNA signature was accurate and effective for predicting the prognosis of HCC. The immunotherapy was unsuitable for high-risk HCC patients with this signature.
10.1016/j.heliyon.2023.e19352
Cuproptosis-Related Genes MTF1 and LIPT1 as Novel Prognostic Biomarker in Acute Myeloid Leukemia.
Biochemical genetics
Acute myeloid leukemia (AML) is a life-threatening hematologic malignant disease with high morbidity and mortality in both adults and children. Cuproptosis, a novel mode of cell death, plays an important role in tumor development, but the functional mechanisms of cuproptosis-related genes (CRGs) in AML are unclear. The differential expression of CRGs between tumors such as AML and normal tissues in UCSC XENA, TCGA and GTEx was verified using R (version: 3.6.3). Lasso regression, Cox regression and Nomogram were used to screen for prognostic biomarkers of AML and to construct corresponding prognostic models. Kaplan-Meier analysis, ROC analysis, clinical correlation analysis, immune infiltration analysis and enrichment analysis were used to further investigate the correlation and functional mechanisms of CRGs with AML. The ceRNA regulatory network was used to identify the mRNA-miRNA-lncRNA regulatory axis. Cuproptosis-related genes LIPT1, MTF1, GLS and CDKN2A were highly expressed in AML, while FDX1, LIAS, DLD, DLAT, PDHA1, SLC31A1 and ATP7B were lowly expressed in AML. Lasso regression, Cox regression, Nomogram and calibration curve finally identified MTF1 and LIPT1 as two novel prognostic biomarkers of AML and constructed the corresponding prognostic models. In addition, all 12 CRGs had predictive power for AML, with MTF1, LIAS, SLC31A1 and CDKN2A showing more reliable results. Further analysis showed that ATP7B was closely associated with mutation types such as FLT3, NPM1, RAS and IDH1 R140 in AML, while the expression of MTF1, LIAS and ATP7B in AML was closely associated with immune infiltration. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) revealed that biological functions such as metal ion transmembrane transporter activity, haptoglobin binding and oxygen carrier activity, pathways such as interferon alpha response, coagulation, UV response DN, apoptosis, hypoxia and heme metabolism all play a role in the development of AML. The ceRNA regulatory network revealed that 6 lncRNAs such as MALAT1, interfere with MTF1 expression through 6 miRNAs such as hsa-miR-32-5p, which in turn affect the development and progression of AML. In addition, APTO-253 has the potential to become an AML-targeted drug. The cuproptosis-related genes MTF1 and LIPT1 can be used as prognostic biomarkers in AML. A total of six lncRNAs, including MALAT1, are involved in the expression and regulation of MTF1 in AML through six miRNAs such as hsa-miR-32-5p.
10.1007/s10528-023-10473-y
Expression Profiles of Cuproptosis-Related Genes Determine Distinct Subtypes of Pancreatic Ductal Adenocarcinoma.
Current oncology (Toronto, Ont.)
BACKGROUND:Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent subtype of pancreatic cancer and one of the most malignant tumors worldwide. Due to the heterogeneity of its genomics and proteomics, the prognosis of PDAC remains disappointing despite advances in surgery and medicines. Recently, a novel form of programmed cell death, cuproptosis, was proposed, although its role in PDAC has not been investigated. This study aimed to quantify the expression of cuproptosis-related genes and characterize the novel subtypes of PDAC. METHODS:To evaluate the pattern of cuproptosis in PDAC, the gene expression data and clinical information of 372 samples were collected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A consensus cluster analysis was performed using the transcriptional levels, genetic alterations, and individual prognostic values of seven pre-selected cuproptosis-related genes (, , , , , , and ) to identify the novel subtypes associated with cuproptosis in PDAC. A univariate Cox regression analysis was used to determine the significant prognostic indicators and cuproptosis scores among the differentially expressed genes (DEGs) between the dividing subclusters, followed by a principal component analysis. The prognostic values, immune profiles, treatment sensitivities, and cuproptosis scores were evaluated between the different subgroups. RESULTS:Seven cuproptosis-related genes showed aberrant expression levels and genetic alterations in the PDAC tumor microenvironment. Among them, , , , , and were significantly correlated with overall survival. Based on the expression profiles of the seven cuproptosis-related genes, three cuproptosis clusters (Clusters A, B, and C) were identified, which were represented by different clinicopathologic features, gene expression levels, and biological processes. A total of 686 DEGs were identified among the three cuproptosis clusters, of which 35 prognosis-related DEGs were selected to further classify the PDAC samples into two subgroups with different survival rates, clinicopathologic features, immune infiltration levels, and drug sensitivities. Higher cuproptosis scores were associated with a significantly poorer prognosis. CONCLUSION:The cuproptosis subtypes, scores, and relevant genes represent valuable information for assessing the heterogeneity, treatment, and prognosis of PDAC.
10.3390/curroncol30020126
Identification of cuproptosis-related asthma diagnostic genes by WGCNA analysis and machine learning.
The Journal of asthma : official journal of the Association for the Care of Asthma
OBJECTIVE:Cuproptosis is the latest novel form of cell death. However, the relationship between asthma and cuproptosis is not fully understood. METHODS:In this study, we screened differentially expressed cuproptosis-related genes from the Gene Expression Omnibus (GEO) database and performed immune infiltration analysis. Subsequently, patients with asthma were typed and analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG). Weighted gene co-expression network analysis (WGCNA) was performed to calculate the module-trait correlations, and the hub genes of the intersection were taken to construct machine learning (XGB, SVM, RF, GLM). Finally, we used TGF-β to establish a BEAS-2B asthma model to observe the expression levels of hub genes. RESULTS:Six cuproptosis-related genes were obtained. Immune-infiltration analysis shows that cuproptosis-related genes are associated with a variety of biological functions. We classified asthma patients into two subtypes based on the expression of cuproptosis-related genes and found significant Gene Ontology (GO) and immune function differences between the different subtypes. WGCNA selected 2 significant modules associated with disease features and typing. Finally, we identified TRIM25, DYSF, NCF4, ABTB1, CXCR1 as asthma biomarkers by taking the intersection of the hub genes of the 2 modules and constructing a 5-genes signature, which nomograph, decision curve analysis (DCA) and calibration curves, receiver operating characteristic curve (ROC) showed high efficiency in diagnosing the probability of survival of asthma patients. Finally, experiments have shown that DYSF and CXCR1 expression is up expressed in asthma. CONCLUSIONS:Our study provides further directions for studying the molecular mechanism of asthma.
10.1080/02770903.2023.2213334
Identification and immunological characterization of cuproptosis-related molecular clusters in idiopathic pulmonary fibrosis disease.
Frontiers in immunology
Background:Idiopathic pulmonary fibrosis (IPF) has attracted considerable attention worldwide and is challenging to diagnose. Cuproptosis is a new form of cell death that seems to be associated with various diseases. However, whether cuproptosis-related genes (CRGs) play a role in regulating IPF disease is unknown. This study aims to analyze the effect of CRGs on the progression of IPF and identify possible biomarkers. Methods:Based on the GSE38958 dataset, we systematically evaluated the differentially expressed CRGs and immune characteristics of IPF disease. We then explored the cuproptosis-related molecular clusters, the related immune cell infiltration, and the biological characteristics analysis. Subsequently, a weighted gene co-expression network analysis (WGCNA) was performed to identify cluster-specific differentially expressed genes. Lastly, the eXtreme Gradient Boosting (XGB) machine-learning model was chosen for the analysis of prediction and external datasets validated the predictive efficiency. Results:Nine differentially expressed CRGs were identified between healthy and IPF patients. IPF patients showed higher monocytes and monophages M0 infiltration and lower naive B cells and memory resting T CD4 cells infiltration than healthy individuals. A positive relationship was found between activated dendritic cells and CRGs of LIPT1, LIAS, GLS, and DBT. We also identified cuproptosis subtypes in IPF patients. Go and KEGG pathways analysis demonstrated that cluster-specific differentially expressed genes in Cluster 2 were closely related to monocyte aggregation, ubiquitin ligase complex, and ubiquitin-mediated proteolysis, among others. We also constructed an XGB machine model to diagnose IPF, presenting the best performance with a relatively lower residual and higher area under the curve (AUC= 0.700) and validated by external validation datasets (GSE33566, AUC = 0.700). The analysis of the nomogram model demonstrated that XKR6, MLLT3, CD40LG, and HK3 might be used to diagnose IPF disease. Further analysis revealed that CD40LG was significantly associated with IPF. Conclusion:Our study systematically illustrated the complicated relationship between cuproptosis and IPF disease, and constructed an effective model for the diagnosis of IPF disease patients.
10.3389/fimmu.2023.1171445
Cuproptosis-related modification patterns depict the tumor microenvironment, precision immunotherapy, and prognosis of kidney renal clear cell carcinoma.
Frontiers in immunology
Background:Due to the different infiltration abundance of immune cells in tumor, the efficacy of immunotherapy varies widely among individuals. Recently, growing evidence suggested that cuproptosis has impact on cancer immunity profoundly. However, the comprehensive roles of cuproptosis-related genes in tumor microenvironment (TME) and in response to immunotherapy are still unclear. Methods:Based on 43 cuproptosis-related genes, we employed unsupervised clustering to identify cuproptosis-related patterns and single-sample gene set enrichment analysis algorithm to build a cuproptosis signature for individual patient's immune cell infiltration and efficacy of immune checkpoint blockade (ICB) evaluation. Then, the cuproptosis-related genes were narrowed down using univariate Cox regression model and least absolute shrinkage and selection operator algorithm. Finally, a cuproptosis risk score was built by random survival forest based on these narrowed-down genes. Results:Two distinct cuproptosis-related patterns were developed, with cuproptosis cluster 1 showing better prognosis and higher enrichment of immune-related pathways and infiltration of immune cells. For individual evaluation, the cuproptosis signature that we built could be used not only for predicting immune cell infiltration in TME but also for evaluating an individual's sensitivity to ICBs. Patients with higher cuproptosis signature scores exhibited more activated cancer immune processes, higher immune cell infiltration, and better curative efficacy of ICBs. Furthermore, a robust cuproptosis risk score indicated that patients with higher risk scores showed worse survival outcomes, which could be validated in internal and external validation cohorts. Ultimately, a nomogram which combined the risk score with the prognostic clinical factors was developed, and it showed excellent prediction accuracy for survival outcomes. Conclusion:Distinct cuproptosis-related patterns have significant differences on prognosis and immune cell infiltration in kidney renal clear cell carcinoma (KIRC). Cuproptosis signature and risk score are able to provide guidance for precision therapy and accurate prognosis prediction for patients with KIRC.
10.3389/fimmu.2022.933241
The mechanism of copper transporters in ovarian cancer cells and the prospect of cuproptosis.
Journal of inorganic biochemistry
Copper transporters can not only carry copper (Cu) to maintain the homeostasis of Cu in cells but also transport platinum-based chemotherapy drugs. The effect of copper transporters on chemosensitivity has been demonstrated in a variety of malignancies. In addition, recent studies have reported that copper transporters can act as vectors to induce cuproptosis. Therefore, copper transporters can act on cells through different mechanisms to achieve different purposes. This review mainly describes the current research progress of the intracellular transport mechanism of copper transporters and cuproptosis, and prospects for the application of them in the treatment of ovarian cancer (OC).
10.1016/j.jinorgbio.2023.112324
Cuproptosis-related genes score: A predictor for hepatocellular carcinoma prognosis, immunotherapy efficacy, and metabolic reprogramming.
Frontiers in oncology
Background:Cuproptosis is a newly identified type of programmed cell death, characterized by aggregation of mitochondrial lipoylated proteins and the destabilization of Fe-S cluster proteins triggered by copper. However, its role in hepatocellular carcinoma (HCC) remains unclear. Methods:We analyzed the expression and prognostic significance of cuproptosis-related genes using the data obtained from TCGA and ICGC datasets. A cuproptosis-related genes (CRG) score was constructed and validated least absolute shrinkage and selection operator (LASSO) Cox regression, multivariate Cox regression and nomogram model. The metabolic features, immune profile and therapy guidance of CRG-classified HCC patients were processed R packages. The role of kidney-type glutaminase (GLS) in cuproptosis and sorafenib treatment has been confirmed GLS knockdown. Results:The CRG score and its nomogram model performed well in predicting prognosis of HCC patients based on the TCGA cohort (training set), ICGC cohort and GEO cohort (validation set). The risk score was proved as an independent predictor for overall survival (OS) of HCC. The area under the curves (AUCs) of the model in the training and validation cohorts were all around 0.83 (TCGA, 1- year), 0.73 (TCGA, 3- year), 0.92 (ICGC, 1- year), 0.75 (ICGC, 3- year), 0.77 (GEO, 1- year), 0.76(GEO, 3- year). Expression levels of metabolic genes and subtypes of immune cells, and sorafenib sensitiveness varied significantly between the high-CRG group and low-CRG group. One of the model-included gene, GLS, might be involved in the process of cuproptosis and sorafenib treatment in HCC cell line. Conclusion:The five cuproptosis-related genes model contributed to prognostic prediction and provided a new sight for cuproptosis-related therapy in HCC.
10.3389/fonc.2023.1096351
Cuproptosis-associated genes and immune microenvironment characterization in breast cancer.
Medicine
Excess Cu can cause cell death as a cofactor for essential enzymes. The relationship between cuproptosis-associated genes (CAGs) and breast cancer (BR) is not completely investigated. Here, the transcriptome expression and mutation profile data of BR samples from the Cancer Genome Atlas database were retrieved to identify CAGs. Patients with BR were clustered using consensus clustering. A least absolute shrinkage and selection operator analysis was then performed to construct a CAGs risk signature. As a result, all 13 cuproptosis regulators were significantly differentially expressed between BR and normal samples; among them, 9 cuproptosis genes were correlated with prognoses. Patients with BR were separated into 2 clusters that were associated with patient survival, clinical phenotypes, and immune infiltration, Based on the components of cuproptosis. Subsequently, genes differentially expressed between clusters were obtained, and 11 CAGs were ultimately incorporated into the risk signature. Functional analyses revealed that the risk signature correlated with patient outcomes, ER, PR, HER2 expression, and BR IHC subtypes. Additionally, immune microenvironment analyses showed that CAGs-high-risk patients exhibited lower immune cell infiltration and immune functions. Furthermore, high-risk BR patients had higher TMB, lower immune checkpoint expression, higher m6A gene expression, and higher tumor stemness. Finally, the immunophenoscore analysis revealed that the risk signature could potentially predict the immune response in BR and help guide the application of various immunotherapeutic drugs. Overall, the newly constructed CAGs risk signature presented a predictive value for the prognosis and tumor microenvironment of BR patients and can be further used in the guidance of immunotherapy for BR.
10.1097/MD.0000000000032301
Identification of cuproptosis hub genes contributing to the immune microenvironment in ulcerative colitis using bioinformatic analysis and experimental verification.
Frontiers in immunology
Instruction:Ulcerative colitis (UC) can cause a variety of immune-mediated intestinal dysfunctions and is a significant model of inflammatory bowel disease (IBD). Colorectal cancer (CRC) mostly occurs in patients with ulcerative colitis. Cuproptosis is a type of procedural death that is associated with different types of diseases to various degrees. Methods:We used a combination of bioinformatic prediction and experimental verification to study the correlation between copper poisoning and UC. We used the Gene Expression Omnibus database to obtain disease gene expression data and then identified relevant genes involved in various expression levels in normal and UC samples. The Kyoto Encyclopedia of Genes and Genomes pathway analysis was performed to cluster the genes that are highly responsible and find the central interaction in gene crosstalk. Notably, , , and were present in high-scoring PPI networks. In addition, hub gene expression information in UC tissues was integrated to estimate the relationship between UC copper poisoning and the immune environment. Results:In our study, the expression of , , and in UC tissues was lower than that in normal tissues. The key genes associated with cuproptosis have therapeutic effects on immune infiltration. We verified the expression of , , and using real-time quantitative polymerase chain reaction in mouse models of UC induced by DSS. Discussion:Notably, this study clearly indicates that bioinformatic analysis performed to verify the experimental methods provides evidence that cuproptosis is associated with UC. This finding suggests that immune cell infiltration in UC patients is associated with cuproptosis. The key genes associated with cuproptosis can be helpful for discovering the molecular mechanism of UC, thus facilitating the improvement of UC treatment and preventing the associated CRC.
10.3389/fimmu.2023.1113385
Cuproptosis predicts the risk and clinical outcomes of lung adenocarcinoma.
Frontiers in oncology
Copper is an essential microelement for the body and a necessary coregulator for enzymatic reactions, yet an unbalanced copper level promotes reactive oxidation and cytotoxicity, which ultimately induces cell death. Several small molecules targeting copper-induced cell death have been investigated, yet few showed promising therapeutic effects in clinical trials. In March 2022, first introduced the concept and mechanisms of cuproptosis, suggesting that copper-induced cell death targets the tricarboxylic acid (TCA) cycle protein lipoylation. Does this novel form of cell death take part in tumorigenesis or tumor progression? Is cuproptosis related to clinical outcomes of diseases? Is there a cuproptosis-related panel for clinical practice in cancer treatment? Herein, based on 942 samples of lung adenocarcinoma (LUAD), we analyzed on gene set level the existence and predictive value of cuproptosis in disease diagnosis and treatment. We screened out and identified the "cupLA" panel which indicates the risk of LUAD occurrence, clinicopathological features of LUAD patients, and could guide clinicians to refine LUAD subtypes and make treatment choices.
10.3389/fonc.2022.922332
Identification of Three Cuproptosis-specific Expressed Genes as Diagnostic Biomarkers and Therapeutic Targets for Atherosclerosis.
International journal of medical sciences
Atherosclerosis is a chronic, inflammatory disease characterized by a lipid-driven infiltration of inflammatory cells in large and medium arteries and is considered to be a major underlying cause of cardiovascular diseases. Cuproptosis, a novel form of cell death, is highly linked to mitochondrial metabolism and mediated by protein lipoylation. However, the clinical implication of cuproptosis-related genes (CRGs) in atherosclerosis remains unclear. In this study, genes collected from the GEO database intersected with CRGs were identified in atherosclerosis. GSEA, GO and KEGG pathway enrichment analyses were performed for functional annotation. Through the random forest algorithm and the construction of a protein-protein interaction (PPI) network, eight selected genes (LOXL2, SLC31A1, ATP7A, SLC31A2, COA6, UBE2D1, CP and SOD1) and a vital cuproptosis-related gene FDX1 were then further validated. Two independent datasets (GSE28829 (N = 29), GSE100927 (N = 104)) were collected to construct the signature of CRGs for validation in atherosclerosis. Consistently, the atherosclerosis plaques showed significantly higher expression of SLC31A1, SLC31A2 and lower expression of SOD1 than the normal intimae. The area under the curve (AUC) of SLC31A1, SLC31A2 and SOD1 performed well for the diagnostic validation in the two datasets. In conclusion, the cuproptosis-related gene signature could serve as a potential diagnostic biomarker for atherosclerosis and may offer novel insights into the treatment of cardiovascular diseases. Based on the hub genes, a competing endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA and a transcription factor regulation network were ultimately constructed to explore the possible regulatory mechanism in atherosclerosis.
10.7150/ijms.83009
Identification of key cuproptosis-related genes and their targets in patients with IgAN.
BMC nephrology
BACKGROUND:IgA nephropathy (IgAN) is one of the most common forms of chronic glomerulonephritis, but the aetiology and pathogenesis remain unclear. Cuproptosis is a newly identified form of cell death that plays an important role in many diseases. Researchers have not clearly determined whether the expression of cuproptosis-related genes (CRGs) is involved in the pathogenesis of IgAN. METHODS:The GSE93798, GSE50469 and GSE37460 datasets containing microarray data from patients with IgAN (63) and healthy controls (31) were downloaded from the GEO database. Immune cells and immune-related functions were analysed in patients with IgAN and controls, and genes were identified that may be related to cuproptosis. A logistic regression model was established according to the results, and then GO and KEGG enrichment analyses were performed. Finally, possible drugs were selected using the DSigDB database. RESULTS:The subjects in the different groups showed significantly different fractions of immune cells and immune-related functions, and 11 genes related to cuproptosis may be involved in these processes. Based on these 11 genes, the ROC curve was plotted, and the AUC value was calculated (0.898, 95% CI: 0.839-0.958). The result revealed good predictability. Then, genes with P < 0.05 (lipoyltransferase 1, LIPT1) were selected to plot an ROC curve, and the AUC value was calculated (0.729, 95% CI: 0.636-0.821). Enrichment analyses showed that the TCA cycle and multiple metabolic pathways may also be involved in the occurrence of IgAN. Finally, 293 potential drugs that may be used to treat IgAN were identified based on these genes. CONCLUSION:In this study, we identified some novel CRGs that may be involved in IgAN, among which LIPT1 was significantly differentially expressed. It may predict the risk of IgAN and provides a possible target for the treatment of IgAN. Further experimental studies are needed to explore how these CRGs mediate the occurrence and development of IgAN.
