Anti-inflammatory effect of Chang-An-Shuan on TNBS-induced experimental colitis in rats.
Mi Hong,Liu Feng-Bin,Li Hai-Wen,Hou Jiang-Tao,Li Pei-Wu
BMC complementary and alternative medicine
BACKGROUND:Inflammatory bowel disease (IBD), denominated by Crohn's disease and ulcerative colitis, is often associated with abdominal pain, diarrhea and bloody stool. The standard protocols for treating colitis conditions are not satisfactory; thus, complementary and alternative medicines have been increasingly accepted by IBD sufferers worldwide. In this study, we aimed to elucidate the anti-inflammatory effect of Chang-An-Shuan (CAS), a 6-herb Chinese medicinal formula, on 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats and the underlying mechanisms. METHODS:Sprague-Dawley rats were administered with rectal gavage of 2.5% TNBS in 50% ethanol for the induction of experimental colitis which is considered as a model for Crohn's disease. Upon the TNBS induction, rats were given CAS at 0.5 g/kg/day or 5 g/kg/day for 10 days. The application of salicylazosulfapyridine (0.5 g/kg/day) was served as a positive reference drug for the colitis condition. The efficacy and mechanistic action of CAS were evaluated by means of histopathological and biochemical approaches such as histological staining, real-time polymerase chain reaction, Western blotting analysis and enzyme-linked immunosorbent assay. RESULTS:Oral administration of CAS at 5 g/kg/day, but not 0.5 g/kg/day, significantly ameliorated the severity of TNBS-induced colitis as evidenced by the reduced loss of body weight, alleviated diarrhea and decreased bloody stool. While lowering the disease activity index, the administration of CAS lessened mucosal lesions thus mucosal integrity of the colitis rats was notably improved. Further, the CAS treatment also significantly suppressed the mRNA and protein levels of pro-inflammatory cytokines, namely interleukin-1β and tumor necrosis factor-α while enhancing the level of anti-inflammatory cytokine IL-10 in the TNBS-treated rats. Importantly, the ameliorative effect of CAS was related to an inhibition of the nuclear factor-κB (NF-κB) signaling pathway by downregulating the expression levels of NF-κBp-65, p-38 and p-AKT. CONCLUSIONS:We suggest that CAS is a potential alternative remedial approach for treating IBD conditions, and the anti-inflammatory effect of CAS is associated with the down-regulation of the NF-κB signaling pathway and the balanced production of pro- and anti-inflammatory cytokines.
10.1186/s12906-017-1794-0
Microbiota, co-metabolites, and network pharmacology reveal the alteration of the ginsenoside fraction on inflammatory bowel disease.
Journal of ginseng research
Background:Panax ginseng Meyer (P. ginseng) is a traditional natural/herbal medicine. The amelioration on inflammatory bowel disease (IBD) activity rely mainly on its main active ingredients that are referred to as ginsenosides. However, the current literature on gut microbiota, gut microbiota-host co-metabolites, and systems pharmacology has no studies investigating the effects of ginsenoside on IBD. Methods:The present study was aimed to investigate the role of ginsenosides and the possible underlying mechanisms in the treatment of IBD in an acetic acid-induced rat model by integrating metagenomics, metabolomics, and complex biological networks analysis. In the study ten ginsenosides in the ginsenoside fraction (GS) were identified using Q-Orbitrap LC-MS. Results:The results demonstrated the improvement effect of GS on IBD and the regulation effect of ginsenosides on gut microbiota and its co-metabolites. It was revealed that 7 endogenous metabolites, including acetic acid, butyric acid, citric acid, tryptophan, histidine, alanine, and glutathione, could be utilized as significant biomarkers of GS in the treatment of IBD. Furthermore, the biological network studies revealed EGFR, STAT3, and AKT1, which belong mainly to the glycolysis and pentose phosphate pathways, as the potential targets for GS for intervening in IBD. Conclusion:These findings indicated that the combination of genomics, metabolomics, and biological network analysis could assist in elucidating the possible mechanism underlying the role of ginsenosides in alleviating inflammatory bowel disease and thereby reveal the pathological process of ginsenosides in IBD treatment through the regulation of the disordered host-flora co-metabolism pathway.