10.1186/s12882-022-02991-5
The role of cuproptosis-related gene in the classification and prognosis of melanoma.
Frontiers in immunology
Background:Melanoma, as one of the most aggressive and malignant cancers, ranks first in the lethality rate of skin cancers. Cuproptosis has been shown to paly a role in tumorigenesis, However, the role of cuproptosis in melanoma metastasis are not clear. Studying the correlation beteen the molecular subtypes of cuproptosis-related genes (CRGs) and metastasis of melanoma may provide some guidance for the prognosis of melanoma. Methods:We collected 1085 melanoma samples in The Cancer Genome Atlas(TCGA) and Gene Expression Omnibus(GEO) databases, constructed CRGs molecular subtypes and gene subtypes according to clinical characteristics, and investigated the role of CRGs in melanoma metastasis. We randomly divide the samples into train set and validation set according to the ratio of 1:1. A prognostic model was constructed using data from the train set and then validated on the validation set. We performed tumor microenvironment analysis and drug sensitivity analyses for high and low risk groups based on the outcome of the prognostic model risk score. Finally, we established a metastatic model of melanoma. Results:According to the expression levels of 12 cuproptosis-related genes, we obtained three subtypes of A, B, and C. Among them, C subtype had the best survival outcome. Based on the differentially expressed genes shared by A, B, and C genotypes, we obtained the results of three gene subtypes of A, B, and C. Among them, the B group had the best survival outcome. Then, we constructed a prognostic model consisting of 6 key variable genes, which could more accurately predict the 1-, 3-, and 5-year overall survival rates of melanoma patients. Besides, 98 drugs were screened out. Finally, we explored the role of cuproptosis-related genes in melanoma metastasis and established a metastasis model using seven key genes. Conclusions:In conclusion, CRGs play a role in the metastasis and prognosis of melanoma, and also provide new insights into the underlying pathogenesis of melanoma.
10.3389/fimmu.2022.986214
Comprehensive analysis of cuproptosis-related genes and tumor microenvironment infiltration characterization in breast cancer.
Frontiers in immunology
Background:Cuproptosis is a newly discovered programmed cell death dependent on overload copper-induced mitochondrial respiration dysregulation. The positive response to immunotherapy, one of the most important treatments for invasive breast cancer, depends on the dynamic balance between tumor cells and infiltrating lymphocytes in the tumor microenvironment (TME). However, cuproptosis-related genes (CRGs) in clinical prognosis, immune cell infiltration, and immunotherapy response remain unclear in breast cancer progression. Methods:The expression and mutation patterns of 12 cuproptosis-related genes were systematically evaluated in the BRCA training group. Through unsupervised clustering analysis and developing a cuproptosis-related scoring system, we further explored the relationship between cuproptosis and breast cancer progression, prognosis, immune cell infiltration, and immunotherapy. Results:We identified two distinct CuproptosisClusters, which were correlated with the different patterns between clinicopathological features, prognosis, and immune cell infiltration. Moreover, the differences of the three cuproptosis-related gene subtypes were evaluated based on the CuproptosisCluster-related DEGs. Then, a cuproptosis-related gene signature (PGK1, SLC52A2, SEC14L2, RAD23B, SLC16A6, CCL5, and MAL2) and the scoring system were constructed to quantify the cuproptosis pattern of BRCA patients in the training cohort, and the testing cohorts validated them. Specifically, patients from the low-CRG_score group were characterized by higher immune cell infiltration, immune checkpoint expression, immune checkpoint inhibitor (ICI) scores, and greater sensitivity to immunotherapy. Finally, we screened out RAD23B as a favorable target and indicated its expression was associated with breast cancer progression, drug resistance, and poor prognosis in BRCA patients by performing real-time RT-PCR, cell viability, and IC50 assay. Conclusions:Our results confirmed the essential function of cuproptosis in regulating the progression, prognosis, immune cell infiltration, and response to breast cancer immunotherapy. Quantifying cuproptosis patterns and constructing a CRG_score could help explore the potential molecular mechanisms of cuproptosis regulating BRCA advancement and provide more effective immunotherapy and chemotherapy targets.
10.3389/fimmu.2022.978909
Cuproptosis-related gene SERPINE1 is a prognostic biomarker and correlated with immune infiltrates in gastric cancer.
Journal of cancer research and clinical oncology
PURPOSE:The serine protease inhibitor clade E member 1 (SERPINE1) has been studied as a potential biomarker in a variety of cancers, but poorly studied in gastric cancer (GC). The purpose of this study was to explore the prognostic value of SERPINE1 in GC and primarily analyze its functions. METHODS:We analyzed the the prognostic value of SERPINE1 and studied the relationship with clinicopathologic biomarkers in gastric cancer. The expression of SERPINE1 was analyzed by GEO and TCGA databases. Moreover, we validated the results by immunohistochemistry. Next, the correlation analysis between SERPINE1 and the cuproptosis-related genes was analyzed by the "Spearman" method. CIBERSORT and TIMER algorithms were used to analyze the correlation of SERPINE1 with immune infiltration. Furthermore, GO and KEGG gene enrichment analyses were used to study the functions and pathways that SERPINE1 might be involved in. Then, drug sensitivity analysis was performed using CellMiner database. Finally, a cuproptosis-immune-related prognostic model was constructed using genes related to immune and cuproptosis, and verified against external datasets. RESULTS:SERPINE1 was up-regulated in gastric cancer tissues, which tends toward poor prognosis. Using immunohistochemistry experiment, the expression and prognostic value of SERPINE1 were verified. Then, we found that SERPINE1 was negatively correlated with cuproptosis-related genes FDX1, LIAS, LIPT1, and PDHA1. On the contrary, SERPINE1 was positively correlated with APOE. This indicates the effect of SERPINE1 on the cuproptosis process. Furthermore, by conducting immune-related analyses, it was revealed that SERPINE1 may promote the inhibitory immune microenvironment. The infiltration level of resting NK cells, neutrophils, activated mast cells, and macrophages M2 was positively correlated with SERPINE1. However, B cell memory and plasma cells were negatively correlated with SERPINE1. Functional analysis showed that SERPINE1 was closely related to angiogenesis, apoptosis, and ECM degradation. The KEGG pathway analysis showed that SERPINE1 may be associated with P53, Pi3k/Akt, TGF-β, and other signaling pathways. Drug sensitivity analysis showed that SERPINE1 could be also seen as a potential treatment target. The risk model based on SERPINE1 co-expression genes could better predict the survival of GC patients than SERPINE1 alone. We also verified the prognostic value of the risk score by GEO external datasets. CONCLUSION:SERPINE1 is highly expressed in gastric cancer and related to poor prognosis. SERPINE1 may regulate cuproptosis and the immune microenvironment by a series of pathways. Therefore, SERPINE1 as a prognostic biomarker and potential therapeutic target deserves further study.
10.1007/s00432-023-04900-1
Cuproptosis-related genes signature and validation of differential expression and the potential targeting drugs in temporal lobe epilepsy.
Frontiers in pharmacology
Temporal lobe epilepsy (TLE) is the most common subtype of epilepsy in adults and is characterized by neuronal loss, gliosis, and sprouting mossy fibers in the hippocampus. But the mechanism underlying neuronal loss has not been fully elucidated. A new programmed cell death, cuproptosis, has recently been discovered; however, its role in TLE is not clear. We first investigated the copper ion concentration in the hippocampus tissue. Then, using the Sample dataset and E-MTAB-3123 dataset, we analyzed the features of 12 cuproptosis-related genes in TLEs and controls using the bioinformatics tools. Then, the expression of the key cuproptosis genes were confirmed using real-time PCR and immunohistochemical staining (IHC). Finally, the Enrichr database was used to screen the small molecules and drugs targeting key cuproptosis genes in TLE. The Sample dataset displayed four differentially expressed cuproptosis-related genes (DECRGs; LIPT1, GLS, PDHA1, and CDKN2A) while the E-MTAB-3123 dataset revealed seven DECRGs (LIPT1, DLD, FDX1, GLS, PDHB, PDHA1, and DLAT). Remarkably, only LIPT1 was uniformly upregulated in both datasets. Additionally, these DECRGs are implicated in the TCA cycle and pyruvate metabolism-both crucial for cell cuproptosis-as well as various immune cell infiltrations, especially macrophages and T cells, in the TLE hippocampus. Interestingly, DECRGs were linked to most infiltrating immune cells during TLE's acute phase, but this association considerably weakened in the latent phase. In the chronic phase, DECRGs were connected with several T-cell subclasses. Moreover, LIPT1, FDX1, DLD, and PDHB were related to TLE identification. PCR and IHC further confirmed LIPT1 and FDX1's upregulation in TLE compared to controls. Finally, using the Enrichr database, we found that chlorzoxazone and piperlongumine inhibited cell cuproptosis by targeting LIPT1, FDX1, DLD, and PDHB. Our findings suggest that cuproptosis is directly related to TLE. The signature of cuproptosis-related genes presents new clues for exploring the roles of neuronal death in TLE. Furthermore, LIPT1 and FDX1 appear as potential targets of neuronal cuproptosis for controlling TLE's seizures and progression.
10.3389/fphar.2023.1033859
Cuproptosis-related signature predicts prognosis, immunotherapy efficacy, and chemotherapy sensitivity in lung adenocarcinoma.
Frontiers in oncology
Background:Cuproptosis is a novel form of programmed cell death that disrupts the tricarboxylic acid (TCA) cycle and mitochondrial function. The mechanism of cuproptosis is quite different from that of common forms of cell death such as apoptosis, pyroptosis, necroptosis, and ferroptosis. However, the potential connection between cuproptosis and tumor immunity, especially in lung adenocarcinoma (LUAD), is poorly understood. Methods:We used machine learning algorithms to develop a cuproptosis-related scoring system. The immunological features of the scoring system were investigated by exploring its association with clinical outcomes, immune checkpoint expression, and prospective immunotherapy response in LUAD patients. The system predicted the sensitivity to chemotherapeutic agents. Unsupervised consensus clustering was performed to precisely identify the different cuproptosis-based molecular subtypes and to explore the underlying tumor immunity. Results:We determined the aberrant expression and prognostic relevance of cuproptosis-related genes (CRGs) in LUAD. There were significant differences in survival, biological function, and immune infiltration among the cuproptosis subtypes. In addition, the constructed cuproptosis scoring system could predict clinical outcomes, tumor microenvironment, and efficacy of targeted drugs and immunotherapy in patients with LUAD. After validating with large-scale data, we propose that combining the cuproptosis score and immune checkpoint blockade (ICB) therapy can significantly enhance the efficacy of immunotherapy and guide targeted drug application in patients with LUAD. Conclusion:The Cuproptosis score is a promising biomarker with high accuracy and specificity for determining LUAD prognosis, molecular subtypes, immune cell infiltration, and treatment options for immunotherapy and targeted therapies for patients with LUAD. It provides novel insights to guide personalized treatment strategies for patients with LUAD.
10.3389/fonc.2023.1127768
Cuproptosis-associated lncRNAs discern prognosis and immune microenvironment in sarcoma victims.
Frontiers in cell and developmental biology
Cuproptosis is a fresh form of the copper-elesclomol-triggered, mitochondrial tricarboxylic acid (TCA) dependent cell death. Yet, the subsumed mechanism of cuproptosis-associated lncRNAs in carcinoma is not wholly clarified. Here, We appraised 580 cuproptosis-associated lncRNAs in sarcoma and thereafter construed a module composing of 6 cuproptosis lncRNAs, entitled CuLncScore, utilizing a machine learning methodology. It could outstandingly discern the prognosis of patients in parallel with discriminating tumor immune microenvironment traits. Moreover, we simulate the classification system of cuproptosis lncRNAs by unsupervised learning method to facilitate differentiation of clinical denouement and immunotherapy modality options. Notably, Our Taizhou cohort validated the stability of CuLncScore and the classification system. Taking a step further, we checked these 6 cuproptosis lncRNAs by Quantitative real-time polymerase chain reaction (qRT-PCR) to ascertain their authenticity. All told, our investigations highlight that cuproptosis lncRNAs are involved in various components of sarcoma and assist in the formation of the tumor immune microenvironment. These results provide partial insights to further comprehend the molecular mechanisms of cuproptosis lncRNAs in sarcoma and could be helpful for the development of personalized therapeutic strategies targeting cuproptosis or cuproptosis lncRNAs.
10.3389/fcell.2022.989882
Cuproptosis patterns and tumor microenvironment in endometrial cancer.
Frontiers in genetics
Cuproptosis is the most recently discovered mode of cell death. It could affect the metabolism of cancer cells and surrounding infiltrating immune cells. In recent years, many studies have also shown that the tumor microenvironment (TME) plays a critical role in tumor growth and development. Mounting evidence suggests that Cuproptosis would bring unique insights into the development of pharmacological and nonpharmacological therapeutic techniques for cancer prevention and therapy. However, no study has been done on the combination of cuproptosis and TME in any cancer. Herein, we investigated the relationship between cuproptosis-related genes (CRGs), TME, and the prognosis of patients with Uterine Corpus Endometrial Carcinoma (UCEC). We identified three CRGs clusters based on 10 CRGs and three CRGs gene clusters based on 600 differentially expressed genes (DEGs) with significant prognostic differences. Following that, the CRGs score based on DEGs with significant prognostic differences was established to evaluate the prognosis and immunotherapeutic efficacy of UCEC patients. The CRGs score was shown to be useful in predicting clinical outcomes. Patients with a low CRGs score seemed to have a better prognosis, a better immunotherapeutic response, and a higher tumor mutation burden (TMB). In conclusion, our study explored the influence of cuproptosis patterns and TME on the prognosis of cancer patients, thereby improving their prognosis.
10.3389/fgene.2022.1001374
Cuproptosis in ccRCC: key player in therapeutic and prognostic targets.
Frontiers in oncology
Background:Classical biomarkers have been used to classify clear cell renal cell carcinoma (ccRCC) patients in a variety of ways, and emerging evidences have indicated that cuproptosis is closely related to mitochondrial metabolism, thereby accelerating the development and progression of ccRCC. Nevertheless, the specific relationship between cuproptosis and the prognosis and treatment of ccRCC remains unclear. Methods:We comprehensively integrated several ccRCC patient datasets into a large cohort. Following that, we systematically analyzed multi-omics data to demonstrate the differences between two cuproptosis clusters. Results:We identified two cuproptosis clusters in ccRCC patients. Among the two clusters, cluster 1 patients showed favorable prognosis. We then confirmed the significant differences between the two clusters, including more typical cancer hallmarks were enriched in cluster 2 patients; cluster 2 patients were more susceptible to develop mutations and had a lower level of gistic score and mRNAsi. Importantly, both Tumor Immune Dysfunction and Exclusion analysis and subclass mapping algorithm showed that cuproptosis 1 patients were more susceptible to be responded to immunotherapy. In addition, a prognostic signature was successfully developed and also showed prominent predictive power in response to immunotherapy. Conclusion:As a result of our findings, we were able to classify ccRCC patients according to cuproptosis in a novel way. By constructing the cuproptosis clusters and developing the signature, patients with ccRCC could have a more accurate prognosis prediction and better immunotherapy options.
10.3389/fonc.2023.1271864
Cuproptosis- and m6A-Related lncRNAs for Prognosis of Hepatocellular Carcinoma.
Biology
Cuproptosis and N6-methyladenosine (m6A) have potential as prognostic predictors in cancer patients, but their roles in hepatocellular carcinoma (HCC) are unclear. This study aimed to screen a total of 375 HCC samples were retrieved from the TCGA database, and lncRNAs related to cuproptosis and m6A were obtained through correlation analysis. To construct a risk assessment model, univariate Cox regression analysis and LASSO Cox regression were employed. Analyze the regulatory effect of relevant risk assessment models on tumor mutation load (TMB) and immune microenvironment. A total of five lncRNAs (AC007405.3, AL031985.3, TMCC1-AS1, MIR210HG, TMEM220-AS1) with independent overall survival-related risk models were obtained by LASSO survival regression. TP53 and CTNNB1 were the three genes found to have the most mutations in high-risk group patients. The high-risk group with low TMB had the worst survival, whereas the low-risk group with high TMB had the best survival. KEGG pathway analysis revealed that the high-risk group was enriched with cell cycle, oocyte meiosis, cell senescence, and glycolysis/glucose production pathways. We constructed a reliable cuproptosis- and m6A-related lncRNA model for the prognosis of HCC. The model may provide new insights into managing HCC patients, but further research is needed to validate it.
10.3390/biology12081101
Cuproptosis-related lncRNAs potentially predict prognosis and therapy sensitivity of breast cancer.
Frontiers in pharmacology
Cuproptosis-related lncRNAs regulate the biological functions of various cancers. However, the role of cuproptosis-related lncRNAs in breast cancer remains unclear. In this study, we investigated the biological functions and clinical applications of cuproptosis-related lncRNAs in breast cancer. The Cancer Genome Atlas (TCGA) database and the GSE20685 dataset were used for screening cuproptosis-related lncRNAs. Colony formation and CCK-8 kit assays were performed for detecting the proliferative function of cuproptosis-related lncRNAs, whereas wound healing, migration, and invasion assays were performed for detecting the metastatic regulation of cuproptosis-related lncRNAs in breast cancer. Finally, a prognostic cuproptosis-related lncRNA model was constructed using LASSO Cox regression analysis for detecting survival and sensitivity to conventional treatment (endocrine therapy, chemotherapy, and radiotherapy) and novel therapy (PARP and CDK4/6 inhibitors). In this study, we screened six cuproptosis-related lncRNAs associated with the survival of patients with breast cancer. Biofunctional experiments indicated that cuproptosis-related lncRNAs play essential roles in regulating the proliferation and metastasis of breast cancer cells. Finally, we applied a model of six cuproptosis-related lncRNAs to classify the patients into high- and low-risk groups. High-risk group patients exhibited worse survival rates ( < 0.001) and lower sensitivity to chemotherapy, endocrine therapy, and radiation therapy. Compared with high-risk patients, low-risk patients exhibited a lower expression of CDK4/6 inhibitor-resistant biomarkers (CCNE1, E2F1, and E2F2) and PARP inhibitor-resistant biomarkers (/), indicating that patients in the low-risk group were more suitable for PARP inhibitor and CDK4/6 inhibitor application. Cuproptosis-related lncRNAs are essential for regulating the biological functions of breast cancer, and they have the potential to predict prognosis and sensitivity of breast cancer to various therapies.
10.3389/fphar.2023.1199883
DLAT as a Cuproptosis Promoter and a Molecular Target of Elesclomol in Hepatocellular Carcinoma.
Current medical science
OBJECTIVE:Cuproptosis is a novel cell death pathway that was newly discovered in early 2022. However, cuproptosis is still in its infancy in many respects and warrants further research in hepatocellular carcinoma (HCC). This study aimed to analyze the mechanism of cuprptosis in HCC. METHODS:Herein, the tumor microenvironment infiltration landscape of molecular subtypes was illustrated using GSVA, ssGSEA, TIMER, CIBERSORT, and ESTIMATE algorithms based on the expression profile of cuproptosis-related genes (CRGs) from TCGA and GEO databases. Then, the least absolute shrinkage and selection operator regression method was applied to construct a cuproptosis signature to quantify the cuproptosis profile of HCC. Further, we explored the expression of three hub CRGs in cell lines and clinical patient tissues of HCC by Western blotting, qRT-PCR and immunohistochemistry. Finally, we examined the function of dihydrolipoamide S-acetyltransferase (DLAT) in cuproptosis in HCC by loss-of-function strategy, Western blotting and CCK8 assay. RESULTS:Three distinct molecular subtypes were identified. Cluster 2 had the greatest infiltration of immune cells with best prognosis. The cuproptosis signature was indicative of tumor subtype, immunity, and prognosis for HCC, and specifically, a low cuproptosis score foreshadowed good prognosis. DLAT was highly expressed in liver cancer cell lines and HCC tissues and positively correlated with clinical stage and grade. We also found that potent copper ionophore elesclomol could induce cuproptosis in a copper-dependent manner. Selective Cu chelator ammonium tetrathiomolybdate and downregulating DLAT expression by siRNA could effectively inhibit cuproptosis. CONCLUSION:Cuproptosis and DLAT as a promising biomarker could help to determine the prognosis of HCC and may offer novel insights for effective treatment.
10.1007/s11596-023-2755-0
Progress in the research of cuproptosis and possible targets for cancer therapy.
World journal of clinical oncology
Developing novel cancer therapies that exploit programmed cell death pathways holds promise for advancing cancer treatment. According to a recently published study in Science, copper death (cuproptosis) occurs when intracellular copper is overloaded, triggering aggregation of lipidated mitochondrial proteins and Fe-S cluster proteins. This intriguing phenomenon is triggered by the instability of copper ions. Understanding the molecular mechanisms behind cuproptosis and its associated genes, as identified by Tsvetkov, including ferredoxin 1, lipoic acid synthase, lipoyltransferase 1, dihydrolipid amide dehydrogenase, dihydrolipoamide transacetylase, pyruvate dehydrogenase α1, pyruvate dehydrogenase β, metallothionein, glutaminase, and cyclin-dependent kinase inhibitor 2A, may open new avenues for cancer therapy. Here, we provide a new understanding of the role of copper death and related genes in cancer.
10.5306/wjco.v14.i9.324
Cuproptosis-related miRNAs signature and immune infiltration characteristics in colorectal cancer.
Cancer medicine
BACKGROUND:A novel form of cell death termed cuproptosis was proposed recently. miRNAs play important roles in colorectal cancer (CRC). However, their relationships have not been reported. METHODS:miRNAs that negatively regulate 16 cuproptosis regulators were predicted using Targetscan database. The univariate Cox, LASSO, and multivariate Cox regression analyses were performed to select cuproptosis-related miRNAs. GSEA and ssGSEA analysis was carried out for functional enrichment analysis. The immune cell proportion score (IPS) and the efficiencies of multiple chemotherapy drugs were compared between different risk groups. The CCK8, cell colony, edu, and flow cytometry assays were performed to validate the roles of miRNA. Luciferase reporter assay confirmed the regulatory mechanism of miRNA on cuproptosis. RESULTS:Six cuproptosis-related miRNAs (hsa-miR-653, hsa-miR-216a, hsa-miR-3684, hsa-miR-4437, hsa-miR-641, and hsa-miR-552) were screened out for model construction. The risk score could act as an independent prognostic indicator in CRC (p < 0.001, 95% HR = 1.243 (1.129-1.369)). The nomogram could efficiently predict the overall survival rate (AUC = 0.836). Then, the level of immunosuppressive pathways, immunosuppressive cells, stromal-activated genes, and stromal score was higher in the high-risk group. The IPS analysis showed a better response to immunotherapy in the low-risk group. Also, the risk score was closely correlated with efficiencies of multiple chemotherapy drugs. Furthermore, miR-653 was highly expressed in CRC tissues (p < 0.001), closely correlated with T stage (p < 0.001), metastasis (p < 0.001), and tumor stage (p < 0.001). High expression of miR-653 predicted a shorter overall survival (p = 0.0282) and disease-free survival (p = 0.0056). In addition, miR-653 promoted cell proliferation, inhibited apoptosis, and negatively regulated the expression of DLD through directly binding to the 3'-UTR of DLD mRNA. CONCLUSION:We constructed a cuproptosis-related miRNA signature for the prediction of CRC patient survival and immunotherapy sensitivity. miR-653 was highly expressed in CRC tissues, promoted cell proliferation, and inhibited apoptosis by negatively regulating the expression of DLD.
10.1002/cam4.6270
Identification of cuproptosis-related subtypes and the development of a prognostic model in glioma.
Frontiers in genetics
A copper-dependent cell death, cuproptosis, involves copper binding with lipoylated tricarboxylic acid (TCA) cycle components. In cuproptosis, ferredoxin 1 (FDX1) and lipoylation act as key regulators. The mechanism of cuproptosis differs from the current knowledge of cell death, which may invigorate investigations into copper's potential as a cancer treatment. An extremely dismal prognosis is associated with gliomas, the most prevalent primary intracranial tumor. In patients with glioma, conventional therapies, such as surgery and chemotherapy, have shown limited improvement. A variety of cell death modes have been confirmed to be operative in glioma oncogenesis and participate in the tumor microenvironment (TME), implicated in glioma development and progression. In this study, we aimed to explore whether cuproptosis influences glioma oncogenesis. Gene expression profiles related to cuproptosis were comprehensively evaluated by comparing adjacent tissues from glioma tissues in The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) database. Gene expression, prognostic, clinical, and pathological data of lower-grade gliomas (LGG) and glioblastoma were retrieved from TCGA and Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases. The datasets were managed by "Combat" algorithm to eliminate batch effects and then combined. A consensus clustering algorithm based on the Partitioning Around Medoid (PAM) algorithm was used to classified 725 patients with LGG and glioblastoma multiforme (GBM) into two cuproptosis subtypes. According to the differentially expressed genes in the two cuproptosis subtypes, 725 patients were divided into 2 gene subtypes. Additionally, a scoring system that associated with TME was constructed to predict patient survival and patient immunotherapy outcomes. Furthermore, we constructed a prognostic CRG-score and nomogram system to predict the prognosis of glioma patients. 95 tissue specimens from 83 glioma patients undergoing surgical treatment were collected, including adjacent tissues. Using immunohistochemistry and RT-qPCR, we verified cuproptosis-related genes expression and CRG-score predictive ability in these clinical samples. Our results revealed extensive regulatory mechanisms of cuproptosis-related genes in the cell cycle, TME, clinicopathological characteristics, and prognosis of glioma. We also developed a prognostic model based on cuproptosis. Through the verifications of database and clinical samples, we believe that cuproptosis affects the prognosis of glioma and potentially provides novel glioma research approaches. We suggest that cuproptosis has potential importance in treating gliomas and could be utilized in new glioma research efforts.
10.3389/fgene.2023.1124439
Machine learning algorithm to construct cuproptosis- and immune-related prognosis prediction model for colon cancer.
World journal of gastrointestinal oncology
BACKGROUND:Over the past few years, research into the pathogenesis of colon cancer has progressed rapidly, and cuproptosis is an emerging mode of cellular apoptosis. Exploring the relationship between colon cancer and cuproptosis benefits in identifying novel biomarkers and even improving the outcome of the disease. AIM:To look at the prognostic relationship between colon cancer and the genes associated with cuproptosis and the immune system in patients. The main purpose was to assess whether reasonable induction of these biomarkers reduces mortality among patients with colon cancers. METHOD:Data obtained from The Cancer Genome Atlas and Gene Expression Omnibus and the Genotype-Tissue Expression were used in differential analysis to explore differential expression genes associated with cuproptosis and immune activation. The least absolute shrinkage and selection operator and Cox regression algorithm was applied to build a cuproptosis- and immune-related combination model, and the model was utilized for principal component analysis and survival analysis to observe the survival and prognosis of the patients. A series of statistically meaningful transcriptional analysis results demonstrated an intrinsic relationship between cuproptosis and the micro-environment of colon cancer. RESULTS:Once prognostic characteristics were obtained, the CDKN2A and DLAT genes related to cuproptosis were strongly linked to colon cancer: The first was a risk factor, whereas the second was a protective factor. The finding of the validation analysis showed that the comprehensive model associated with cuproptosis and immunity was statistically significant. Within the component expressions, the expressions of HSPA1A, CDKN2A, and UCN3 differed markedly. Transcription analysis primarily reflects the differential activation of related immune cells and pathways. Furthermore, genes linked to immune checkpoint inhibitors were expressed differently between the subgroups, which may reveal the mechanism of worse prognosis and the different sensitivities of chemotherapy. CONCLUSION:The prognosis of the high-risk group evaluated in the combined model was poorer, and cuproptosis was highly correlated with the prognosis of colon cancer. It is possible that we may be able to improve patients' prognosis by regulating the gene expression to intervene the risk score.
10.4251/wjgo.v15.i3.372
The potential of targeting cuproptosis in the treatment of kidney renal clear cell carcinoma.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
Renal cell carcinoma (RCC) is one of the top ten malignancies and tumor-related causes of death worldwide. The most common histologic subtype is kidney renal clear cell carcinoma (KIRC), accounting for approximately 75% of all RCC cases. Early resection is considered the basic treatment for patients with KIRC. However, approximately 30% of these patients experience recurrence post-operation. Cuproptosis, an autonomous mechanism for controlling cell death, encompasses various molecular mechanisms and multiple cellular metabolic pathways. These pathways mainly include copper metabolic signaling pathways, mitochondrial metabolism signaling pathways, and lipoic acid pathway signaling pathways. Recent evidence shows that cuproptosis is identified as a key cell death modality that plays a meaningful role in tumor progression. However, there is no published systematic review that summarizes the correlation between cuproptosis and KIRC, despite the fact that investigations on cuproptosis and the pathogenesis of KIRC have increased in past years. Researchers have discovered that exogenous copper infusion accelerates the dysfunction of mitochondrial dysfunction and suppresses KIRC cells by inducing cuproptosis. The levels of tricarboxylic acid cycle proteins, lipoic acid protein, copper, and ferredoxin 1 (FDX1) were dysregulated in KIRC cells, and the prognosis of patients with high FDX1 expression is better than that of patients with low expression. Cuproptosis played an indispensable role in the regulation of tumor microenvironment features, tumor progression, and long-term prognosis of KIRC. In this review, we summarized the systemic and cellular metabolic processes of copper and the copper-related signaling pathways, highlighting the potential targets related to cuproptosis for KIRC treatment.
10.1016/j.biopha.2023.115522
Immunomodulation of cuproptosis and ferroptosis in liver cancer.
Cancer cell international
According to statistics, the incidence of liver cancer is increasing yearly, and effective treatment of liver cancer is imminent. For early liver cancer, resection surgery is currently the most effective treatment. However, resection does not treat the disease in advanced patients, so finding a method with a better prognosis is necessary. In recent years, ferroptosis and cuproptosis have been gradually defined, and related studies have proved that they show excellent results in the therapy of liver cancer. Cuproptosis is a new form of cell death, and the use of cuproptosis combined with ferroptosis to inhibit the production of hepatocellular carcinoma cells has good development prospects and is worthy of in-depth discussion by researchers. In this review, we summarize the research progress on cuproptosis combined with ferroptosis in treating liver cancer, analyze the value of cuproptosis and ferroptosis in the immune of liver cancer, and propose potential pathways in oncotherapy with the combination of cuproptosis and ferroptosis, which can provide background knowledge for subsequent related research.
10.1186/s12935-023-03207-y
Cuproptosis-Related Ferroptosis genes for Predicting Prognosis in kidney renal clear cell carcinoma.
European journal of medical research
Kidney renal clear cell carcinoma (KIRC) is a main subtype of kidney cancers. Cuproptosis and ferroptosis are correlated with immune infiltration and prognosis in tumors. However, the role of Cuproptosis-related Ferroptosis genes (CRFGs) in KIRC has rarely been fully understood. Therefore, we constructed a prognostic signature based on different expression of CRFGs in KIRC. All raw data of this study were extracted from public TCGA datasets. Cuproptosis and Ferroptosis genes were collected from the previous research. Finally, a total of 36 significantly different CRFGs were identified from TCGA-KIRC cohort. Six-gene signature (TRIB3, SLC2A3, PML, CD44, CDKN2A and MIOX) was identified by LASSO Cox regression based on the significantly different CRFGs. The CRFGs signature was correlated with worse overall survival and the AUC was 0.750. Functional enrichment indicated that CRFGs were mainly enriched in metabolism, drug resistance, tumor immunity pathways. Besides, the IC50 and immune checkpoint differentially expressed between different groups. The proposed 6-CRFGs signature is a promising biomarker to predict clinical outcomes and therapeutic responses for KIRC patient.
10.1186/s40001-023-01137-z
Role of cuproptosis-related gene in lung adenocarcinoma.
Frontiers in oncology
Backgrounds:Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer, which is the leading cause of cancer death. Dysregulation of cell proliferation and death plays a crucial role in the development of LUAD. As of recently, the role of a new form of cell death, cuproptosis, and it has attracted more and more attention. As of yet, it is not clear whether cuproptosis is involved in the progression of LUAD. Methods:An integrated set of bioinformatics tools was utilized to analyze the expression and prognostic significance of cuproptosis-related genes. Meanwhile, a robust risk signature was developed using machine learning based on prognostic cuproptosis-related genes and explored the value of prognostic cuproptosis-related signature for clinical applications, functional enrichment and immune landscape. Lastly, the dysregulation of the cuproptosis-related genes in LUAD was validated by experiment. Results:In this study, first, cuproptosis-related genes were found to be differentially expressed in LUAD patients of public databases, and nine of them had prognostic value. Next, a cuproptosis-related model with five features (DLTA, MTF1, GLS, PDHB and PDHA1) was constructed to separate the patients into high- and low-risk groups based on median risk score. Internal validation set and external validation set were used for model validation and evaluation. What's more, Enrichment analysis of differential genes and the WGCNA identified that cuproptosis-related signatures affected tumor prognosis by influencing tumor immunity. Small molecule compounds were predicted based on differential expressed genes to improve poor prognosis in the high-risk group and a nomogram was constructed to further advance clinical applications. In closing, our data showed that FDX1 affected the prognosis of lung cancer by altering the expression of cuproptosis-related signature. Conclusion:A new cuproptosis-related signature for survival prediction was constructed and validated by machine learning algorithm and experiments to reflect tumor immune infiltration in LUAD patients. The purpose of this article was to provide a potential diagnostic and therapeutic strategy for LUAD.
10.3389/fonc.2022.1080985
Cuproptosis enhances docetaxel chemosensitivity by inhibiting autophagy via the DLAT/mTOR pathway in prostate cancer.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Cuproptosis, a newly discovered programmed cell death induced by copper ions, is associated with the progression and drug resistance of various tumors. Docetaxel plays a vital role as a first-line chemotherapeutic agent for advanced prostate cancer; however, most patients end up with prostate cancer progression because of inherent or acquired resistance. Herein, we examined the role of cuproptosis in the chemotherapeutic resistance of prostate cancer to docetaxel. We treated prostate cancer cell lines with elesclomol-CuCl , as well as with docetaxel. We performed analyses of CCK8, colony formation tests, cell cycle flow assay, transmission electron microscopy, and mTOR signaling in treated cells, and treated a xenograft prostate cancer model with elesclomol-CuCl and docetaxel in vivo, and performed immunohistochemistry and Western blotting analysis in treated tumors. We found that elesclomol-CuCl could promote cell death and enhance chemosensitivity to docetaxel. Elesclomol-CuCl induced cell death and inhibited the growth of prostate cancer cells relying on copper ions-induced cuproptosis, not elesclomol. In addition, dihydrolipoamide S-acetyltransferase (DLAT) was involved in cuproptosis-enhanced drug sensitivity to docetaxel. Mechanistically, upregulated DLAT by cuproptosis inhibited autophagy, promoted G2/M phase retention of cells, and enhanced the sensitivity to docetaxel chemotherapy in vitro and in vivo via the mTOR signaling pathway. Our findings demonstrated that the cuproptosis-regulated DLAT/mTOR pathway inhibited autophagy and promoted cells in G2/M phase retention, thus enhancing the chemosensitivity to docetaxel. This discovery may provide an effective therapeutic option for treating advanced prostate cancer by inhibiting the chemotherapeutic resistance to docetaxel.
10.1096/fj.202300980R
A novel cuproptosis-related prognostic 2-lncRNAs signature in breast cancer.
Frontiers in pharmacology
Cuproptosis, a newly defined regulated form of cell death, is mediated by the accumulation of copper ions in cells and related to protein lipoacylation. Seven genes have been reported as key genes of cuproptosis phenotype. Cuproptosis may be developed by subsequent research as a target to treat cancer, such as breast cancer. Long-noncoding RNA (lncRNA) has been proved to play a vital role in regulating the biological process of breast cancer. However, the role of lncRNAs in cuproptosis is poorly studied. Based on TCGA (The Cancer Genome Atlas) database and integrated several R packages, we screened out 153 cuproptosis-related lncRNAs and constructed a novel cuproptosis-related prognostic 2-lncRNAs signature (BCCuS) in breast cancer and then verified. By using pRRophetic package and machine learning, 72 anticancer drugs, significantly related to the model, were screened out. qPCR was used to detect the differentially expression of two model lncRNAs and seven cuproptosis genes between 10 pairs of breast cancer tissue samples and adjacent samples. We constructed a novel cuproptosis-related prognostic 2-lncRNAs (USP2-AS1, NIFK-AS1) signature (BCCuS) in breast cancer. Univariate COX analysis ( < .001) and multivariate COX analysis ( < .001) validated that BCCuS was an independent prognostic factor for breast cancer. Overall survival Kaplan Meier-plotter, ROC curve and Risk Plot validated the prognostic value of BCCuS both in test set and verification set. Nomogram and C-index proved that BCCuS has strong correlation with clinical decision-making. BCCuS still maintain inspection efficiency when patients were splitting into Stage I-II ( = .024) and Stage III-IV ( = .003) breast cancer. BCCuS-high group and BCCuS-low group showed significant differences in gene mutation frequency, immune function, TIDE (tumor immune dysfunction and exclusion) score and other phenotypes. TMB (tumor mutation burden)-high along with BCCuS-high group had the lowest Survival probability ( = .005). 36 anticancer drugs whose sensitivity (IC50) was significantly related to the model were screened out using pRRophetic package. qPCR results showed that two model lncRNAs (USP2-AS1, NIFK-AS1) and three Cuproptosis genes (FDX1, PDHA1, DLAT) expressed differently between 10 pairs of breast cancer tissue samples and adjacent samples. The current study reveals that cuproptosis-related prognostic 2-lncRNAs signature (BCCuS) may be useful in predicting the prognosis, biological characteristics, and appropriate treatment of breast cancer patients.
10.3389/fphar.2022.1115608
Identification of Cuproptosis-Related Genes in Nonalcoholic Fatty Liver Disease.
Oxidative medicine and cellular longevity
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent hepatic pathology worldwide. However, the precise molecular mechanisms for NAFLD are still not sufficiently explained. Recently, a new mode of cell death (cuproptosis) is found. However, the relationship between NAFLD and cuproptosis remains unclear. We analyzed three public datasets (GSE89632, GSE130970, and GSE135251) to identify cuproptosis-related genes stably expressed in NAFLD. Then, we performed a series of bioinformatics analyses to explore the relationship between NAFLD and cuproptosis-related genes. Finally, 6 high-fat diet- (HFD-) induced NAFLD C57BL/6J mouse models were established to carry out transcriptome analysis. The results of gene set variation analysis (GSVA) revealed that the cuproptosis pathway was abnormally activated to a certain degree ( = 0.035 in GSE89632, = 0.016 in GSE130970, = 0.22 in GSE135251), and the principal component analysis (PCA) of the cuproptosis-related genes showed that the NAFLD group separated from the control group, with the first two principal components accounting for 58.63%-74.88% of the variation. Among three datasets, two cuproptosis-related genes ( and , < 0.01 or 0.001) were stably upregulated in NAFLD. Additionally, both (AUC = 0.786-0.856) and (AUC = 0.771-0.836) had favorable diagnostic properties, and the multivariate logistics regression model further improved the diagnostic properties (AUC = 0.839-0.889). NADH, flavin adenine dinucleotide, and glycine targeted , and pyruvic acid and NADH targeted in the DrugBank database. The and were also associated with clinical pathology, especially with steatosis (, = 0.0013-0.025; , = 0.002-0.0026) and NAFLD activity score (, = 0.004-0.02; , = 0.003-0.031). What is more, and were correlated with stromal score (, = 0.38, < 0.001; , = 0.31, < 0.001) and immune score (, = 0.26, < 0.001; , = 0.27, < 0.001) in NAFLD. Furthermore, and were also significantly upregulated in the NAFLD mouse model. In conclusion, cuproptosis pathways, especially and , could be potential candidate genes for NAFLD diagnostic and therapeutic options.
10.1155/2023/9245667
Cuproptosis as the new kryptonite of cancer: a copper-dependent novel cell death mechanism with promising implications for the treatment of hepatocellular carcinoma.
Journal of cancer research and clinical oncology
Copper is an essential element for critical cellular functions such as mitochondrial respiration, cholesterol biosynthesis and immune response. Altered copper homeostasis has been associated with various disorders, including cancer. The copper overload is known to contribute to tumorigenesis, angiogenesis and metastasis, and recently it has been suggested that the elevated level of this element may also create vulnerability to a novel cell death mechanism, named cuproptosis. Excessive amount of copper in mitochondria binds to lipoylated enzymes of the TCA cycle and forms insoluble oligomers. The aggregation of these oligomers and subsequent iron-sulfur cluster protein loss results in proteotoxic stress and eventual cell death. Hepatocellular carcinoma is a common malignancy with a low survival rate, despite the available treatment options. The discovery of cuproptosis led many researchers to explore its potential use in hepatocellular cancer therapy due to the rich mitochondria content of hepatic cells. In this regard, a number of genomic studies were conducted to discover several cuproptosis-related genes and explored their association with prognosis, survival and immunotherapy response. This review brings together the available data on the relationship between cuproptosis and hepatocellular cancer for the first time, and highlights some of the potential biomarkers or target molecules that may be useful in the treatment.