10.1016/j.jgr.2022.04.001
Ginsenoside Rc attenuates DSS-induced ulcerative colitis, intestinal inflammatory, and barrier function by activating the farnesoid X receptor.
Frontiers in pharmacology
Farnesoid X receptor (FXR) activation is involved in ameliorating inflammatory bowel disease (IBD), such as ulcerative colitis (UC), and inflammatory regulation may be involved in its mechanism. Ginsenoside Rc (Rc) is a major component of , and it plays an excellent role in the anti-inflammatory processes. Our aim is to explore the alleviative effect of Rc on dextran sulfate sodium (DSS)-induced inflammation and deficiencies in barrier function based on FXR signaling. , we treated human intestinal epithelial cell lines (LS174T) with LPS to explore the anti-inflammatory effect of Rc supplementation. , a DSS-induced IBD mice model was established, and the changes in inflammatory and barrier function in colons after Rc treatment were measured using the disease activity index (DAI), hematoxylin and eosin (H&E) staining, immunofluorescence, ELISA, and qPCR. Molecular docking analysis, luciferase reporter gene assay, and qPCR were then used to analyze the binding targets of Rc. DSS-induced FXR-knockout (FXR) mice were used for further validation. Rc significantly recovered the abnormal levels of inflammation indexes (, , , and ) induced by LPS in LS174T. DSS-induced C57BL/6 mice exhibited a significantly decreased body weight and elevated DAI, as well as a decrease in colon weight and length. Increased inflammatory markers (, , , , , F4/80, and CD11b displayed an increased expression) and damaged barrier function (, and displayed a decreased expression) were observed in DSS-induced C57BL/6 mice. Nevertheless, supplementation with Rc mitigated the increased inflammatory and damaged barrier function associated with DSS. Further evaluation revealed an activation of FXR signaling in Rc-treated LS174T, with , and found to be upregulated. Furthermore, molecular docking indicated that there is a clear interaction between Rc and FXR, while Rc activated transcriptional expression of FXR in luciferase reporter gene assay. However, these reversal abilities of Rc were not observed in DSS-induced FXR mice. Our findings suggest that Rc may ameliorate inflammation and barrier function in the intestine, which in turn leads to the attenuation of DSS-induced UC, in which Rc may potentially activate FXR signaling to protect the intestines from DSS-induced injury.
10.3389/fphar.2022.1000444
Effect and mechanism of total ginsenosides repairing SDS‑induced enteritis model based on MAPK pathway.
Experimental and therapeutic medicine
Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal disease that seriously endangers human and animal health. Although the etiology of IBD is complex and the pathogenesis is not well understood, studies have found that genetic predisposition, diet and intestinal flora disorders are the main risk factors for IBD. The potential biological mechanism of total ginsenosides (TGGR) in the treatment of IBD remains to be elucidated. Surgery is still the main strategy for the treatment of IBD, due to the relatively high side effects of related drugs and the easy development of drug resistance. The purpose of the present study was to evaluate the efficacy of TGGR and explore the effect of TGGR on the intestinal inflammation induced by sodium dodecyl sulfate (SDS) in and to initially explain the improvement effect and mechanism of TGGR on enteritis by analyzing the levels of -related proteins. During the experiment, the survival rate, climb index and abdominal characteristics of the was recorded. Intestinal samples of were collected for analysis of intestinal melanoma. The oxidative stress related indexes of catalase, superoxide dismutase and malondialdehyde were determined by spectrophotometry. Western blotting detected the expression of signal pathway-related factors. The effects of TGGR on growth indices, tissue indices, biochemical indices, signal pathway transduction and related mechanisms of SDS-induced enteritis model were studied. The results showed that TGGR could repair SDS-induced enteritis of through MAPK signaling pathway, improve survival rate and climbing ability and repair intestinal damage and oxidative stress damage. The results suggested that TGGR has potential application value in the treatment of IBD and its mechanism is related to the downregulation of phosphorylated (p)-JNK/p-ERK levels, which provides a basis for drug research in the treatment of IBD.
10.3892/etm.2023.12068
The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone.
Frontiers in immunology
T Helper 17 (Th17) cells are adaptive immune cells that play myriad roles in the body. Immune-endocrine interactions are vital in endocrine organs during pathological states. Th17 cells are known to take part in multiple autoimmune diseases over the years. Current evidence has moved from minimal to substantial that Th17 cells are closely related to endocrine organs. Diverse tissue Th17 cells have been discovered within endocrine organs, including gut, adipose tissue, liver and bone, and these cells are modulated by various secretions from endocrine organs. Th17 cells in these endocrine organs are key players in the process of an array of metabolic disorders and inflammatory conditions, including obesity, insulin resistance, nonalcoholic fatty liver disease (NAFLD), primary sclerosing cholangitis (PSC), osteoporosis and inflammatory bowel disease (IBD). We reviewed the pathogenetic or protective functions played by Th17 cells in various endocrine tissues and identified potential regulators for plasticity of it. Furthermore, we discussed the roles of Th17 cells in crosstalk of gut-organs axis.
10.3389/fimmu.2022.1104943
Protopine Alleviates Dextran Sodium Sulfate-Induced Ulcerative Colitis by Improving Intestinal Barrier Function and Regulating Intestinal Microbiota.
Molecules (Basel, Switzerland)
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD), and its pathogenesis is related to intestinal mucosal barrier damage and gut microbiota imbalance. Protopine (PRO), an isoquinoline alkaloid, is one of the main anti-inflammatory ingredients of traditional Chinese medicine . This study investigated the effects of PRO on the intestinal mucosal barrier and gut microbiota in dextran sodium sulfate (DSS)-induced colitis mice. C57BL/6J mice were treated with 3% DSS in drinking water to induce acute colitis, while PRO was administered orally once daily for 7 days. The results showed that PRO administration significantly alleviated the symptoms of DSS-induced colitis in mice and inhibited the expression of inflammation-related genes. In addition, PRO restored the integrity of the intestinal barrier in colitis mice by restoring colonic mucin secretion and promoting the expression of tight junction proteins. Furthermore, PRO alleviated the DSS-induced gut microbiota dysbiosis by decreasing the abundance of , and , as well as enhancing the abundance of beneficial bacteria, such as and . These findings suggested that PRO effectively alleviated DSS-induced ulcerative colitis by suppressing the expression of inflammation-related genes, maintaining the intestinal mucosal barrier and regulating the intestinal microbiota.
10.3390/molecules28135277
XA pH-Responsive and Colitis-Targeted Nanoparticle Loaded with Shikonin for the Oral Treatment of Inflammatory Bowel Disease in Mice.
Molecular pharmaceutics
Epidemiology shows that more than 6.8 million people in the world are influenced by inflammatory bowel disease (IBD) each year. IBD is a refractory inflammatory disease, and the disease mainly affects the colon. Shikonin (SK) was originally extracted from traditional Chinese medicine "Zicao" (with an English name ) and found to inhibit inflammation, regulate immunity, and be involved in healing wounds. Herein, we used chitosan (CS), hyaluronic acid (HA), and pH-responsive polymer Eudragits S100 (ES100) to design SK-loaded ES100/HA/CS nanoparticles (SK@SAC) as an oral delivery system to treat the colitis mice. Particle size of SK@SAC was 190.3 nm and drug loading efficiency was 6.6%. SAC nanoparticles accumulated in RAW264.7 macrophages and exhibited colitis-targeted ability by increasing the local drug concentration as well as reducing nonspecific distribution after oral gavage. In TNBS-induced IBD mice, SK@SAC treatment had significant therapeutic effects, regulated of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and anti-inflammatory cytokines (IL-10 and TGF-β), and also inhibited COX-2 and iNOS activity. SK@SAC also increased tight junction protein ZO-1 and occludin to some extent. These promising results showed that this novel oral SK-loaded nanoparticle drug delivery system for targeted treatment provides a new strategy for the management of IBD.
10.1021/acs.molpharmaceut.2c00550
Dihydroartemisinin-ursodeoxycholic acid conjugate is a potential treatment agent for inflammatory bowel disease.