10.1007/s00432-023-05456-w
The mechanism of cuproptosis in Parkinson's disease.
Ageing research reviews
Parkinson's disease (PD) is a neurodegenerative disease with an increased morbidity. The pathogenesis PD has not been fully elucidated, and whatever mechanism is involved, it ultimately leads to dopamine (DA) neuronal apoptosis. Cuproptosis is a novel form of cell death. Its morphology, biochemical properties, and mechanism of action differ from known forms of cell death, such as apoptosis, autophagy, necrosis and pyroptosis. Copper binds to the lipoylated components of the tricarboxylic acid cycle, causing proteotoxic stress that ultimately leads to cellular cuproptosis. PD has biochemical features such as mitochondrial dysfunction and decreased levels of copper and glutathione in brain regions. This is closely related to the cuproptosis mechanism. However, the specific link between the pathogenesis of PD and cuproptosis is unclear. Herein, we summarizes cuproptosis as the cause of DA neuronal death in PD, and the relationship between cuproptosis and the PD pathogenesis. This article provides a research basis for targeted cuproptosis for PD.
10.1016/j.arr.2024.102214
Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy.
Frontiers in cardiovascular medicine
Diabetes is a common chronic metabolic disease, and its incidence continues to increase year after year. Diabetic patients mainly die from various complications, with the most common being diabetic cardiomyopathy. However, the detection rate of diabetic cardiomyopathy is low in clinical practice, and targeted treatment is lacking. Recently, a large number of studies have confirmed that myocardial cell death in diabetic cardiomyopathy involves pyroptosis, apoptosis, necrosis, ferroptosis, necroptosis, cuproptosis, cellular burial, and other processes. Most importantly, numerous animal studies have shown that the onset and progression of diabetic cardiomyopathy can be mitigated by inhibiting these regulatory cell death processes, such as by utilizing inhibitors, chelators, or genetic manipulation. Therefore, we review the role of ferroptosis, necroptosis, and cuproptosis, three novel forms of cell death in diabetic cardiomyopathy, searching for possible targets, and analyzing the corresponding therapeutic approaches to these targets.
10.3389/fcvm.2023.1135723
Identification of biomarkers co-associated with M1 macrophages, ferroptosis and cuproptosis in alcoholic hepatitis by bioinformatics and experimental verification.
Frontiers in immunology
Backgrounds:Alcoholic hepatitis (AH) is a major health problem worldwide. There is increasing evidence that immune cells, iron metabolism and copper metabolism play important roles in the development of AH. We aimed to explore biomarkers that are co-associated with M1 macrophages, ferroptosis and cuproptosis in AH patients. Methods:GSE28619 and GSE103580 datasets were integrated, CIBERSORT algorithm was used to analyze the infiltration of 22 types of immune cells and GSVA algorithm was used to calculate ferroptosis and cuproptosis scores. Using the "WGCNA" R package, we established a gene co-expression network and analyzed the correlation between M1 macrophages, ferroptosis and cuproptosis scores and module characteristic genes. Subsequently, candidate genes were screened by WGCNA and differential expression gene analysis. The LASSO-SVM analysis was used to identify biomarkers co-associated with M1 macrophages, ferroptosis and cuproptosis. Finally, we validated these potential biomarkers using GEO datasets (GSE155907, GSE142530 and GSE97234) and a mouse model of AH. Results:The infiltration level of M1 macrophages was significantly increased in AH patients. Ferroptosis and cuproptosis scores were also increased in AH patients. In addition, M1 macrophages, ferroptosis and cuproptosis were positively correlated with each other. Combining bioinformatics analysis with a mouse model of AH, we found that ALDOA, COL3A1, LUM, THBS2 and TIMP1 may be potential biomarkers co-associated with M1 macrophages, ferroptosis and cuproptosis in AH patients. Conclusion:We identified 5 potential biomarkers that are promising new targets for the treatment and diagnosis of AH patients.
10.3389/fimmu.2023.1146693
Unraveling Colorectal Cancer and Pan-cancer Immune Heterogeneity and Synthetic Therapy Response Using Cuproptosis and Hypoxia Regulators by Multi-omic Analysis and Experimental Validation.
International journal of biological sciences
Cuproptosis, a new type of programmed cell death (PCD), is closely related to cellular tricarboxylic acid cycle and cellular respiration, while hypoxia can modulate PCD. However, their combined contribution to tumor subtyping remains unexplored. Here, we applied a multi-omics approach to classify TCGA_COADREAD based on cuproptosis and hypoxia. The classification was validated in three colorectal cancer (CRC) cohorts and extended to a pan-cancer analysis. The results demonstrated that pan-cancers, including CRC, could be divided into three distinct subgroups (cuproptosis-hypoxia subtypes, CHSs): CHS1 had active metabolism and poor immune infiltration but low fibrosis; CHS3 had contrasting characteristics with CHS1; CHS2 was intermediate. CHS1 may respond well to cuproptosis inducers, and CHS3 may benefit from a combination of immunotherapy and anti-fibrosis/anti-hypoxia therapies. In CRC, the CHSs also showed a significant difference in prognosis and sensitivity to classic drugs. Organoid-based drug sensitivity assays validated the results of transcriptomics. Cell-based assays indicated that masitinib and simvastatin had specific effects on CHS1 and CHS3, respectively. A user-friendly website based on the classifier was developed (https://fan-app.shinyapps.io/chs_classifier/) for accessibility. Overall, the classifier based on cuproptosis and hypoxia was applicable to most pan-cancers and could aid in personalized cancer therapy.
10.7150/ijbs.84781
Cuproptosis: Mechanism, role, and advances in urological malignancies.
Medicinal research reviews
Prostate, bladder, and kidney cancers are the most common malignancies of the urinary system. Chemotherapeutic drugs are generally used as adjuvant treatment in the middle, late, or recurrence stages after surgery for urologic cancers. However, traditional chemotherapy is plagued by problems such as poor efficacy, severe side effects, and complications. Copper-containing nanomedicines are promising novel cancer treatment modalities that can potentially overcome these disadvantages. Copper homeostasis and cuproptosis play crucial roles in the development, adaptability, and therapeutic sensitivity of urological malignancies. Cuproptosis refers to the direct binding of copper ions to lipoylated components of the tricarboxylic acid cycle, leading to protein oligomerization, loss of iron-sulfur proteins, proteotoxic stress, and cell death. This review focuses on copper homeostasis and cuproptosis as well as recent findings on copper and cuproptosis in urological malignancies. Furthermore, we highlight the potential therapeutic applications of copper- and cuproptosis-targeted therapies to better understand cuproptosis-based drugs for the treatment of urological tumors in the future.
10.1002/med.22025
Bioinformatics Prediction and Experimental Validation Identify a Novel Cuproptosis-Related Gene Signature in Human Synovial Inflammation during Osteoarthritis Progression.
Biomolecules
Osteoarthritis (OA) is the one of most common joint diseases worldwide. Cuproptosis, which had been discovered lately, is a novel form of cell death induced by copper. Our purpose is to study the relationship between cuproptosis-related genes (CRGs) and inflammatory microenvironments in patients with OA and identify characteristic cuproptosis-related biomarkers. First, the combinatory analysis of OA transcriptome data from five datasets identified differentially expressed CRGs associated with OA. Then, we applied single-sample gene set enrichment analysis (ssGSEA) to evaluate immune-cell infiltration and immune-function levels in OA patients and normal controls, respectively. Hub CRGs for OA were mined based on the random forest (RF) model, and a nomogram prediction model was constructed based on them. In total, four differentially expressed CRGs were identified through bioinformatics analysis and confirmed by RT-qPCR. and were expressed at a high level in OA, while and were expressed higher in the normal group. In total, 10 CRGs were found to be significantly correlated with immune landscape. Four hub CRGs were subsequently obtained by the RF analysis as potential biomarkers for OA. We constructed an OA predictive model based on these four CRGs (, , and ).
10.3390/biom13010127
A novel signature combing cuproptosis- and ferroptosis-related genes in sepsis-induced cardiomyopathy.
Frontiers in genetics
Cardiac dysfunction caused by sepsis, usually termed sepsis-induced cardiomyopathy (SIC), is one of the most serious complications of sepsis, and ferroptosis can play a key role in this disease. In this study, we identified key cuproptosis- and ferroptosis-related genes involved in SIC and further explored drug candidates for the treatment of SIC. The GSE79962 gene expression profile of SIC patients was downloaded from the Gene Expression Omnibus database (GEO). The data was used to identify differentially expressed genes (DEGs) and to perform weighted correlation network analysis (WGCNA). Furthermore, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted. Then, gene set enrichment analysis (GSEA) was applied to further analyze pathway regulation, with an adjusted -value <0.05 and a false discovery rate (FDR) <0.25. Ferroptosis-related genes were obtained from the FerrDb V2 database, and cuproptosis-related genes were obtained from the literature. We constructed a novel signature (CRF) by combing cuproptosis-related genes with ferroptosis-related genes using the STRING website. The SIC hub genes were obtained by overlapping DEGs, WGCNA-based hub genes and CRF genes, and receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic value of hub genes. A transcription factor-microRNA-hub gene network was also constructed based on the miRnet database. Finally, potential therapeutic compounds for SIC were predicted based on the Drug Gene Interaction Database. We identified 173 DEGs in SIC patients. Four hub modules and 411 hub genes were identified by WGCNA. A total of 144 genes were found in the CRF. Then, POR, SLC7A5 and STAT3 were identified as intersecting hub genes and their diagnostic values were confirmed with ROC curves. Drug screening identified 15 candidates for SIC treatment. We revealed that the cuproptosis- and ferroptosis-related genes, POR, SLC7A5 and STAT3, were significantly correlated with SIC and we also predicted therapeutic drugs for these targets. The findings from this study will make contributions to the development of treatments for SIC.
10.3389/fgene.2023.1170737
Development and validation of cuproptosis-related genes in synovitis during osteoarthritis progress.
Frontiers in immunology
Osteoarthritis (OA) is one of the most common refractory degenerative joint diseases worldwide. Synovitis is believed to drive joint cartilage destruction during OA pathogenesis. Cuproptosis is a novel form of copper-induced cell death. However, few studies have examined the correlations between cuproptosis-related genes (CRGs), immune infiltration, and synovitis. Therefore, we analyzed CRGs in synovitis during OA. Microarray datasets (GSE55235, GSE55457, GSE12021, GSE82107 and GSE176308) were downloaded from the Gene Expression Omnibus database. Next, we conducted differential and subtype analyses of CRGs across synovitis. Immune infiltration and correlation analyses were performed to explore the association between CRGs and immune cell abundance in synovitis. Finally, single-cell RNA-seq profiling was performed using the GSE176308 dataset to investigate the expression of CRGs in the various cell clusters. We found that the expression of five CRGs (FDX1, LIPT1, PDHA1, PDHB, and CDKN2A) was significantly increased in the OA synovium. Moreover, abundant and various types of immune cells infiltrated the synovium during OA, which was correlated with the expression of CRGs. Additionally, single-cell RNA-seq profiling revealed that the cellular composition of the synovium was complex and that their proportions varied greatly as OA progressed. The expression of CRGs differed across various cell types in the OA synovium. The current study predicted that cuproptosis may be involved in the pathogenesis of synovitis. The five screened CRGs (FDX1, LIPT1, PDHA1, PDHB, and CDKN2A) could be explored as candidate biomarkers or therapeutic targets for OA synovitis.
10.3389/fimmu.2023.1090596
Comprehensive analysis of cuproptosis-related lncRNAs for prognostic significance and immune microenvironment characterization in hepatocellular carcinoma.
Frontiers in immunology
Cuproptosis was characterized as a novel type of programmed cell death. Recently, however, the role of cuproptosis-related long noncoding RNAs (CRLs) in tumors has not yet been studied. Identifying a predictive CRL signature in hepatocellular carcinoma (HCC) and investigating its putative molecular function were the goals of this work. Initially, Pearson's test was used to assess the relationship between lncRNAs and cuproptosis-associated genes obtained from HCC data of The Cancer Genome Atlas (TCGA). By implementing differential expression and univariate Cox analysis, 61 prognostic CRLs were subsequent to the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. A prognostic risk score model was then constructed to evaluate its ability to predict patients' survival when combined with clinicopathological parameters in HCC. The five-lncRNA prognostic signature categorized the HCC patients into high- and low-risk groups. The low-risk group exhibited more sensitivity to elesclomol than the high-risk one. Surprisingly, distinct mitochondrial metabolism pathways connected to cuproptosis and pivotal immune-related pathways were observed between the two groups gene set enrichment analysis (GSEA). Meanwhile, there were substantial differences between the high-risk group and the low-risk group in terms of tumor-infiltrating immune cells (TIICs). Furthermore, a positive relationship was shown between the risk score and the expression of immune checkpoints. Additionally, differential expression of the five lncRNAs was confirmed in our own HCC samples and cell lines RT-qPCR. Finally, assays confirmed that WARS2-AS1 and MKLN1-AS knockdown could sensitize HCC cells to elesclomol-induced cuproptosis. Overall, our predictive signature may predict the prognosis of HCC patients in an independent manner, give a better understanding of how CRLs work in HCC, and offer therapeutic reference for patients with HCC.
10.3389/fimmu.2022.991604
Multi-omics pan-cancer study of cuproptosis core gene and its role in kidney renal clear cell carcinoma.
Frontiers in immunology
Background:The mechanism of copper-induced cellular death was newly discovered and termed cuproptosis. Inducing cuproptosis in cancer cells is well anticipated for its curative potential in treating tumor diseases. However, ferredoxin 1 (), the core regulatory gene in cuproptosis, is rarely studied, and the regulation of in tumor biology remains obscure. A comprehensive pan-cancer analysis of is needed. Methods:Thirty-three types of tumors were included with paired normal tissues in The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) datasets. The interaction between transcription, protein, phosphorylation, and promoter methylation levels was analyzed. Survival, immune infiltration, single-cell expression, -related tumor mutational burden (TMB), microsatellite instability (MSI), stemness, tumor immune dysfunction and exclusion (TIDE), and immunotherapy-related analyses were performed. protein expression was assessed by kidney renal clear cell carcinoma (KIRC) tissue microarray immunohistochemistry. The function of in KIRC was further explored by experiments in 786-O cell lines . Results: is highly expressed in 15 tumor types and lowly expressed in 11 tumor types. The corresponding changes in protein expression, phosphorylation, and promoter methylation level of have been described in several tumors. Survival analysis showed that was related to favorable or poor overall survival in eight tumors and progression-free survival in nine tumors. Immune infiltration and single-cell analysis indicated the indispensable role of expression in macrophages and monocytes. Multiple established immunotherapy cohorts suggested that may be a potential predictor of treatment effects for tumor patients. Tissue microarray analysis showed decreased expression in KIRC patients' tumor tissues. Knockdown of resulted in the downregulation of cuproptosis in kidney renal clear tumor cells. Mechanistically, the -associated gene expression signature in KIRC is related to the enrichment of genes involved in the tricarboxylic acid (TCA) cycle, NOTCH pathway, etc. Several NOTCH pathway genes were differentially expressed in the high- and low- groups in KIRC. Conclusion:Our analysis showed that the central regulatory gene of cuproptosis, , has differential expression and modification levels in various tumors, which is associated with cellular function, immune modulation, and disease prognosis. Thus, -dependent cuproptosis may serve as a brand-new target in future therapeutic approaches against tumors.
10.3389/fimmu.2022.981764
Cuproptosis illustrates tumor micro-environment features and predicts prostate cancer therapeutic sensitivity and prognosis.
Life sciences
BACKGROUND:Prostate cancer (PCA) is a common malignant genitourinary tumor that significantly impacts patient survival. Cuproptosis, a copper-dependent programmed cell death mechanism, plays a vital role in tumor development, therapy resistance, and immune microenvironment regulation in PCA. However, research on cuproptosis in prostate cancer is still in its early stages. METHODS:Using the publicly available datasets TCGA and GEO, we first acquired the transcriptome and clinical information of PCA patients. The expression of cuprotosis-related genes (CRG) was identified and a prediction model was established based on LASSO-COX method. The predictive performance of this model was evaluated based on Kaplan-Meier method. Using GEO datasets, we further confirmed the critical genes level in the model. Tumor responses to immune checkpoint (ICP) inhibitors were predicted based on Tumor Immune Dysfunction and Exclusion (TIDE) score. The Genomics of Drug Sensitivity in Cancer (GDSC) was utilized to forecast drug sensitivity in cancer cells, whereas the GSVA was employed to analyze enriched pathways related to the cuproptosis signature. Subsequently, the function of PDHA1 gene in PCA was verified. RESULTS:A predictive risk model on basis of five cuproptosis-related genes (ATP7B, DBT, LIPT1, GCSH, PDHA1) were established. The progression free survival of low-risk group was obviously longer than the high-risk group, and exhibit better response to ICB therapy.Furthermore,PDHA1 is very important in the pathological process of PCA according to regressions analysis result, and the validation of external data sets were conducted. High PDHA1 expression patients with PCA not only had a shorter PFS and were less likely to benefit from ICB treatment, but they were also less responsive to multiple targeted therapeutic drugs. In preliminary research, PDHA1 knockdown significantly decreased the proliferation and invasion of PCA cells. CONCLUSION:This study established a novel cuproptosis-related gene-based prostate cancer prediction model that accurately predicts the prognosis of PCA patients. The model benefits individualized therapy and can assist clinicians in making clinical decisions for PCA patients. Furthermore, our data show that PDHA1 promotes PCA cell proliferation and invasion while modulating the susceptibility to immunotherapy and other targeted therapies. PDHA1 can be regarded as an important target for PCA therapy.
10.1016/j.lfs.2023.121659
Identification and Validation of Cuproptosis-Related Prognostic Signature and Associated Regulatory Axis in Uterine Corpus Endometrial Carcinoma.
Frontiers in genetics
Uterine corpus endometrial carcinoma (UCEC) is a common gynecological malignancy globally with high recurrence and mortality rates. Cuproptosis is a new type of programmed cell death involved in tumor cell proliferation and growth, angiogenesis, and metastasis. The difference in cuproptosis-related genes (CRGs) between UCEC tissues and normal tissues deposited in The Cancer Genome Atlas database was calculated using the "limma" R package. LASSO Cox regression analysis was conducted to construct a prognostic cuproptosis-related signature. Kaplan-Meier analysis was conducted to compare the survival of UCEC patients. A ceRNA network was constructed to identify the lncRNA-miRNA-mRNA regulatory axis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to verify CRG expression in UCEC. The expression of FDX1, LIAS, DLAT, and CDKN2A were upregulated, whereas the expression of LIPT1, DLD, PDHB, MTF1, and GLS were downregulated in UCEC versus normal tissues. The genetic mutation landscape of CRGs in UCEC was also summarized. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these CRGs were enriched in the tricarboxylic acid (TCA) cycle, glycolysis, and HIF-1 signaling pathway. LASSO Cox regression analysis was performed and identified a cuproptosis-related prognostic signature including these three prognostic biomarkers (CDKN2A, GLS, and LIPT1). UCEC patients with high risk scores had a poor prognosis with an area under the curve of 0.782 and 0.764 on 3- and 5-year receiver operating characteristic curves. Further analysis demonstrated a significant correlation between CDKN2A and pTNM stage, tumor grade, immune cell infiltration, drug sensitivity, tumor mutational burden (TMB) score, and microsatellite instable (MSI) score. The data validation of qRT-PCR further demonstrated the upregulation of CDKN2A and the downregulation of LIPT1 and GLS in UCEC versus normal tissues. The ceRNA network also identified lncRNA XIST/miR-125a-5p/CDKN2A regulatory axis for UCEC. The current study identified a cuproptosis-related prognostic signature including these three prognostic biomarkers (CDKN2A, GLS, and LIPT1) for UCEC. The ceRNA network also identified that lncRNA XIST/miR-125a-5p/CDKN2A regulatory axis may be involved in the progression of UCEC. Further and studies should be conducted to verify these results.
10.3389/fgene.2022.912037
Exploring cuproptosis as a mechanism and potential intervention target in cardiovascular diseases.
Frontiers in pharmacology
Copper (Cu) is a vital trace element for maintaining human health. Current evidence suggests that genes responsible for regulating copper influx and detoxification help preserve its homeostasis. Adequate Cu levels sustain normal cardiac and blood vessel activity by maintaining mitochondrial function. Cuproptosis, unlike other forms of cell death, is characterized by alterations in mitochondrial enzymes. Therapeutics targeting cuproptosis in cardiovascular diseases (CVDs) mainly include copper chelators, inhibitors of copper chaperone proteins, and copper ionophores. In this review, we expound on the primary mechanisms, critical proteins, and signaling pathways involved in cuproptosis, along with its impact on CVDs and the role it plays in different types of cells. Additionally, we explored the influence of key regulatory proteins and signaling pathways associated with cuproptosis on CVDs and determined whether intervening in copper metabolism and cuproptosis can enhance the outcomes of CVDs. The insights from this review provide a fresh perspective on the pathogenesis of CVDs and new targets for intervention in these diseases.
10.3389/fphar.2023.1229297
Comprehensive Analysis of Cuproptosis-Related Genes in Immune Infiltration and Prognosis in Melanoma.
Frontiers in pharmacology
Skin cutaneous melanoma (SKCM, hereafter referred to as melanoma) is the most lethal skin cancer with increasing incidence. Regulated cell death plays an important role in tumorigenesis and serves as an important target for almost all treatment strategies. Cuproptosis is the most recently identified copper-dependent regulated cell death form that relies on mitochondria respiration. However, its role in tumorigenesis remains unknown. The correlation of cuproptosis-related genes with tumor prognosis is far to be understood, either. In the present study, we explored the correlation between cuproptosis-related genes with the prognosis of melanoma by accessing and analyzing a public database and found 11 out 12 genes were upregulated in melanoma tissues and three genes (LIPT1, PDHA1, and SLC31A1) have predictive value for the prognosis. The subgroup of melanoma patients with higher cuproptosis-related gene expression showed longer overall survival than those with lower gene expression. We chose LIPT1 for further exploration. LIPT1 expression was increased in melanoma biopsies and was an independent favorable prognostic indicator for melanoma patients. Moreover, LIPT1 expression was positively correlated with PD-L1 expression and negatively associated with Treg cell infiltration. The melanoma patients with higher LIPT1 expression showed longer overall survival than those with lower LIPT1 expression after receiving immunotherapy, indicating the prognostic predictive value of LIPT1. Finally, a pan-cancer analysis indicated that LIPT1 was differentially expressed in diverse cancers as compared to normal tissues and correlated with the expression of multiple immune checkpoints, especially PD-L1. It could serve as a favorable prognosis indicator in some cancer types. In conclusion, our study demonstrated the prognostic value of cuproptosis-related genes, especially LIPT1, in melanoma, and revealed the correlation between LIPT1 expression and immune infiltration in melanoma, thus providing new clues on the prognostic assessment of melanoma patients and providing a new target for the immunotherapy of melanoma.
10.3389/fphar.2022.930041
Comprehensive analysis of cuproptosis-related genes in immune infiltration in ischemic stroke.
Frontiers in neurology
Background:Immune infiltration plays an important role in the course of ischemic stroke (IS) progression. Cuproptosis is a newly discovered form of programmed cell death. To date, no studies on the mechanisms by which cuproptosis-related genes regulate immune infiltration in IS have been reported. Methods:IS-related microarray datasets were retrieved from the Gene Expression Omnibus (GEO) database and standardized. Immune infiltration was extracted and quantified based on the processed gene expression matrix. The differences between the IS group and the normal group as well as the correlation between the infiltrating immune cells and their functions were analyzed. The cuproptosis-related DEGs most related to immunity were screened out, and the risk model was constructed. Finally, Gene Ontology (GO) function, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and drug target were performed using the Enrichr website database. miRNAs were predicted using FunRich software. Finally, cuproptosis-related differentially expressed genes (DEGs) in IS samples were typed, and Gene Set Variation Analysis (GSVA) was used to analyze the differences in biological functions among the different types. Results:Seven Cuproptosis-related DEGs were obtained by merging the GSE16561 and GSE37587 datasets. Correlation analysis of the immune cells showed that NLRP3, NFE2L2, ATP7A, LIPT1, GLS, and MTF1 were significantly correlated with immune cells. Subsequently, these six genes were included in the risk study, and the risk prediction model was constructed to calculate the total score to analyze the risk probability of the IS group. KEGG analysis showed that the genes were mainly enriched in the following two pathways: D-glutamine and D-glutamate metabolism; and lipids and atherosclerosis. Drug target prediction found that DMBA CTD 00007046 and Lithocholate TTD 00009000 were predicted to have potential therapeutic effects of candidate molecules. GSVA showed that the TGF-β signaling pathway and autophagy regulation pathways were upregulated in the subgroup with high expression of cuproptosis-related DEGs. Conclusions:NLRP3, NFE2L2, ATP7A, LIPT1, GLS and MTF1 may serve as predictors of cuproptosis and play an important role in the pathogenesis of immune infiltration in IS.
10.3389/fneur.2022.1077178
Contribution of cuproptosis and Cu metabolism-associated genes to chronic obstructive pulmonary disease.
Journal of cellular and molecular medicine
Airway epithelial cell injury plays a crucial role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, a novel form of Cu-induced programmed cell death known as cuproptosis has not yet been thoroughly investigated in the context of COPD. Clinical reports have suggested that high copper exposure may increase the risk of COPD. In this study, we aimed to determine the expression and potential functions of cuproptosis-related genes and genes associated with copper metabolism in COPD. We initially identified 52 copper metabolism-related genes based on a review of the literature. Subsequently, we calculated the expression levels of these genes using data from four GEO datasets. To gain insights into the activated signalling pathways and underlying mechanisms in COPD patients, we conducted Gene Ontology (GO) and KEGG pathway analyses, examined protein-protein interactions, and performed weighted correlation network analysis. Our findings revealed that 18 key copper metabolism-related genes, including 5 cuproptosis-related genes, were significantly enriched in signalling pathways and biological processes associated with the development of COPD. Further analysis of clinical data and animal experiments confirmed the high expression of certain cuproptosis key regulators, such as DLD and CDKN2A, in both healthy smokers and COPD smokers. Additionally, these regulators exhibited abnormal expression in a COPD rat model. Notably, copper content was found to be elevated in the lung tissues of COPD rats, suggesting its potential involvement in cuproptosis. These findings provide an experimental foundation for further research into the role of cuproptosis in COPD. Targeting copper metabolism-related genes may represent an effective approach for the treatment of COPD.
10.1111/jcmm.17985
Cuproptosis-Associated lncRNA Establishes New Prognostic Profile and Predicts Immunotherapy Response in Clear Cell Renal Cell Carcinoma.
Frontiers in genetics
Clear cell renal cell carcinoma (ccRCC) accounts for 80% of all kidney cancers and has a poor prognosis. Recent studies have shown that copper-dependent, regulated cell death differs from previously known death mechanisms (apoptosis, ferroptosis, and necroptosis) and is dependent on mitochondrial respiration (Tsvetkov et al., Science, 2022, 375 (6586), 1254-1261). Studies also suggested that targeting cuproptosis may be a novel therapeutic strategy for cancer therapy. In ccRCC, both cuproptosis and lncRNA were critical, but the mechanisms were not fully understood. The aim of our study was to construct a prognostic profile based on cuproptosis-associated lncRNAs to predict the prognosis of ccRCC and to study the immune profile of clear cell renal cell carcinoma (ccRCC). We downloaded the transcriptional profile and clinical information of ccRCC from The Cancer Genome Atlas (TCGA). Co-expression network analysis, Cox regression method, and least absolute shrinkage and selection operator (LASSO) method were used to identify cuproptosis-associated lncRNAs and to construct a risk prognostic model. In addition, the predictive performance of the model was validated and recognized by an integrated approach. We then also constructed a nomogram to predict the prognosis of ccRCC patients. Differences in biological function were investigated by GO, KEGG, and immunoassay. Immunotherapy response was measured using tumor mutational burden (TMB) and tumor immune dysfunction and rejection (TIDE) scores. We constructed a panel of 10 cuproptosis-associated lncRNAs (HHLA3, H1-10-AS1, PICSAR, LINC02027, SNHG15, SNHG8, LINC00471, EIF1B-AS1, LINC02154, and MINCR) to construct a prognostic prediction model. The Kaplan-Meier and ROC curves showed that the feature had acceptable predictive validity in the TCGA training, test, and complete groups. The cuproptosis-associated lncRNA model had higher diagnostic efficiency compared to other clinical features. The analysis of Immune cell infiltration and ssGSEA further confirmed that predictive features were significantly associated with the immune status of ccRCC patients. Notably, the superimposed effect of patients in the high-risk group and high TMB resulted in shorter survival. In addition, the higher TIDE scores in the high-risk group suggested a poorer outcome for immune checkpoint blockade response in these patients. The ten cuproptosis-related risk profiles for lncRNA may help assess the prognosis and molecular profile of ccRCC patients and improve treatment options, which can be further applied in the clinic.
10.3389/fgene.2022.938259
Identification of cuproptosis -related subtypes, the development of a prognosis model, and characterization of tumor microenvironment infiltration in prostate cancer.
Frontiers in immunology
Cuproptosis, Copper Induced Cell Death, is a newly defined type of programmed cell death, involving in the regulation of tricarboxylic acid (TCA) cycle. Dysfunction of cuproptosis induces cytotoxicity and influences the proliferation of multiple tumors. However, the direct prognostic effect of cuproptosis related genes and corresponding regulating mechanisms amid prostate cancer remains unknown. A multi-omics analysis strategy was adopted to explore the role of ten cuproptosis related genes in The Cancer Genome Atlas- Prostate Adenocarcinoma (TCGA-PRAD). Firstly, mRNA expression, Copy Number Variance (CNV), mutation, DNA methylation and prognostic power of the ten genes were illustrated. Based on transcriptomic data, we developed a novel prognostic model named the Cuproptosis-related gene score (CRGScore), Their biological functions were then detected by enrichment analysis and unsupervised cluster analysis. Following that, their correlation with Tumor Immune Microenvironment (TIME), immunotherapy, Biochemical Recurrence (BCR) and chemotherapeutic resistance were elaborated by relevant bioinformatics algorithms. Ten cuproptosis related genes exhibited extensive alteration of CNV and DNA methylation and showed significant influence on the prognosis of prostate cancer patients. These genes mainly enriched in E2F and G2M targets and mitosis pathways, Samples with high CRGScore showed enhancement resulting in the increased infiltration of T cell, B cell, NK cells. They also demonstrated close correlations with the BCR status, expression of eight immune checkpoints and chemotherapeutic resistances in prostate cancer. Our comprehensive analysis of CRGScore revealed an extensive regulatory mechanism by which they affect the tumor-immune-stromal microenvironment, clinicopathological features, and prognosis. We also determined the therapeutic liability of CRGScore in targeted therapy and immunotherapy. These findings highlight the crucial clinical implications of CRGScore and provide new ideas for guiding personalized immunotherapy strategies for patients with Pca.
10.3389/fimmu.2022.974034
Leveraging a cuproptosis-based signature to predict the prognosis and drug sensitivity of cutaneous melanoma.
Journal of translational medicine
Immunotherapy is a vital treatment for patients with cutaneous melanoma (CM), but effective predictors to guide clinical immunotherapy are lacking. Cuproptosis is a newly discovered mode of cell death related to tumorigenesis. Exploring the relationship between the mode of cuproptosis and the effect of immunotherapy on CM could better guide clinical management. We clustered all patients with CM in the Cancer Genome Atlas (TCGA) database based on cuproptosis-related genes (CRGs). Prognosis, immunotherapeutic effect, tumor microenvironment score, expression of CD274, CTLA4, and PDCD1, and abundance of CD8 + T infiltration in group A were higher than in group B. Using a combination of LASSO and COX regression analysis, we identified 10 molecules significant to prognosis from differentially expressed genes between the two groups and constructed a cuproptosis-related scoring system (CRSS). Compared with the American Joint Committee on Cancer (AJCC) staging system, CRSS more accurately stratified CM patient risk and guided immunotherapy. CRSS successfully stratified risk and predicted the effect of immunotherapy in 869 patients with eight CM immunotherapy datasets and multiple other tumor immunotherapy cohorts. The nomogram model, which combined AJCC stage and CRSS, greatly improved the ability and accuracy of prognosis prediction. In general, our cuproptosis-related scoring system and nomogram model accurately stratified risk in CM patients and effectively predicted prognosis and the effect of immunotherapy in CM patients.
10.1186/s12967-023-03891-4
Cuproptosis-related gene index: A predictor for pancreatic cancer prognosis, immunotherapy efficacy, and chemosensitivity.
Frontiers in immunology
Aim:The term "Cuproptosis" was coined to describe a novel type of cell death triggered by intracellular copper buildup that is fundamentally distinct from other recognized types such as autophagy, ferroptosis, and pyroptosis in recent days. As the underlying mechanism was newly identified, its potential connection to pancreatic adenocarcinoma (PAAD) is still an open issue. Methods:A set of machine learning algorithms was used to develop a Cuproptosis-related gene index (CRGI). Its immunological characteristics were studied by exploring its implications on the expression of the immunological checkpoints, prospective immunotherapy responses, etc. Moreover, the sensitivity to chemotherapeutic drugs was predicted. Unsupervised consensus clustering was performed to more precisely identify different CRGI-based molecular subtypes and investigate the immunotherapy and chemotherapy efficacy. The expression of and were also investigated, through real-time quantitative polymerase chain reaction (RT-qPCR), western blot, and immunofluorescence staining (IFS). Results:A novel CRGI was identified and validated. Additionally, correlation analysis revealed major changes in tumor immunology across the high- and low-CRGI groups. Through an in-depth study of each medication, it was determined that the predictive chemotherapeutic efficacy of 32 regularly used anticancer drugs differed between high- and low-CRGI groups. The results of the molecular subtyping provided more support for such theories. Expressional assays performed at transcriptomic and proteomic levels suggested that the aforementioned Cuproptosis-related genes might serve as reliable diagnostic biomarkers in PAAD. Significance:This is, to the best of our knowledge, the first study to examine prognostic prediction in PAAD from the standpoint of Cuproptosis. These findings may benefit future immunotherapy and chemotherapeutic therapies.
10.3389/fimmu.2022.978865
The Role of Ferroptosis and Cuproptosis in Curcumin against Hepatocellular Carcinoma.
Molecules (Basel, Switzerland)
BACKGROUND:Among cancer-related deaths, hepatocellular carcinoma (HCC) ranks fourth, and traditional Chinese medicine (TCM) treatment is an important complementary alternative therapy for HCC. Curcumin is a natural ingredient extracted from with anti-HCC activity, while the therapeutic mechanisms of curcumin remain unclear, especially on ferroptosis and cuproptosis. METHODS:Differentially expressed genes (DEGs) of curcumin treatment in PLC, KMCH, and Huh7 cells were identified, respectively. The common genes among them were then obtained to perform functional enrichment analysis and prognostic analysis. Moreover, weighted gene co-expression network analysis (WGCNA) was carried out for the construction of the co-expression network. The ferroptosis potential index (FPI) and the cuproptosis potential index (CPI) were subsequently used to quantitatively analyze the levels of ferroptosis and cuproptosis. Finally, single-cell transcriptome analysis of liver cancer was conducted. RESULTS:We first identified 702, 515, and 721 DEGs from curcumin-treated PLC, KMCH, and Huh7 cells, respectively. Among them, , , , , and may play an essential role in metal ion homeostasis. By WGCNA, grey60 co-expression module was associated with curcumin treatment and involved in the regulation of ion homeostasis. Furthermore, FPI and CPI assessment showed that curcumin had cell-specific effects on ferroptosis and cuproptosis in different HCC cells. In addition, there are also significant differences in ferroptosis and cuproptosis levels among 16 HCC cell subtypes according to single-cell transcriptome data analysis. CONCLUSIONS:We developed CPI and combined it with FPI to quantitatively analyze curcumin-treated HCC cells. It was found that ferroptosis and cuproptosis, two known metal ion-mediated forms of programmed cell death, may have a vital effect in treating HCC with curcumin, and there are significant differences in various liver cancer cell types and curcumin treatment which should be considered in the clinical application of curcumin.
10.3390/molecules28041623
Identification and validation of a novel cuproptosis-related signature as a prognostic model for lung adenocarcinoma.
Frontiers in endocrinology
Background:Cuproptosis is a novel form of copper-induced cell death that targets lipoylated tricarboxylic acid (TCA) cycle proteins. However, its prognostic role in lung adenocarcinoma (LUAD) remains unclear. This study aimed to establish a cuproptosis-related prognostic signature for patients with LUAD. Methods:Transcriptome data of LUAD samples were extracted from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The prognostic value of cuproptosis-related genes (CRGs) was investigated using Cox regression analysis to develop a cuproptosis-related prognostic model. Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology (GO) and gene set variation analysis (GSVA) were conducted to characterize different biological activities or pathways between high- or low-CRG groups. The expression pattern and prognostic values of CRGs were validated in 37 paired tumor-normal samples using quantitative PCR. Furthermore, experiments were performed to investigate the relationship between cuproptosis and CRG expression and to explore the function of target genes in cuproptosis. Results:Among the 36 CRGs, 17 genes were upregulated, and 3 genes were downregulated in LUAD. A total of 385 CRGs were identified using Pearson correlation analysis. A cuproptosis-related signature was constructed using least absolute shrinkage and selection operator (LASSO) analysis. The prognostic value of the cuproptosis-related signature was validated in six external validation cohorts and in LUAD specimens from our facility. Patients in the high-risk group based on the CRG signature score had shorter overall survival than those in the low-risk group in both the datasets and clinical specimens. experiments revealed that the expression of , , and was upregulated after cuproptosis was induced by elesclomol-CuCL, whereas the upregulation was suppressed on pretreatment with tetrathiomolybdate (TTM), a chelator of copper. Further, the cell proliferation assay revealed that the and deficiency facilities the cuproptosis induced by elesclomol-CuCL. Conclusion:This study established a new CRG signature that can be used to predict the OS of LUAD patients. Moreover, the knockdown of and could increase the sensitivity of LUAD cells to the cuproptosis.
10.3389/fendo.2022.963220
Identification and immunological characterization of cuproptosis-related molecular clusters in Alzheimer's disease.
Frontiers in aging neuroscience
Introduction:Alzheimer's disease is the most common dementia with clinical and pathological heterogeneity. Cuproptosis is a recently reported form of cell death, which appears to result in the progression of various diseases. Therefore, our study aimed to explore cuproptosis-related molecular clusters in Alzheimer's disease and construct a prediction model. Methods:Based on the GSE33000 dataset, we analyzed the expression profiles of cuproptosis regulators and immune characteristics in Alzheimer's disease. Using 310 Alzheimer's disease samples, we explored the molecular clusters based on cuproptosis-related genes, along with the related immune cell infiltration. Cluster-specific differentially expressed genes were identified using the WGCNA algorithm. Subsequently, the optimal machine model was chosen by comparing the performance of the random forest model, support vector machine model, generalized linear model, and eXtreme Gradient Boosting. Nomogram, calibration curve, decision curve analysis, and three external datasets were applied for validating the predictive efficiency. Results:The dysregulated cuproptosis-related genes and activated immune responses were determined between Alzheimer's disease and non-Alzheimer's disease controls. Two cuproptosis-related molecular clusters were defined in Alzheimer's disease. Analysis of immune infiltration suggested the significant heterogeneity of immunity between distinct clusters. Cluster2 was characterized by elevated immune scores and relatively higher levels of immune infiltration. Functional analysis showed that cluster-specific differentially expressed genes in Cluster2 were closely related to various immune responses. The Random forest machine model presented the best discriminative performance with relatively lower residual and root mean square error, and a higher area under the curve (AUC = 0.9829). A final 5-gene-based random forest model was constructed, exhibiting satisfactory performance in two external validation datasets (AUC = 0.8529 and 0.8333). The nomogram, calibration curve, and decision curve analysis also demonstrated the accuracy to predict Alzheimer's disease subtypes. Further analysis revealed that these five model-related genes were significantly associated with the Aβ-42 levels and β-secretase activity. Conclusion:Our study systematically illustrated the complicated relationship between cuproptosis and Alzheimer's disease, and developed a promising prediction model to evaluate the risk of cuproptosis subtypes and the pathological outcome of Alzheimer's disease patients.
10.3389/fnagi.2022.932676
Construction and validation of a cuproptosis-related prognostic model for glioblastoma.
Frontiers in immunology
Background:Cuproptosis, a newly reported type of programmed cell death, takes part in the regulation of tumor progression, treatment response, and prognosis. But the specific effect of cuproptosis-related genes (CRGs) on glioblastoma (GBM) is still unclear. Methods:The transcriptome data and corresponding clinical data of GBM samples were downloaded from the TCGA and GEO databases. R software and R packages were used to perform statistical analysis, consensus cluster analysis, survival analysis, Cox regression analysis, Lasso regression analysis, and tumor microenvironment analysis. The mRNA and protein expression levels of model-related genes were detected by RT-qPCR and Western blot assays, respectively. Results:The expression profile of CRGs in 209 GBM samples from two separate datasets was obtained. Two cuproptosis subtypes, CRGcluster A and CRGcluster B, were identified by consensus cluster analysis. There were apparent differences in prognosis, tumor microenvironment, and immune checkpoint expression levels between the two subtypes, and there were 79 prognostic differentially expressed genes (DEGs). According to the prognostic DEGs, two gene subtypes, geneCluster A and geneCluster B, were identified, and a prognostic risk score model was constructed and validated. This model consists of five prognostic DEGs, including PDIA4, DUSP6, PTPRN, PILRB, and CBLN1. Ultimately, to improve the applicability of the model, a nomogram was established. Patients with GBM in the low-risk cluster have a higher mutation burden and predict a longer OS than in the high-risk group. Moreover, the risk score was related to drug sensitivity and negatively correlated with the CSC index. Conclusion:We successfully constructed a cuproptosis-related prognostic model, which can independently predict the prognosis of GBM patients. These results further complement the understanding of cuproptosis and provide new theoretical support for developing a more effective treatment strategy.