International immunopharmacology
BACKGROUND:A novel artemisinin derivative, dihydroartemisinin-ursodeoxycholic acid conjugate (4), was found to exhibit strong immunosuppressive activity. Various methods were used to evaluate the immunosuppressive activity and mechanism of action of the compound to explore its potential applications. METHODS:T cell proliferation, mixed lymphocyte reaction (MLR), and Th1/Th17 differentiation assays were used to evaluate the immunosuppressive activity of the compound. Differentially expressed genes from RNA sequencing were analysed with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, while enriched signalling pathways were further validated by western blotting (WB). In vivo efficacy was validated with delayed-type hypersensitivity (DTH) mouse models and dextran sodium sulphate (DSS)-induced inflammatory bowel disease (IBD) mouse model. RESULTS:Compound 4 inhibited concanavalin A -induced mouse splenic T cell proliferation (IC = 15 nM) and anti-CD3/CD28-induced human primary T cell proliferation (IC = 30 nM) while also reducing the secretion of hIFN-γ. Compound 4 exhibited similar inhibitory activity in MLR assay. Compound 4 dose-dependently inhibited human Th1/Th17 differentiation. The KEGG pathway enrichment analysis indicated that the genes related to T cell activation signalling pathways PI3K-AKT, MAPK, and NF-κB were significantly enriched. WB confirmed that compound 4 inhibited the AKT/MAPK and NF-κB signalling pathways. Compound 4 dose-dependently inhibited ear and foot pad swelling in DTH mouse models. In the DSS-induced IBD mouse model, compound 4 significantly decreased the disease activity index and colon density, and inhibited splenomegaly of the mice. CONCLUSION:The in vitro and in vivo results indicated that compound 4 has the potential to be developed into an anti-IBD drug.
10.1016/j.intimp.2023.109918
Shaoyao Decoction Inhibits Inflammation and Improves Intestinal Barrier Function in Mice With Dextran Sulfate Sodium-Induced Colitis.
Chi Honggang,Wang Dan,Chen Mengting,Lin Jiantao,Zhang Shuhua,Yu Fengyan,Zhou Jun,Zheng Xuebao,Zou Ying
Frontiers in pharmacology
Shaoyao decoction (SYD), a classical traditional Chinese medicine formula, is effective for the treatment of inflammatory bowel disease (IBD). This study was designed to investigate the therapeutic effects of SYD on IBD and possible mechanisms. Dextran sulfate sodium (DSS, 3.5%) was used to induce colitis in C57BL/6 mice. Disease phenotypes were investigated based on disease activity index (DAI), colon length, and microscopic and macroscopic scores. Additionally, the presence of proinflammatory cytokines, immune cell infiltrates, intestinal cell proliferation, apoptosis, epithelial permeability, signal transducer and activator of transcription 3 (STAT3), and nuclear factor-κB (NF-κB) signaling, as well as the intestinal mucosal barrier function, were investigated. The administration of SYD significantly ameliorated the clinical signs, suppressed the levels of proinflammatory cytokines, and reduced immune cell infiltrates into colonic tissues of DSS-induced colitis model mice. SYD also significantly reduced the DSS-induced activation of STAT3 and NF-κB signaling. Furthermore, SYD promoted epithelial integrity by regulating epithelial cell apoptosis and epithelial permeability. Finally, we demonstrated that SYD protected the intestinal barrier function by significantly regulating the mucus layer genes , , , and , as well as the epithelial barrier genes and . Our results indicate that SYD has a protective effect on DSS-induced colitis, which is attributable to its anti-inflammatory activity and intestinal barrier function-enhancing effects. These results provide valuable insights into the pharmacological actions of SYD for the treatment of IBD.
10.3389/fphar.2021.524287
Apoptosis Exerts a Vital Role in the Treatment of Colitis-Associated Cancer by Herbal Medicine.