10.3389/fimmu.2023.1082974
Appropriate level of cuproptosis may be involved in alleviating pulmonary fibrosis.
Frontiers in immunology
Objective:Cuproptosis is a newly discovered form of programmed cell death that has not been studied in pulmonary fibrosis. The purpose of the present study was to explore the relationship between cuproptosis and pulmonary fibrosis. Methods:Single-cell sequencing (scRNA-seq) data for human and mouse pulmonary fibrosis were obtained online from Gene Expression Omnibus (GEO) database. First, fibroblast lineage was identified and extracted using the Seurat toolkit. The pathway was then evaluated Gene Set Enrichment Analyses (GSEA), while transcription factor activity was analyzed using DoRothEA. Next, fibroblast differentiation trajectory was inferred Monocle software and changes in gene expression patterns during fibroblast activation were explored through gene dynamics analysis. The trajectory was then divided into three cell states in pseudotime order and the expression level of genes related to cuproptosis promotion in each cell state was evaluated, in addition to genes related to copper export and buffering and key genes in cellular metabolic pathways. Results:In the mouse model of pulmonary fibrosis induced by bleomycin, the genes related to cuproptosis promotion, such as , , , , , , and , were gradually down-regulated in the process of fibroblast differentiation from resting fibroblast to myofibroblast. Consistently, the same results were obtained analysis of scRNA-seq data for human pulmonary fibrosis. In addition, genes related to copper ion export and buffering gradually increased with the activation of fibroblasts. Metabolism reprogramming was also observed, while fibroblast activation and tricarboxylic acid(TCA) cycle and lipid metabolism were gradually down-regulated and mitochondrial metabolism was gradually up-regulated. Conclusion:The present study is the first to reveal a negative correlation between cuproptosis and fibrosis, suggesting that an appropriate cuproptosis level may be involved in inhibiting fibroblast activation. This may provide a new method for the treatment of pulmonary fibrosis.
10.3389/fimmu.2022.1039510
The expression of cuproptosis-related genes in hepatocellular carcinoma and their relationships with prognosis.
Frontiers in oncology
Background:The mechanism of cuproptosis has recently been reported in lipoylated proteins of the tricarboxylic acid (TCA) cycle. Besides, the role of copper was previously recognized in cancer progression. We evaluated the prognostic value of cuproptosis-related gene expression in hepatocellular carcinoma (HCC). Methods:Remarkable genes were selected both in differential expression analysis and Kaplan-Meier survival analysis from ninety-six cuproptosis-related genes using The Cancer Genome Atlas (TCGA) database. The relationships between clinical characteristics and gene expression were performed with Wilcoxon signed-rank test, Kruskal-Wallis test, and logistic regression. Clinicopathologic factors correlated with overall survival in HCCs conducting univariate and multivariate Cox regression analysis. Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Human Protein Atlas (HPA) databases were utilized to verify the results. Furthermore, Gene Set Enrichment Analysis (GSEA) identified the potential key pathways that dominate cuproptosis in HCC. Results:Elevated , , , , , , , , , , , , , , and expression, as well as declined , , , and expression were significantly emerged in HCC tumor tissues and were significantly associated with HCCs poor survival. The expressions of screened cuproptosis-related genes were prominently related to clinical features. GSEA analysis reported many key signaling pathways (such as natural killer cell mediated cytotoxicity, TCA cycle, glutathione metabolism, ATP-binding cassette (ABC) transporters, Notch signaling pathway, ErbB signaling pathway, and metabolism of xenobiotics by cytochrome p450) were differentially enriched in HCCs with varying degrees of cuproptosis-related genes expression. Conclusions:The twenty cuproptosis-related genes might be utilized as new candidate prognostic biomarkers for HCC.
10.3389/fonc.2022.992468
Comprehensive analysis of cuproptosis-related genes in immune infiltration and diagnosis in ulcerative colitis.
Frontiers in immunology
Objectives:Cuproptosis is a recently discovered form of programmed cell death; however, its role in ulcerative colitis (UC) remains a void. Methods:Three gene expression profiles were acquired from the GEO database. Subsequently, the single sample gene set enrichment analysis (ssGSEA) was performed to identify the immune infiltration characteristics of UC. Correlation analysis between cuproptosis and immune infiltration was further conducted, and the cuproptosis-related genes were applied to construct a UC diagnostic model. Subsequently, analysis results of microarray data were experimentally validated by DSS-induced colitis in mice. Finally, therapeutic agents for the cuproptosis-related genes were screened owing to the gaping field of therapeutic agents on cuproptosis. Results:Three gene expression profiles with 343 samples (290 UC and 53 healthy samples) were included. Immune infiltration revealed that UC patients had a higher level of DCs, B cells, CD8 T cells, iDCs, Macrophages, neutrophils, pDCs, T helper cells, Tfh, Th1 cells, Th2 cells, TIL and Treg than normal subjects. Moreover, almost all cuproptosis-related genes were significantly negatively associated with immune infiltration in UC patients. The risk prediction model based on cuproptosis-related genes showed an excellent discrimination for UC. Animal experiments revealed significant alterations in genes essential for cuproptosis between DSS-induced colitis mice and healthy controls, providing experimental validation for the analysis results of microarray data. Further analysis revealed that latamoxef, vitinoin, clomipramine, chlorzoxazone, glibenclamide, pyruvic acid, clindamycin, medrysone, caspan, and flavin adenine dinucleotide might be the target agents for cuproptosis-related genes. Conclusions:In conclusion, cuproptosis was significantly associated with immune infiltration in UC, and the cuproptosis-related genes showed an excellent discrimination for UC.
10.3389/fimmu.2022.1008146
Cuproptosis-Related MiR-21-5p/FDX1 Axis in Clear Cell Renal Cell Carcinoma and Its Potential Impact on Tumor Microenvironment.
Cells
As a newly identified type of programmed cell death, cuproptosis may have an impact on cancer development, including clear cell renal cell carcinoma (ccRCC). Herein, we first noticed that the expression levels of cuproptosis regulators exhibited a tight correlation with the clinicopathological characteristics of ccRCC. The cuproptosis-sensitive sub-type (CSS), classified via consensus clustering analysis, harbored a higher overall survival rate compared to the cuproptosis-resistant sub-type (CRS), which may have resulted from the differential infiltration of immune cells. FDX1, the cuproptosis master regulator, was experimentally determined as a tumor suppressor in ccRCC cells by suppressing the cell growth and cell invasion of ACHN and OSRC-2 cells in a cuproptosis-dependent and -independent manner. The results from IHC staining also demonstrated that FDX1 expression was negatively correlated with ccRCC tumor initiation and progression. Furthermore, we identified the miR-21-5p/FDX1 axis in ccRCC and experimentally verified that miR-21-5p directly binds the 3'-UTR of FDX1 to mediate its degradation. Consequently, a miR-21-5p inhibitor suppressed the cell growth and cell invasion of ACHN and OSRC-2 cells, which could be compensated by FDX1 knockdown, reinforcing the functional linkage between miR-21-5p and FDX1 in ccRCC. Finally, we evaluated the ccRCC tumor microenvironment under the miR-21-5p/FDX1 axis and noted that this axis was strongly associated with the infiltration of immune cells such as CD4 T cells, Treg cells, and macrophages, suggesting that this signaling axis may alter microenvironmental components to drive ccRCC progression. Overall, this study constructed the miR-21-5p/FDX1 axis in ccRCC and analyzed its potential impact on the tumor microenvironment, providing valuable insights to improve current ccRCC management.
10.3390/cells12010173
Cuproptosis and cuproptosis-related genes: Emerging potential therapeutic targets in breast cancer.
Biochimica et biophysica acta. Reviews on cancer
Breast cancer is one of the most common malignant tumors in women worldwide, and thus, it is important to enhance its treatment efficacy [1]. Copper has emerged as a critical trace element that affects various intracellular signaling pathways, gene expression, and biological metabolic processes [2], thereby playing a crucial role in the pathogenesis of breast cancer. Recent studies have identified cuproptosis, a newly discovered type of cell death, as an emerging therapeutic target for breast cancer treatment, thereby offering new hope for breast cancer patients. Tsvetkov's research has elucidated the mechanism of cuproptosis and uncovered the critical genes involved in its regulation [3]. Manipulating the expression of these genes could potentially serve as a promising therapeutic strategy for breast cancer treatment. Additionally, using copper ionophores and copper complexes combined with nanomaterials to induce cuproptosis may provide a potential approach to eliminating drug-resistant breast cancer cells, thus improving the therapeutic efficacy of chemotherapy, radiotherapy, and immunotherapy and eventually eradicating breast tumors. This review aims to highlight the practical significance of cuproptosis-related genes and the induction of cuproptosis in the clinical diagnosis and treatment of breast cancer. We examine the potential of cuproptosis as a novel therapeutic target for breast cancer, and we explore the present challenges and limitations of this approach. Our objective is to provide innovative ideas and references for the development of breast cancer treatment strategies based on cuproptosis.
10.1016/j.bbcan.2023.189013
High expression of cuproptosis-related SLC31A1 gene in relation to unfavorable outcome and deregulated immune cell infiltration in breast cancer: an analysis based on public databases.
BMC bioinformatics
Cuproptosis induction represents a promising alternative for immunotherapies and targeted therapies in breast cancer. This study aimed to investigate the prognostic and biological significance of cuproptosis-related genes in breast cancer. In the current study, we examined the transcriptional and clinical data of 13 cuproptosis-related genes in patients with breast cancer from TCGA database. We found that genes DLAT, SLC31A1, ATP7A and ATP7B were significantly related to the overall survival (OS) of breast cancer patients in univariate Cox regression analysis. Unlike lung or kidney cancers, SLC31A1 expression was upregulated in breast cancer samples compared with normal tissues, and predicted poor prognosis. Univariate and multivariate Cox regression analyses indicated that high SLC31A1 level was an independent prognostic factor for shorter OS. A nomogram integrating SLC31A1, age, T-, N-stage and clinical stage was constructed, and the calibration curves of the 1-, 3-, 5-, 10-year OS fitted well with the ideal model. Furthermore, we found that high SLC31A1 expression was related to deregulated immune response and metabolic pathways. Low SLC31A1 level predicted sensitivity to CTLA4 inhibitors but poor response to paclitaxel. Our study may provide novel insights for copper homeostasis and cuproptosis in breast cancer.
10.1186/s12859-022-04894-6
The cuproptosis-related signature predicts prognosis and indicates immune microenvironment in breast cancer.
Frontiers in genetics
Breast cancer (BC) is the most diagnosed cancer in women. Cuproptosis is new regulated cell death, distinct from known death mechanisms and dependent on copper and mitochondrial respiration. However, the comprehensive relationship between cuproptosis and BC is still blank until now. In the present study, we acquired 13 cuproptosis-related regulators (CRRs) from the previous research and downloaded the RNA sequencing data of TCGA-BRCA from the UCSC XENA database. The 13 CRRs were all differently expressed between BC and normal samples. Using consensus clustering based on the five prognostic CRRs, BC patients were classified into two cuproptosis-clusters (C1 and C2). C2 had a significant survival advantage and higher immune infiltration levels than C1. According to the Cox and LASSO regression analyses, a novel cuproptosis-related prognostic signature was developed to predict the prognosis of BC effectively. The high- and low-risk groups were divided based on the risk scores. Kaplan-Meier survival analysis indicated that the high-risk group had shorter overall survival (OS) than the low-risk group in the training, test and entire cohorts. GSEA indicated that the immune-related pathways were significantly enriched in the low-risk group. According to the CIBERSORT and ESTIMATE analyses, patients in the high-risk group had higher infiltrating levels of antitumor lymphocyte cell subpopulations and higher immune score than the low-risk group. The typical immune checkpoints were all elevated in the high-risk group. Furthermore, the high-risk group showed a better immunotherapy response than the low-risk group based on the Tumor Immune Dysfunction and Exclusion (TIDE) and Immunophenoscore (IPS). In conclusion, we identified two cuproptosis-clusters with different prognoses using consensus clustering in BC. We also developed a cuproptosis-related prognostic signature and nomogram, which could indicate the outcome, the tumor immune microenvironment, as well as the response to immunotherapy.
10.3389/fgene.2022.977322
A Cuproptosis Activation Scoring model predicts neoplasm-immunity interactions and personalized treatments in glioma.
Computers in biology and medicine
Gliomas are malignant tumors in the central nervous system. Cuproptosis is a newly discovered cell death mechanism targeting lipoylated tricarboxylic acid cycle proteins. Previous studies have found that cuproptosis participates in tumor progression, but its role in gliomas is still elusive. Here, we systematically explored the bulk-tumor and single-cell transcriptome data to reveal its role in gliomas. The cuproptosis activity score (CuAS) was constructed based on cuproptosis-related genes, and machine learning techniques validated the score stability. High CuAS gliomas were more likely to have a poor prognosis and an aggressive mesenchymal (MES) subtype. Subsequently, the SCENIC algorithm predicted 20 CuAS-related transcription factors (TFs) in gliomas. Function enrichment and microenvironment analyses found that CuAS was associated with tumor immune infiltration. Accordingly, intercellular communications between neoplasm and immunity were explored by the R package "Cellchat". Five signaling pathways and 8 ligand-receptor pairs including ICAM1, ITGAX, ITGB2, ANXA1-FRR1, and the like, were identified to suggest how cuproptosis activity connected neoplastic and immune cells. Critically, 13 potential drugs targeting high CuAs gliomas were predicted according to the CTRP and PRISM databases, including oligomycin A, dihydroartemisinin, and others. Taken together, cuproptosis is involved in glioma aggressiveness, neoplasm-immune interactions, and may be used to assist in drug selection.
10.1016/j.compbiomed.2022.105924
4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
Cuproptosis, a novel copper-induced cell death pathway, is linked to mitochondrial respiration and mediated by protein lipoylation. The discovery of cuproptosis unfolds new areas of investigation, particularly in cancers. The present study aimed to explore the role of cuproptosis in colorectal cancer progression. The genetic alterations of cuproptosis in colon cancer were evaluated using a database. MTT assays, colony formation, and flow cytometry were used to examine the effect of elesclomol-Cu and 4-Octyl itaconate (4-OI) on colorectal cancer cell and oxaliplatin-resistant cell viability. The anti-tumor effect of elesclomol with 4-OI was verified in vivo assay. The results showed that FDX1, SDHB, DLAT, and DLST genes were more highly expressed in normal tissues than those in primary tumor tissues. Patients with high expressions of these genes in tumor tissues had a better prognosis. Using MTT assay and colony formation analysis, elesclomol-Cu pulse treatment showed significant inhibition of cell viability in HCT116, LoVo, and HCT116-R cells. In addition, flow cytometry revealed elesclomol-Cu significantly promoted apoptosis. Tetrathiomolybdate, a copper chelator, markedly inhibited cuproptosis. Subsequently, we found 2-deoxy-D-glucose, a glucose metabolism inhibitor, sensitized cuproptosis. Furthermore, galactose further promoted cuproptosis. Interestingly, 4-OI significantly enhanced cuproptosis which was irrelevant to ROS production, apoptosis, necroptosis, or pyroptosis pathways. Aerobic glycolysis was inhibited by 4-OI through GAPDH, one of the key enzymes of glycolysis, sensitizing cuproptosis. Meanwhile, FDX1 knockdown weakened the ability of 4-OI to promote cuproptosis. In vivo experiments, 4-OI with elesclomol-Cu showed better anti-tumor effects. These results indicated that elesclomol-Cu rapidly halted cell growth in colorectal cancer cells and oxaliplatin-resistant cell line. Importantly, we revealed that 4-OI inhibited aerobic glycolysis by targeting GAPDH to promote cuproptosis.
10.1016/j.biopha.2023.114301
FDX1 enhances endometriosis cell cuproptosis via G6PD-mediated redox homeostasis.
Apoptosis : an international journal on programmed cell death
Cuproptosis is a new form of programmed cell death, which is associated with the mitochondrial TCA (tricarboxylic acid) cycle. But the functions of cuproptosis in endometriosis progression are still unknown. Here, we find that cuproptosis suppresses the growth of endometriosis cells and the growth of ectopic endometrial tissues in a mouse model. FDX1 as a key regulator in cuproptosis pathway could promote cuproptosis in endometriosis cells. Interestingly, FDX1 interacts with G6PD, and reduces its protein stability, which predominantly affects the cellular redox-regulating systems. Then, the reduced G6PD activity enhances cuproptosis via down-regulating NADPH and GSH levels. Collectively, our study demonstrates that FDX1 mediates cuproptosis in endometriosis via G6PD pathway, resulting in repression of endometriosis cell proliferation and metastasis.
10.1007/s10495-023-01845-1
System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma.
Journal of translational medicine
BACKGROUND:Liver hepatocellular carcinoma (LIHC) ranks sixth among the most common types of cancer with a high mortality rate. Cuproptosis is a newly discovered type of cell death in tumor, which is characterized by accumulation of intracellular copper leading to the aggregation of mitochondrial lipoproteins and destabilization of proteins. Thus, understanding the exact effects of cuproptosis-related genes in LIHC and determining their prognosticvalue is critical. However, the prognostic model of LIHC based on cuproptosis-related genes has not been reported. METHODS:Firstly, we downloaded transcriptome data and clinical information of LIHC patients from TCGA and GEO (GSE76427), respectively. We then extracted the expression of cuproptosis-related genes and established a prognostic model by lasso cox regression analysis. Afterwards, the prediction performance of the model was evaluated by Kaplan-Meier survival analysis and receiver operating characteristic curve (ROC). Then, the prognostic model and the expression levels of the three genes were validated using the dataset from GEO. Subsequently, we divided LIHC patients into two subtypes by non-negative matrix factorization (NMF) classification and performed survival analysis. We constructed a Sankey plot linking different subtypes and prognostic models. Next, we calculate the drug sensitivity of each sample from patients in the high-risk group and low-risk group by the R package pRRophetic. Finally, we verified the function of LIPT1 in LIHC. RESULTS:Using lasso cox regression analysis, we developed a prognostic risk model based on three cuproptosis-related genes (GCSH, LIPT1 and CDKN2A). Both in the training and in the test sets, the overall survival (OS) of LIHC patients in the low-risk group was significantly longer than that in the high-risk group. By performing NMF cluster, we identified two molecular subtypes of LIHC (C1 and C2), with C1 subtype having significantly longer OS and PFS than C2 subtype. The ROC analysis indicated that our model had a precisely predictive capacity for patients with LIHC. The multivariate Cox regression analysis indicated that the risk score is an independent predictor. Subsequently, we identified 71 compounds with IC50 values that differed between the high-risk and low-risk groups. Finally, we determined that knockdown of LIPT1 gene expression inhibited proliferation and invasion of hepatoma cells. CONCLUSION:In this study, we developed a novel prognostic model for hepatocellular carcinoma based on cuproptosis-related genes that can effectively predict the prognosis of LIHC patients. The model may be helpful for clinicians to make clinical decisions for patients with LIHC and provide valuable insights for individualized treatment. Two distinct subtypes of LIHC were identified based on cuproptosis-related genes, with different prognosis and immune characteristics. In addition, we verified that LIPT1 may promote proliferation, invasion and migration of LIHC cells. LIPT1 might be a new potential target for therapy of LIHC.
10.1186/s12967-022-03630-1
Cuproptosis-related lncRNA predict prognosis and immune response of lung adenocarcinoma.