Tian Ruimin,Liu Xianfeng,Luo Yanqin,Jiang Shengnan,Liu Hong,You Fengming,Zheng Chuan,Wu Jiasi
Frontiers in pharmacology
Colitis-associated cancer (CAC) is known as inflammatory bowel disease (IBD)-developed colorectal cancer, the pathogenesis of which involves the occurrence of apoptosis. Western drugs clinically applied to CAC are often single-targeted and exert many adverse reactions after long-term administration, so it is urgent to develop new drugs for the treatment of CAC. Herbal medicines commonly have multiple components with multiple targets, and most of them are low-toxicity. Some herbal medicines have been reported to ameliorate CAC through inducing apoptosis, but there is still a lack of systematic review. In this work, we reviewed articles published in S, and other databases in recent years by setting the keywords as apoptosis in combination with colitis-associated cancer. We summarized the herbal medicine extracts or their compounds that can prevent CAC by modulating apoptosis and analyzed the mechanism of action. The results show the following. (1) Herbal medicines regulate both the mitochondrial apoptosis pathway and death receptor apoptosis pathway. (2) Herbal medicines modulate the above two apoptotic pathways by affecting signal transductions of IL-6/STAT3, MAPK/NF-κ B, Oxidative stress, Non-canonical TGF-β1, WNT/β-catenin, and Cell cycle, thereby ameliorating CAC. We conclude that following. (1) Studies on the role of herbal medicine in regulating apoptosis through the Ras/Raf/ERK, WNT/β-catenin, and Cell cycle pathways have not yet been carried out in sufficient depth. (2) The active constituents of reported anti-CAC herbal medicine mainly include polyphenols, terpenoids, and saccharide. Also, we identified other herbal medicines with the constituents mentioned above as their main components, aiming to provide a reference for the clinical use of herbal medicine in the treatment of CAC. (3) New dosage forms can be utilized to elevate the targeting and reduce the toxicity of herbal medicine.
10.3389/fphar.2020.00438
Effects of Huaier Extract on Ameliorating Colitis-Associated Colorectal Tumorigenesis in Mice.
OncoTargets and therapy
BACKGROUND:Huaier extract has been a part of traditional Chinese medicine (TCM) for roughly 1600 years and may serve as a potential anti-cancer drug as it is associated with good efficacy and low toxicity. Individuals with inflammatory bowel disease (IBD) are at a higher chance of being diagnosed with colorectal cancer (CRC) and as Huaier extract may potentially influence tumorigenesis, we set out to determine the effect of Huaier extract on colitis-associated CRC. METHODS:The CRC mouse model, established through azoxymethane (AOM) and dextran sulfate sodium (DSS), was administered Huaier extract. Weight loss, colon length, tumor number and tumor size were evaluated macroscopically. Pro-inflammatory cytokine expression and STAT3 phosphorylation were assessed in the colon using ELISA, Western blot and/or immunohistochemistry. RESULTS:Huaier extract improved the severity of colitis-associated tumorigenesis compared with control group, with attenuated weight loss and longer colons. Tumor number, size and load were drastically decreased in mice treated with Huaier. Histological assessment suggested that Huaier could decrease histological injury of the colon tissue. Additionally, Huaier extract treatment led to reduced pro-inflammatory cytokine levels (TNF-α, IL-6, IFN-γ and IL-1β) and a decrease of STAT3 phosphorylation in colon tissue. Additionally, present findings demonstrated that Huaier extract inhibited cell proliferation and induced apoptosis in CRC cells HCT116 and HCT8. The migration and invasion of CRC cells were markedly inhibited upon exposure to Huaier treatment. The apoptosis-associated protein levels (P53, Bax, Bcl-2, pro-caspase-3 and cleavage caspase-3) showed significant differences after the administration of Huaier extract in HCT116 and HCT8 cells. In vivo, the administration of Huaier extract to mice inhibited tumor growth and yielded a similar profile of apoptotic proteins expression p53, Bcl-2, pro-caspase-3 and cleaved caspase-3 while no significant differences in Bax were observed. Moreover, the ratio of TUNEL-positive/apoptotic cells was markedly increased in the Huaier-treated mice. CONCLUSION:Huaier extract may reduce the IBD-associated tumor development by suppressing pro-inflammatory cytokine levels and STAT3 stimulation.
10.2147/OTT.S253598
MicroRNA-602 prevents the development of inflammatory bowel diseases in a microbiota-dependent manner.