World journal of surgical oncology
BACKGROUND:Lung adenocarcinoma (LUAD) accounts for 50% of lung cancers, with high mortality and poor prognosis. Long non-coding RNA (lncRNA) plays a vital role in the progression of tumors. Cuproptosis is a newly discovered form of cell death that is highly investigated. Therefore, in the present study, we aimed to investigate the role of cuproptosis-related lncRNA signature in clinical prognosis prediction and immunotherapy and the relationship with drug sensitivity. MATERIAL AND METHODS:Genomic and clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and cuproptosis-related genes were obtained from cuproptosis-related studies. The prognostic signature was constructed by co-expression analysis and Cox regression analysis. Patients were divided into high and low risk groups, and then, a further series of model validations were carried out to assess the prognostic value of the signature. Subsequently, lncRNAs were analyzed for gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes Enrichment (KEGG), immune-related functions, and tumor mutation burden (TMB). Finally, we used tumor immune dysfunction and exclusion (TIDE) algorithms on immune escape and immunotherapy of cuproptosis-related lncRNAs, thereby identifying its sensitivity toward potential drugs for LUAD. RESULTS:A total of 16 cuproptosis-related lncRNAs were obtained, and a prognostic signature was developed. We found that high-risk patients had worse overall survival (OS) and progression-free survival (PFS) and higher mortality. Independent prognostic analyses, ROC, C-index, and nomogram showed that the cuproptosis-related lncRNAs can accurately predict the prognosis of patients. The nomogram and heatmap showed a distinct distribution of the high- and low-risk cuproptosis-related lncRNAs. Enrichment analysis showed that the biological functions of lncRNAs are associated with tumor development. We also found that immune-related functions, such as antiviral activity, were suppressed in high-risk patients who had mutations in oncogenes. OS was poorer in patients with high TMB. TIDE algorithms showed that high-risk patients have a greater potential for immune escape and less effective immunotherapy. CONCLUSION:To conclude, the 16 cuproptosis-related lncRNAs can accurately predict the prognosis of patients with LUAD and may provide new insights into clinical applications and immunotherapy.
10.1186/s12957-022-02727-7
Identification of immune infiltration and cuproptosis-related subgroups in Crohn's disease.
Frontiers in immunology
Background:Crohn's disease (CD) is a type of heterogeneous, dysfunctional immune-mediated intestinal chronic and recurrent inflammation caused by a variety of etiologies. Cuproptosis is a newly discovered form of programmed cell death that seems to contribute to the advancement of a variety of illnesses. Consequently, the major purpose of our research was to examine the role of cuproptosis-related genes in CD. Methods:We obtained two CD datasets from the gene expression omnibus (GEO) database, and immune cell infiltration was created to investigate immune cell dysregulation in CD. Based on differentially expressed genes (DEGs) and the cuproptosis gene set, differentially expressed genes of cuproptosis (CuDEGs) were found. Then, candidate hub cuproptosis-associated genes were found using machine learning methods. Subsequently, using 437 CD samples, we explored two distinct subclusters based on hub cuproptosis-related genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, Gene set variation analysis (GSVA) and immune infiltration analysis studies were also used to assess the distinct roles of the subclusters. Results:Overall, 25 CuDEGs were identified, including ABCB6, BACE1, FDX1, GLS, LIAS, MT1M, PDHA1, etc. And most CuDEGs were expressed at lower levels in CD samples and were negatively related to immune cell infiltration. Through the machine learning algorithms, a seven gene cuproptosis-signature was identified and two cuproptosis-related subclusters were defined. Cluster-specific differentially expressed genes were found only in one cluster, and functional analysis revealed that they were involved in several immune response processes. And the results of GSVA showed positive significant enrichment in immune-related pathways in cluster A, while positive significant enrichment in metabolic pathways in cluster B. In addition, an immune infiltration study indicated substantial variation in immunity across different groups. Immunological scores were higher and immune infiltration was more prevalent in Cluster A. Conclusion:According to the current research, the cuproptosis phenomenon occurs in CD and is correlated with immune cell infiltration and metabolic activity. This information indicates that cuproptosis may promote CD progression by inducing immunological response and metabolic dysfunction. This research has opened new avenues for investigating the causes of CD and developing potential therapeutic targets for the disease.
10.3389/fimmu.2022.1074271
Cuproptosis-Related Risk Score Predicts Prognosis and Characterizes the Tumor Microenvironment in Hepatocellular Carcinoma.
Frontiers in immunology
Aims:Cuproptosis is a recently identified form of programmed cell death; however, its role in hepatocellular carcinoma (HCC) remains unclear. Methods:A set of bioinformatic tools was integrated to analyze the expression and prognostic significance of ferredoxin 1 (), the key regulator of cuproptosis. A cuproptosis-related risk score (CRRS) was developed correlation analyses, least absolute shrinkage and selection operator (LASSO) Cox regression, and multivariate Cox regression. The metabolic features, mutation signatures, and immune profile of CRRS-classified HCC patients were investigated, and the role of CRRS in therapy guidance was analyzed. Results: was significantly downregulated in HCC, and its high expression was associated with longer survival time. HCC patients in the high-CRRS group showed a significantly lower overall survival (OS) and enriched in cancer-related pathways. Mutation analyses revealed that the high-CRRS HCC patients had a high mutational frequency of some tumor suppressors such as tumor protein P53 () and Breast-cancer susceptibility gene 1 (BRCA1)-associated protein 1 () and a low frequency of catenin beta 1 (). Besides, HCC patients with high CRRS showed an increase of protumor immune infiltrates and a high expression of immune checkpoints. Moreover, the area under the curve (AUC) values of CRRS in predicting the efficiency of sorafenib and the non-responsiveness to transcatheter arterial chemoembolization (TACE) in HCC patients reached 0.877 and 0.764, respectively. Significance:The cuproptosis-related signature is helpful in prognostic prediction and in guiding treatment for HCC patients.
10.3389/fimmu.2022.925618
A novel Cuproptosis-related LncRNA signature to predict prognosis in hepatocellular carcinoma.
Scientific reports
Increased intracellular toxicity due to an imbalance in copper homeostasis caused by copper ion accumulation could regulate the rate of cancer cell growth and proliferation. The goal of this study was to create a novel Cuproptosis-related lncRNA signature that may be utilized to predict survival and immunotherapy in HCC patients. Cuproptosis-associated lncRNAs and differentially expressed lncRNAs between HCC tumor tissue and normal tissue were discovered first. By LASSO-Cox analysis, the overlapping lncRNAs were then utilized to build a Cuproptosis-associated lncRNA signature, which might be used to predict patient prognosis and responsiveness to immune checkpoint blockade (ICB) therapy. Differences in the infiltration of immune cell subpopulations between high and low-risk score subgroups were also analyzed. Moreover, a nomogram based on the Cuproptosis-associated lncRNA signature and clinical features was developed and demonstrated to have good predictive potential. Finally, qRT-PCR was performed in HerpG2 and MHCC-97H cell lines to explore whether these lncRNAs were indeed involved in the process of Cuproptosis. In summary, we created a prognostic lncRNA profile linked to Cuproptosis to forecast response to immunotherapy, which may provide a new potential non-apoptotic therapeutic perspective for HCC patients.
10.1038/s41598-022-15251-1
Cuproptosis-a potential target for the treatment of osteoporosis.
Frontiers in endocrinology
Osteoporosis is an age-related disease of bone metabolism marked by reduced bone mineral density and impaired bone strength. The disease causes the bones to weaken and break more easily. Osteoclasts participate in bone resorption more than osteoblasts participate in bone formation, disrupting bone homeostasis and leading to osteoporosis. Currently, drug therapy for osteoporosis includes calcium supplements, vitamin D, parathyroid hormone, estrogen, calcitonin, bisphosphates, and other medications. These medications are effective in treating osteoporosis but have side effects. Copper is a necessary trace element in the human body, and studies have shown that it links to the development of osteoporosis. Cuproptosis is a recently proposed new type of cell death. Copper-induced cell death regulates by lipoylated components mediated mitochondrial ferredoxin 1; that is, copper binds directly to the lipoylated components of the tricarboxylic acid cycle, resulting in lipoylated protein accumulation and subsequent loss of iron-sulfur cluster proteins, leading to proteotoxic stress and eventually cell death. Therapeutic options for tumor disorders include targeting the intracellular toxicity of copper and cuproptosis. The hypoxic environment in bone and the metabolic pathway of glycolysis to provide energy in cells can inhibit cuproptosis, which may promote the survival and proliferation of various cells, including osteoblasts, osteoclasts, effector T cells, and macrophages, thereby mediating the osteoporosis process. As a result, our group tried to explain the relationship between the role of cuproptosis and its essential regulatory genes, as well as the pathological mechanism of osteoporosis and its effects on various cells. This study intends to investigate a new treatment approach for the clinical treatment of osteoporosis that is beneficial to the treatment of osteoporosis.
10.3389/fendo.2023.1135181
Cuproptosis, the novel therapeutic mechanism for heart failure: a narrative review.
Cardiovascular diagnosis and therapy
Background and Objective:Heart failure (HF) is a global public health problem with high morbidity, readmission, and mortality rates. The central mediators of cardiomyocyte survival and death are mitochondria. Mitochondria are a key therapeutic target for HF and are closely involved in the pathophysiological process of HF. A recent study proposes that cuproptosis, a novel cell death mechanism, is closely related to mitochondrial respiration. Therefore, this study aims to explore the link between cuproptosis and HF, and to find novel therapeutic targets and treatments for HF. Methods:A literature search (up to April 2022) was conducted through PubMed database, and the search range was limited to publications in English. After further literature search and screening, we found that we are currently the first study to explore the association between HF and cuproptosis. Key Content and Findings:Research has found that mitochondria are a key therapeutic target in HF and are involved in the pathophysiological processes of energy metabolism, oxidative stress, calcium regulation, and cell death in HF. The micronutrient copper is involved in regulating mitochondrial biological processes, and high serum copper levels are significantly associated with HF. Copper overload affects mitochondrial function and exacerbates the development of HF. And cuproptosis induced by copper overload targeting lipoylated tricarboxylic acid cycle proteins, is closely related to mitochondrial respiration. Copper chelators not only treat HF but also partially rescue copper-mediated cell death. Copper binding to lipoylated components may be the reason for the hyperacetylation of mitochondrial proteins in HF. Ferredoxin 1 () may be an upstream regulator of protein lipoylation and is closely related to cuproptosis. Conclusions:This study demonstrates the important roles of mitochondria and micronutrient copper in HF. Cuproptosis may be involved in the pathophysiological process of HF and is responsible for the hyperacetylation of mitochondrial proteins in HF. Cuproptosis has the potential to be a novel therapeutic mechanism for HF, and may be a key target for cuproptosis-based treatment of HF. This study provides a new research direction for the treatment of HF and new ideas for the development of new drugs.
10.21037/cdt-22-214
Cuproptosis scoring system to predict the clinical outcome and immune response in bladder cancer.
Frontiers in immunology
Cuproptosis is a novel copper ion-dependent cell death type being regulated in cells, and this is quite different from the common cell death patterns such as apoptosis, pyroptosis, necroptosis, and ferroptosis. Interestingly, like with death patterns, cuproptosis-related genes have recently been reported to regulate the occurrence and progression of various tumors. However, in bladder cancer, the link between cuproptosis and clinical outcome, tumor microenvironment (TME) modification, and immunotherapy is unknown. To determine the role of cuprotosis in the tumor microenvironment, we systematically examined the characteristic patterns of 10 cuproptosis-related genes in bladder cancer (BLCA). By analyzing principal component data, we established a cuproptosis score to determine the degree of cuproptosis among patients. Finally, we evaluated the potential of these values in predicting BLCA prognosis and treatment responses. A comprehensive study of the mutations of cuproptosis-related genes in BLCA specimens was conducted at the genetic level, and their expression and survival patterns were evaluated using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Two cuproptosis patterns were constructed based on the transcription level of 10 cuproptosis-related genes, featuring differences in the prognosis and the infiltrating landscape of immune cells (especially T and dendritic cells) with interactions between cuproptosis and the TME. Our study further demonstrated that cuproptosis score may predict prognosis, immunophenotype sensitivity to chemotherapy, and immunotherapy response among bladder cancer patients. The development and progression of bladder cancer are likely to be influenced by cuproptosis, which may involve a diverse and complex TME. The cuproptosis pattern evaluated in our study may enhance understanding of immune infiltrations and guide more potent immunotherapy interventions.
10.3389/fimmu.2022.958368
A broad cuproptosis landscape in inflammatory bowel disease.
Frontiers in immunology
Background:Cuproptosis, a genetic process of copper-dependent cell death linked to mitochondria respiration, demonstrates its correlation with inhibiting tumoral angiogenesis and motility. Recent studies have developed systematic bioinformatics frameworks to identify the association of cuproptosis with tumors but any non-neoplastic diseases. Therefore, against the background of an increased incidence of inflammatory bowel disease (IBD), the landscape of cuproptosis regulation in IBD is a critical need to be investigated. Methods:The differentially expressed cuproptosis-related genes (DECRGs) were identified with human sequencing profiles for four inflammatory digestive disorders. Another four independent IBD datasets from GEO were used as a validation cohort. And experimental mice model provides another validation method. Using single sample gene set enrichment analysis (ssGSEA), receiver operating characteristic (ROC) curve, CIBERSORT, and consensus clustering algorithms, we explored the association between immune score and cuproptosis-related genes, as well as the diagnostic value of these genes. Molecular docking screened potential interaction of IBD drugs with the structural regulator by Autodock Vina. Results:Cuproptosis-related regulators exhibited extensive differential expression in Crohn's Disease (CD), Ulcerative Colitis (UC), Celiac Disease (CEL), and IBD-induced cancer (IBD-CA) that share common differential genes (PDHA1, DBT, DLAT, LIAS). The differential expression of DECRGs was reverified in the validated cohort and immunohistochemistry assay. Moreover, the cell signaling pathways and ontology mainly focused on the mitochondrial respiratory function, which was highly enriched in Gene set enrichment analysis (GSEA). According to ssGSEA and ROC, when considering the four regulators, which showed robust association with immune infiltration in IBD, the area under the ROC (AUC) was 0.743. In addition, two clusters of consensus clustering based on the four regulators exhibit different immune phenotypes. According to molecular docking results, methotrexate gained the highest binding affinity to the main chain of key cuproptosis-related regulators compared with the remaining ten drugs. Conclusion:Cuproptosis-related regulators were widely linked to risk variants, immune cells, immune function, and drug efficacy in IBD. Regulation of cuproptosis may deeply influence the occurrence and development of patients with IBD.
10.3389/fimmu.2022.1031539
The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
Recently, cuproptosis has been demonstrated to be a new non-apototic cell death mode that is characterized by copper dependence and the regulation of mitochondrial respiration. Cuproptosis is distinct from known cell death modes such as apoptosis, necrosis, pyroptosis, or ferroptosis. Excessive copper induces cuproptosis by promoting protein toxic stress reactions via copper-dependent anomalous oligomerization of lipoylation proteins in the tricarboxylic acid (TCA) cycle and reducing iron-sulfur cluster protein levels. Ferredoxin1 (FDX1) promotes dihydrolipoyl transacetylase (DLAT) lipoacylation and abates iron-sulfur cluster proteins by reducing Cu to Cu, inducing cell death. Copper homeostasis depends on the copper transporter, and disturbances to this homeostasis cause cuproptosis. Recent evidence has shown that cuproptosis plays a significant role in the occurrence and development of many cardiovascular diseases, such as myocardial ischemia/reperfusion (I/R) injury, heart failure, atherosclerosis, and arrhythmias. Copper chelators, such as ammonium tetrathiomolybdate(VI) and DL-Penicillamine, may ease the above cardiovascular diseases by inhibiting the cuproptosis pathway. Oxidative phosphorylation inhibitors may inhibit cuproptosis by inhibiting protein stress response. In conclusion, cuproptosis plays an essential role in cardiovascular disease pathogenesis. Inhibition of cardiovascular cuproptosis is expected to become a potential treatment. Here, we will thoroughly review the molecular mechanisms involved in cuproptosis and its significance in cardiovascular disease.
10.1016/j.biopha.2023.114830
Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas.
Frontiers in immunology
Background:Cuproptosis is a newly discovered unique non-apoptotic programmed cell death distinguished from known death mechanisms like ferroptosis, pyroptosis, and necroptosis. However, the prognostic value of cuproptosis and the correlation between cuproptosis and the tumor microenvironment (TME) in lower-grade gliomas (LGGs) remain unknown. Methods:In this study, we systematically investigated the genetic and transcriptional variation, prognostic value, and expression patterns of cuproptosis-related genes (CRGs). The CRG score was applied to quantify the cuproptosis subtypes. We then evaluated their values in the TME, prognostic prediction, and therapeutic responses in LGG. Lastly, we collected five paired LGG and matched normal adjacent tissue samples from Sun Yat-sen University Cancer Center (SYSUCC) to verify the expression of signature genes by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). Results:Two distinct cuproptosis-related clusters were identified using consensus unsupervised clustering analysis. The correlation between multilayer CRG alterations with clinical characteristics, prognosis, and TME cell infiltration were observed. Then, a well-performed cuproptosis-related risk model (CRG score) was developed to predict LGG patients' prognosis, which was evaluated and validated in two external cohorts. We classified patients into high- and low-risk groups according to the CRG score and found that patients in the low-risk group showed significantly higher survival possibilities than those in the high-risk group (<0.001). A high CRG score implies higher TME scores, more significant TME cell infiltration, and increased mutation burden. Meanwhile, the CRG score was significantly correlated with the cancer stem cell index, chemoradiotherapy sensitivity-related genes and immune checkpoint genes, and chemotherapeutic sensitivity, indicating the association with CRGs and treatment responses. Univariate and multivariate Cox regression analyses revealed that the CRG score was an independent prognostic predictor for LGG patients. Subsequently, a highly accurate predictive model was established for facilitating the clinical application of the CRG score, showing good predictive ability and calibration. Additionally, crucial CRGs were further validated by qRT-PCR and WB. Conclusion:Collectively, we demonstrated a comprehensive overview of CRG profiles in LGG and established a novel risk model for LGG patients' therapy status and prognosis. Our findings highlight the potential clinical implications of CRGs, suggesting that cuproptosis may be the potential therapeutic target for patients with LGG.
10.3389/fimmu.2022.933973
Cuproptosis Induced by ROS Responsive Nanoparticles with Elesclomol and Copper Combined with αPD-L1 for Enhanced Cancer Immunotherapy.
Advanced materials (Deerfield Beach, Fla.)
Cuproptosis is a new cell death that depends on copper (Cu) ionophores to transport Cu into cancer cells, which induces cell death. However, existing Cu ionophores are small molecules with a short blood half-life making it hard to transport enough Cu into cancer cells. Herein, a reactive oxygen species (ROS)-sensitive polymer (PHPM) is designed, which is used to co-encapsulate elesclomol (ES) and Cu to form nanoparticles (NP@ESCu). After entering cancer cells, ES and Cu, triggered by excessive intracellular ROS, are readily released. ES and Cu work in a concerted way to not only kill cancer cells by cuproptosis, but also induce immune responses. In vitro, the ability of NP@ESCu to efficiently transport Cu and induce cuproptosis is investigated. In addition, the change in the transcriptomes of cancer cells treated with NP@ESCu is explored by RNA-Seq. In vivo, NP@ESCu is found to induce cuproptosis in the mice model with subcutaneous bladder cancer, reprograming the tumor microenvironment. Additionally, NP@ESCu is further combined with anti-programmed cell death protein ligand-1 antibody (αPD-L1). This study provides the first report of combining nanomedicine that can induce cuproptosis with αPD-L1 for enhanced cancer therapy, thereby providing a novel strategy for future cancer therapy.
10.1002/adma.202212267
Lactylation of METTL16 promotes cuproptosis via mA-modification on FDX1 mRNA in gastric cancer.
Nature communications
Cuproptosis, caused by excessively high copper concentrations, is urgently exploited as a potential cancer therapeutic. However, the mechanisms underlying the initiation, propagation, and ultimate execution of cuproptosis in tumors remain unknown. Here, we show that copper content is significantly elevated in gastric cancer (GC), especially in malignant tumors. Screening reveals that METTL16, an atypical methyltransferase, is a critical mediator of cuproptosis through the mA modification on FDX1 mRNA. Furthermore, copper stress promotes METTL16 lactylation at site K229 followed by cuproptosis. The process of METTL16 lactylation is inhibited by SIRT2. Elevated METTL16 lactylation significantly improves the therapeutic efficacy of the copper ionophore- elesclomol. Combining elesclomol with AGK2, a SIRT2-specific inhibitor, induce cuproptosis in gastric tumors in vitro and in vivo. These results reveal the significance of non-histone protein METTL16 lactylation on cuproptosis in tumors. Given the high copper and lactate concentrations in GC, cuproptosis induction becomes a promising therapeutic strategy for GC.
10.1038/s41467-023-42025-8
ATF3/SPI1/SLC31A1 Signaling Promotes Cuproptosis Induced by Advanced Glycosylation End Products in Diabetic Myocardial Injury.