Zhao Song,Zhu Lei,Feng Wan,Zhang Lu,Chen Dan-Dan,Hu Yu-Cui,Shen Hong
Experimental and therapeutic medicine
Inflammatory bowel diseases (IBD) are a group of chronic disorders occurring in the intestinal tract. Previous studies demonstrated that genetics and microbiota play critical roles in the pathogenesis of IBD. Discoveries of genes that may regulate the homeostasis of gut microbiota and pathogenesis of IBD have the potential to provide new therapeutic targets for IBD treatment. The results suggested that the expression level of microRNA (miR)-602 is negatively related to the development of IBD, and that miR-602 overexpression in mice may prevent inflammation and intestinal barrier injuries in dextran sulfate sodium (DSS)-induced IBD mice. It was also found that the microbiota is important for miR-602-mediated prevention of IBD, as the inhibitory effect of miR-602 was lost when the microbiota was depleted using antibiotics. Furthermore, co-housing or adoptive transfer of microbiota from miR-602 could attenuate the pathogenesis of IBD. In addition, it was demonstrated that miR-602 could target tumor necrosis factor receptor-associated factor 6 (TRAF6) in intestinal epithelial cells. Collectively, the present results suggest that miR-602 plays a protective role in DSS-induced IBD by targeting TRAF6 in a microbiota-dependent manner.
10.3892/etm.2021.10808
Oral pectin/oligochitosan microspheres for colon-specific controlled release of quercetin to treat inflammatory bowel disease.
Carbohydrate polymers
Inflammatory bowel disease (IBD) is a chronic, life quality-reducing disease with no cures available yet. To develop an effective medication suitable for long-term use is an urgent but unmet need. Quercetin (QT) is a natural dietary flavonoid with good safety and multifaceted pharmacological activities against inflammation. However, orally administrated quercetin yields unproductive outcomes for IBD treatment because of its poor solubility and extensive metabolism in the gastrointestinal tract. In this work, a colon-targeted QT delivery system (termed COS-CaP-QT) was developed, of which the pectin (PEC)/Ca microspheres were prepared and then crosslinked by oligochitosan (COS). The drug release profile of COS-CaP-QT was pH-dependent and colon microenvironment-responsive, and COS-CaP-QT showed preferential distribution in the colon. The mechanism study showed that QT triggered the Notch pathway to regulate the proliferation of T helper 2 (Th2) cells and group 3 innate lymphoid cells (ILC3s) and the inflammatory microenvironment was remodeled. The in vivo therapeutic results revealed that COS-CaP-QT could relieve the colitis symptoms and maintain the colon length and intestinal barrier integrity.
10.1016/j.carbpol.2023.121025
Systems pharmacology approach uncovers Ligustilide attenuates experimental colitis in mice by inhibiting PPARγ-mediated inflammation pathways.
Cell biology and toxicology
Inflammatory bowel disease (IBD) is a chronic idiopathic disorder causing inflammation in the gastro-intestinal tract, which is lack of effective drug targets and medications. To identify novel therapeutic agents against consistent targets, we exploited a systems pharmacology-driven framework that incorporates drug-target networks of natural product and IBD disease genes. Our in silico approach found that Ligustilide (LIG), one of the major active components of Angelica acutiloba and Cnidium Officinale, potently attenuated IBD. The following in vivo and in vitro results demonstrated that LIG prevented experimental mice colitis induced by dextran sulfate sodium (DSS) via suppressing inflammatory cell infiltration, the activity of MPO and iNOS, and the expression and production of IL-1β, IL-6, and TNF-α. Subsequently, the network analysis helped to validate that LIG alleviated colitis by inhibiting NF-κB and MAPK/AP-1 pathway through activating PPARγ, which were further confirmed in RAW 264.7 cells and bone marrow-derived macrophages in vitro. In summary, this study reveals that LIG activated PPARγ to inhibit the activation of NF-κB and AP-1 signaling thus eventually alleviated DSS-induced colitis, which has promising activities and may serve as a candidate for the treatment of IBD.Graphical abstract This study suggested novel computational and experimental pharmacology approaches to identify potential IBD therapeutic agents by exploiting polypharmacology of natural products. We demonstrated that LIG could attenuate inflammation in IBD by inhibiting NF-κB and AP-1 pathways via PPARγ activation to reduce the expression of pro-inflammatory cytokines in macrophages. These findings offer comprehensive pre-clinical evidence that LIG may serve as a promising candidate for IBD therapy in the future. Graphical headlights: 1. Systems pharmacology uncovered Ligustilide attenuates experimental colitis in mice. 2. Network-based analysis predicted the mechanism of Ligustilide against IBD, which was validated by inhibiting PPARγ-mediated inflammation pathways. 3. Ligustilide activated PPARγ to inhibit NF-κB and AP-1 activation thus eventually alleviated DSS-induced colitis.4. Ligustilide has promising activities and may serve as a candidate for the treatment of IBD.