International journal of molecular sciences
Cuproptosis resulting from copper (Cu) overload has not yet been investigated in diabetic cardiomyopathy (DCM). Advanced glycosylation end products (AGEs) induced by persistent hyperglycemia play an essential role in cardiotoxicity. To clarify whether cuproptosis was involved in AGEs-induced cardiotoxicity, we analyzed the toxicity of AGEs and copper in AC16 cardiomyocytes and in STZ-induced or db/db-diabetic mouse models. The results showed that copper ionophore elesclomol induced cuproptosis in cardiomyocytes. It was only rescued by copper chelator tetrathiomolybdate rather than by other cell death inhibitors. Intriguingly, AGEs triggered cardiomyocyte death and aggravated it when incubated with CuCl or elesclomol-CuCl2. Moreover, AGEs increased intracellular copper accumulation and exhibited features of cuproptosis, including loss of Fe-S cluster proteins (FDX1, LIAS, NDUFS8 and ACO2) and decreased lipoylation of DLAT and DLST. These effects were accompanied by decreased mitochondrial oxidative respiration, including downregulated mitochondrial respiratory chain complex, decreased ATP production and suppressed mitochondrial complex I and III activity. Additionally, AGEs promoted the upregulation of copper importer SLC31A1. We predicted that ATF3 and/or SPI1 might be transcriptional factors of SLC31A1 by online databases and validated that by ATF3/SPI1 overexpression. In diabetic mice, copper and AGEs increases in the blood and heart were observed and accompanied by cardiac dysfunction. The protein and mRNA profile changes in diabetic hearts were consistent with cuproptosis. Our findings showed, for the first time, that excessive AGEs and copper in diabetes upregulated ATF3/SPI1/SLC31A1 signaling, thereby disturbing copper homeostasis and promoting cuproptosis. Collectively, the novel mechanism might be an alternative potential therapeutic target for DCM.
10.3390/ijms24021667
Serum copper and zinc and the risk of death from cancer and cardiovascular disease.
Kok F J,Van Duijn C M,Hofman A,Van der Voet G B,De Wolff F A,Paays C H,Valkenburg H A
American journal of epidemiology
To investigate the association of serum copper and zinc with mortality from cancer and cardiovascular disease, the authors performed a case-control analysis of data obtained in a Dutch prospective follow-up study. Cancer (n = 64) and cardiovascular disease (n = 62) deaths and their matched controls were taken from a cohort of 10,532 persons examined in 1975-1978. Trace elements were measured in baseline serum samples, which had been stored during the six to nine years of follow-up. The adjusted risk of death from cancer and cardiovascular disease was about four times higher for subjects in the highest serum copper quintile (greater than 1.43 mg/liter) compared with those with normal levels. The excess mortality observed in subjects with low copper status suggests a U-shaped relation. No significant change in the risk of death from cancer and cardiovascular disease was found for subjects with low or high baseline levels of serum zinc. However, a protective effect of a high zinc status on the risk of cancer and cardiovascular disease is compatible with the data. For definitive conclusions, analysis of larger prospective data sets is recommended.
10.1093/oxfordjournals.aje.a114975
Research progress in cuproptosis in liver cancer.
Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences
Copper, like iron, is an essential trace metal element for human cells. The role of iron overload and ferroptosis has been gradually clarified in tumors, but the role of copper overload and cuproptosis is still being explored. Cuproptosis is a novel mode of cell death, secondary to impaired mitochondrial function induced by copper overload, and characterized by copper-dependent and programmed. The excessive copper leads to protein toxicity stress by binding to sulfhydryl proteins in the tricarboxylic acid (TCA) cycle of mitochondria, disrupting cellular homeostasis and triggering cuproptosis. Copper accumulation has carcinogenic effects on normal cells, dual effects on tumor cells. Liver cancer is one of the most common malignant tumors in China and even globally, with hepatocellular carcinoma (HCC) being the most common histological subtype. Copper exhibits dualism in HCC, as it both contributes to the growth and invasion of HCC cells, and exerts anticancer effects by inducing cuproptosis. Also, cuproptosis-related genes can be the evaluation of immunotherapy effect and the construction of prognostic models. Clarifying the role of copper death in liver cancer can help explore new methods for liver cancer screening, treatment, and prognosis evaluation.
10.11817/j.issn.1672-7347.2023.230083
Memo1 reduces copper-mediated reactive oxygen species in breast cancer cells.
Journal of inorganic biochemistry
The mediator of ERBB2-driven cell motility protein 1, Memo1, plays important roles in cancer signaling pathways. We recently reported Memo1 to coordinate reduced copper ions and protect them from reactive oxygen species (ROS) generation in vitro. We here assess if this Memo1 activity is at play in breast cancer cells. Copper additions to MDA-MB-231 cells promoted cell death, and this toxicity was exaggerated when Memo1 expression was reduced by silencing RNA. Using three different commercial ROS probes, we revealed that copper additions increased intracellular ROS levels, and these were further elevated when Memo1 expression was silenced. We propose that, in addition to other functions, Memo1 protects cancer cells from unwanted copper-mediated redox reactions. This may be a required safety mechanism in cancer cells as they have a high demand for copper.
10.1016/j.jinorgbio.2023.112335
Quercetin Attenuates Copper-Induced Apoptotic Cell Death and Endoplasmic Reticulum Stress in SH-SY5Y Cells by Autophagic Modulation.
Biological trace element research
An increase in anthropogenic activities results in metal contamination in the ecosystem which has proven to be a major health risk in humans, as they make entry into cellular organelles via agricultural products. Copper (Cu) is one such metal that acts as an essential cofactor for the activity of several enzymes, one being the cytochrome c oxidase. The increasing number of evidence suggests a substantial correlation of Cu overload with neurodegenerative disorders, including Parkinson's disease (PD). We aim to explore quercetin, a well-known polyphenol, as an alternative for combating Cu-induced toxicity in human neuroblastoma SH-SY5Y secondary cell lines. We observed that Cu increased intracellular reactive oxygen species (ROS) levels, triggered morphological deformities and condensation of nuclei, caused an imbalance in the mitochondrial membrane potential (MMP), and finally induced apoptotic cell deaths. We further investigated the effects of Cu in modulating the pro- and anti-apoptotic proteins, such as Bax, Bcl-2, etc. However, quercetin reversed these changes owing to its antioxidant and anti-apoptotic properties, resulting in autophagy induction as an outcome of upregulation of autophagosome-bound microtubules-associated protein light chain-3 (LC3II). Besides, we investigated the role of Cu in stimulating ER stress proteins, viz. PERK, CHOP, and the concomitant responses of quercetin in restoring the ER homeostasis in cellular organelles like mitochondria and ER, against Cu-induced toxic insults by modulating autophagic pathways. Overall, this research work proposes a remedial approach for Cu-mediated neurotoxicity through understanding the diverse molecular signaling inside a cell with an aim to develop effective therapeutics.
10.1007/s12011-022-03093-x
The huge potential of targeting copper status in the treatment of colorectal cancer.
Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
Colorectal cancer (CRC) commonly leads to cancer deaths and is often diagnosed at advanced stages. It also faces difficulties due to the poor results of conventional treatments such as surgery, chemotherapy, and radiotherapy. Copper is a mineral nutrient whose intrinsic properties have a two-way effect on the production and treatment of cancer. Copper's redox properties allow it to be used in developing anti-cancer drugs, while its potential toxicity leads to oxidative stress and even cancer. Copper status is closely related to colorectal tumors' proliferation and metastasis. The study of the mechanisms of copper homeostasis, cuproplasia, and cuproptosis due to altered copper status plays a crucial role in developing anticancer drugs. Therefore, targeting alteration of copper status becomes a potential option for treating colorectal cancer. This review summarizes the mechanisms by which altered copper status causes CRC progression and emphasizes the potential of regulating copper status in treating CRC.
10.1007/s12094-023-03107-7
Combined chronic copper exposure and aging lead to neurotoxicity in vivo.
Neurotoxicology
The environment, containing pollutants, toxins, and transition metals (copper, iron, manganese, and zinc), plays a critical role in neurodegenerative disease development. Copper occupational exposure increases Parkinson's disease (PD) risk. Previously, we determined the mechanisms by which copper induces dopaminergic cell death in vitro. The copper transporter protein 1 (Ctr1) overexpression led to intracellular glutathione depletion potentiating caspase-3 mediated cell death; oxidative stress was primarily cytosolic, and Nrf2 was upregulated mediating an antioxidant response; and protein ubiquitination, AMPK-Ulk1 signaling, p62, and Atg5-dependent autophagy were increased as a protective mechanism. However, the effect of chronic copper exposure on the neurodegenerative process has not been explored in vivo. We aimed to elucidate whether prolonged copper treatment reproduces PD features and mechanisms during aging. Throughout 40 weeks, C57BL/6J male mice were treated with copper at 0, 100, 250, and 500 ppm in the drinking water. Chronic copper exposure altered motor function and induced dopaminergic neuronal loss, astrocytosis, and microgliosis in a dose-dependent manner. α-Synuclein accumulation and aggregation were increased in response to copper, and the proteasome and autophagy alterations, previously observed in vitro, were confirmed in vivo, where protein ubiquitination, AMPK phosphorylation, and the autophagy marker LC3-II were also increased by copper exposure. Finally, nitrosative stress was induced by copper in a concentration-dependent fashion, as evidenced by increased protein nitration. To our knowledge, this is the first study combining chronic copper exposure and aging, which may represent an in vivo model of non-genetic PD and help to assess potential prophylactic and therapeutic approaches. DATA AVAILABILITY: The data underlying this article are available in the article.
10.1016/j.neuro.2023.02.002
Unveiling the Effects of Copper Ions in the Aggregation of Amyloidogenic Proteins.
Molecules (Basel, Switzerland)
Amyloid diseases have become a global concern due to their increasing prevalence. Transition metals, including copper, can affect the aggregation of the pathological proteins involved in these diseases. Copper ions play vital roles in organisms, but the disruption of their homeostasis can negatively impact neuronal function and contribute to amyloid diseases with toxic protein aggregates, oxidative stress, mitochondrial dysfunction, impaired cellular signaling, inflammation, and cell death. Gaining insight into the imbalance of copper ions and its impact on protein folding and aggregation is crucial for developing focused therapies. This review examines the influence of copper ions on significant amyloid proteins/peptides, offering a comprehensive overview of the current understanding in this field.
10.3390/molecules28186446
Copper regulation disturbance linked to oxidative stress and cell death during Zika virus infection in human astrocytes.
Journal of cellular biochemistry
The Zika virus (ZIKV) caused neurological abnormalities in more than 3500 Brazilian newborns between 2015 and 2020. Data have pointed to oxidative stress in astrocytes as well as to dysregulations in neural cell proliferation and cell cycle as important events accounting for the cell death and neurological complications observed in Congenital Zika Syndrome. Copper imbalance has been shown to induce similar alterations in other pathologies, and disturbances in copper homeostasis have already been described in viral infections. Here, we investigated copper homeostasis imbalance as a factor that could contribute to the cytotoxic effects of ZIKV infection in astrocytes. Human induced pluripotent stem cell-derived astrocytes were infected with ZIKV; changes in the gene expression of copper homeostasis proteins were analyzed. The effect of the administration of CuCl or a copper chelator on oxidative stress, cell viability and percentage of infection were also studied. ZIKV infection leads to a downregulation of one of the transporters mediating copper release, ATP7B protein. We also observed the activation of mechanisms that counteract high copper levels, including the synthesis of copper chaperones and the reduction of the copper importer protein CTR1. Finally, we show that chelator-mediated copper sequestration in ZIKV-infected astrocytes reduces the levels of reactive oxygen species and improves cell viability, but does not change the overall percentage of infected cells. In summary, our results show that copper homeostasis imbalance plays a role in the pathology of ZIKV in astrocytes, indicating that it may also be a factor accounting for the developmental abnormalities in the central nervous system following viral infection. Evaluating micronutrient levels and the use of copper chelators in pregnant women susceptible to ZIKV infection may be promising strategies to manage novel cases of congenital ZIKV syndrome.
10.1002/jcb.30323
The cuproptosis-related signature associated with the tumor environment and prognosis of patients with glioma.
Frontiers in immunology
Background:Copper ions are essential for cellular physiology. Cuproptosis is a novel method of copper-dependent cell death, and the cuproptosis-based signature for glioma remains less studied. Methods:Several glioma datasets with clinicopathological information were collected from TCGA, GEO and CGGA. Robust Multichip Average (RMA) algorithm was used for background correction and normalization, cuproptosis-related genes (CRGs) were then collected. The TCGA-glioma cohort was clustered using ConsensusClusterPlus. Univariate Cox regression analysis and the Random Survival Forest model were performed on the differentially expressed genes to identify prognostic genes. The cuproptosis-signature was constructed by calculating CuproptosisScore using Multivariate Cox regression analysis. Differences in terms of genomic mutation, tumor microenvironment, and enrichment pathways were evaluated between high- or low-CuproptosisScore. Furthermore, drug response prediction was carried out utilizing pRRophetic. Results:Two subclusters based on CRGs were identified. Patients in cluster2 had better clinical outcomes. The cuproptosis-signature was constructed based on CuproptosisScore. Patients with higher CuproptosisScore had higher WHO grades and worse prognosis, while patients with lower grades were more likely to develop IDH mutations or MGMT methylation. Univariate and Multivariate Cox regression analysis demonstrated CuproptosisScore was an independent prognostic factor. The accuracy of the signature in prognostic prediction was further confirmed in 11 external validation datasets. In groups with high-CuproptosisScore, PIK3CA, MUC16, NF1, TTN, TP53, PTEN, and EGFR showed high mutation frequency. IDH1, TP53, ATRX, CIC, and FUBP1 demonstrated high mutation frequency in low-CuproptosisScore group. The level of immune infiltration increased as CuproptosisScore increased. SubMap analysis revealed patients with high-CuproptosisScore may respond to anti-PD-1 therapy. The IC50 values of Bexarotene, Bicalutamide, Bortezomib, and Cytarabine were lower in the high-CuproptosisScore group than those in the low-CuproptosisScore group. Finally, the importance of IGFBP2 in TCGA-glioma cohort was confirmed. Conclusion:The current study revealed the novel cuproptosis-based signature might help predict the prognosis, biological features, and appropriate treatment for patients with glioma.
10.3389/fimmu.2022.998236
Cuproptosis and cuproptosis-related genes in rheumatoid arthritis: Implication, prospects, and perspectives.
Frontiers in immunology
Rheumatoid arthritis (RA) is an autoimmune disease that severely affects patients' physical and mental health, leading to chronic synovitis and destruction of bone joints. Although various available clinical treatment options exist, patients respond with varying efficacies due to multiple factors, and there is an urgent need to discover new treatment options to improve clinical outcomes. Cuproptosis is a newly characterized form of cell death. Copper causes cuproptosis by binding to lipid-acylated components of the tricarboxylic acid cycle, leading to protein aggregation, loss of iron-sulfur cluster proteins, and eventually proteotoxic stress. Targeting copper cytotoxicity and cuproptosis are considered potential options for treating oncological diseases. The synovial hypoxic environment and the presence of excessive glycolysis in multiple cells appear to act as inhibitors of cuproptosis, which can lead to excessive survival and proliferation of multiple immune cells, such as fibroblast-like synoviocytes, effector T cells, and macrophages, further mediating inflammation and bone destruction in RA. Therefore, in this study, we attempted to elaborate and summarize the linkage of cuproptosis and key genes regulating cuproptosis to the pathological mechanisms of RA and their effects on a variety of immune cells. This study aimed to provide a theoretical basis and support for translating preclinical and experimental results of RA to clinical protocols.
10.3389/fimmu.2022.930278
Cuproptosis is involved in copper-induced hepatotoxicity in chickens.
The Science of the total environment
Copper (Cu) is an essential trace element, but it is also a ubiquitous environmental pollutant that threatens public health. Cuproptosis is a recently discovered cell death mode that unlike other programmed cell death, characterized by proteotoxic stress due to lipoylated protein aggregation and iron-sulfur cluster protein loss. Chickens as a high-trophic-level non-mammalian vertebrate that easily absorb and accumulate copper from the environment and food, but it is unclear whether the underlying molecular mechanisms that cause their hepatotoxicity under natural copper stress are related to cuproptosis. Therefore, we established animal models of chickens with different concentrations of copper exposure to dissect the role and mechanism of cuproptosis in chicken hepatotoxicity under natural copper stress. Our histopathological and biochemical results demonstrated that the liver structure with copper-treated exhibited dose-dependent damage. Meanwhile, copper treatment also dramatically increased serum and liver copper content and activated the expression of the membrane-associated copper transporter ATP7B. Furthermore, we found that Cu-exposure significantly increased the MDA content, and reduced the levels of T-AOC and SOD in serum and liver. Additionally, we found that the mRNA and protein levels of FDX1 were significantly upregulated in the 220 and 330 mg/kg Cu-treated groups. In our further studies, we found that copper did not alter protein levels of DLAT and DLST in chicken liver, but significantly increased Lipoylated-DLAT levels and oligomerization of Lipoylated-DLAT in the 330 mg/kg Cu-treatment group. Overall, we identified that FDX1-mediated protein lipoylation and proteotoxic stress indeed participate in copper-induced hepatotoxicity in chickens. Our results present novel insight into the pathogenesis of copper-induced hepatotoxicity in chickens and provide data to support filling in the role of cuproptosis in birds.
10.1016/j.scitotenv.2023.161458
Copper homeostasis and cuproptosis in cardiovascular disease therapeutics.
Trends in pharmacological sciences
Copper (Cu) homeostasis is gaining increasing attention in human health as both Cu overload and deficiency evokes pathological changes including cardiovascular diseases (CVDs). Cu supplementation, nanocarriers, and chelators have all exhibited therapeutic promise in some human diseases, although how Cu dyshomeostasis and cuproptosis, a novel form of regulated cell death, contribute to CVD pathology remains elusive. Here, we discuss Cu dyshomeostasis and the potential role of cuproptosis in various CVDs. We evaluate underlying cellular mechanisms, aiming to provide some insights regarding the utility of targeting Cu dyshomeostasis and cuproptosis as a novel strategy in the management of CVDs.
10.1016/j.tips.2023.07.004
The Molecular Mechanisms of Defective Copper Metabolism in Diabetic Cardiomyopathy.
Oxidative medicine and cellular longevity
Copper is an essential trace metal element that significantly affects human physiology and pathology by regulating various important biological processes, including mitochondrial oxidative phosphorylation, connective tissue crosslinking, and antioxidant defense. Copper level has been proved to be closely related to the morbidity and mortality of cardiovascular diseases such as atherosclerosis, heart failure, and diabetic cardiomyopathy (DCM). Copper deficiency can induce cardiac hypertrophy and aggravate cardiomyopathy, while copper excess can mediate various types of cell death, such as autophagy, apoptosis, cuproptosis, pyroptosis, and cardiac hypertrophy and fibrosis. Both copper excess and copper deficiency lead to redox imbalance, activate inflammatory response, and aggravate diabetic cardiomyopathy. This defective copper metabolism suggests a specific metabolic pattern of copper in diabetes and a specific role in the pathogenesis and progression of DCM. This review is aimed at providing a timely summary of the effects of defective copper homeostasis on DCM and discussing potential underlying molecular mechanisms.
10.1155/2022/5418376
Copper homeostasis and copper-induced cell death: Novel targeting for intervention in the pathogenesis of vascular aging.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
Copper-induced cell death, also known as cuproptosis, is distinct from other types of cell death such as apoptosis, necrosis, and ferroptosis. It can trigger the accumulation of lethal reactive oxygen species, leading to the onset and progression of aging. The significant increases in copper ion levels in the aging populations confirm a close relationship between copper homeostasis and vascular aging. On the other hand, vascular aging is also closely related to the occurrence of various cardiovascular diseases throughout the aging process. However, the specific causes of vascular aging are not clear, and different living environments and stress patterns can lead to individualized vascular aging. By exploring the correlations between copper-induced cell death and vascular aging, we can gain a novel perspective on the pathogenesis of vascular aging and enhance the prognosis of atherosclerosis. This article aims to provide a comprehensive review of the impacts of copper homeostasis on vascular aging, including their effects on endothelial cells, smooth muscle cells, oxidative stress, ferroptosis, intestinal flora, and other related factors. Furthermore, we intend to discuss potential strategies involving cuproptosis and provide new insights for copper-related vascular aging.
10.1016/j.biopha.2023.115839
Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies.
Cell death & disease
Copper is a vital mineral, and an optimal amount of copper is required to support normal physiologic processes in various systems, including the cardiovascular system. Over the past few decades, copper-induced cell death, named cuproptosis, has become increasingly recognized as an important process mediating the pathogenesis and progression of cardiovascular disease (CVD), including atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure. Therefore, an in-depth understanding of the regulatory mechanisms of cuproptosis in CVD may be useful for improving CVD management. Here, we review the relationship between copper homeostasis and cuproptosis-related pathways in CVD, as well as therapeutic strategies addressing copper-induced cell death in CVD.
10.1038/s41419-023-05639-w