10.1007/s10565-020-09563-z
Aucuboside Inhibits the Generation of Th17 Cells in Mice Colitis.
Mei Chenxue,Wang Xiao,Meng Fanxiang,Zhang Xiaoqing,Chen Ling,Yan Siqi,Xue Junxiu,Sun Xun,Wang Yuanyuan
Frontiers in pharmacology
Aucuboside is an iridoid glycoside extracted from traditional Chinese medicine such as , possessing a wide range of biological activities, including antioxidant, anti-aging, anti-inflammatory, and anti-fibrotic effects. The effects of aucuboside on inflammatory bowel disease (IBD) have not been studied. Therefore, the effects of aucuboside on the generation of Foxp3+ regulatory T (Treg) cells and IL-17-producing T helper (Th17) cells in colitis were studied. A mouse colitis model was established by intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) to mimic human IBD. The generation of Treg and Th17 cells was evaluated by flow cytometry. Aucuboside significantly alleviated colitis symptoms, including weight loss, high disease activity index, and inflammatory responses. The generation of Th17 cells in colitis was significantly inhibited by aucuboside and accompanied by the suppression of IL-17 expression. In Raw264.7 cells, the LPS-induced increase in IL-17 expression was also suppressed by aucuboside, which was significantly blocked by the RORγt inhibitor sr2211. In addition, the decrease in the proportion of Treg cells was also partially reversed by aucuboside, which may reflect the aucuboside-induced inhibition of Th17 cells. This previously unrecognized immunoregulatory function of aucuboside may have clinical applications in IBD.
10.3389/fphar.2021.696599
[Chinese medicinal formulae treat inflammatory bowel diseases through maintaining gut flora homeostasis].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica
Inflammatory bowel disease(IBD) is a chronic and recurrent inflammatory disorder of the gut, including Crohn's disease(CD) and ulcerative colitis(UC). The occurrence and development of IBD involves multiple pathogenic factors, and the dybiosis of gut flora is recognized as an important pathogenic mechanism of IBD. Therefore, restoring and maintaining the balance of gut flora including bacteria and fungi has become an effective option for IBD treatment. Based on the theoretical basis of the interaction between gut flora and IBD, this paper followed the principle of clinical syndrome differentiation for IBD therapy by traditional Chinese medicine(TCM), and summarized several Chinese medicinal formulae commonly used in IBD patients with large intestine damp-heat syndrome, intermingled heat and cold syndrome, spleen deficiency and dampness accumulation syndrome, spleen and kidney yang deficiency syndrome, liver stagnation and spleen deficiency syndrome, and severe heat poisoning syndrome. The therapeutic and regulatory effects of Shaoyao Decoction, Qingchang Suppository, Wumei Pills, Banxia Xiexin Decoction, Shenling Baizhu Powder, Lizhong Decoction, Sishen Pills, Tongxie Yaofang, Baitouweng Decoction, Gegen Qinlian Decoction, and Houttuyniae Herba prescriptions on gut flora of IBD patients were emphasized as well as the mechanisms. This study found that Chinese medicinal formulae increased the abundance of Bacteroidetes, Bifidobacteria, Lactobacillus, and other beneficial bacteria producing short-chain fatty acids, and reduced the abundance of Enterobacteriaceae and other harmful bacteria to restore the balance of gut flora, thus treating IBD. Confronting the recalcitrance and high recurrence of IBD, Chinese medicinal formulae provide new opportunities for IBD treatment through intervening dysbiosis of gut flora.
10.19540/j.cnki.cjcmm.20220706.501
Systems Pharmacology and Microbiome Dissection of Shen Ling Bai Zhu San Reveal Multiscale Treatment Strategy for IBD.
Lv Wei-Jie,Liu Cui,Li Yue-Fei,Chen Wen-Qian,Li Zeng-Quan,Li Yue,Xiong Ying,Chao Li-Min,Xu Xiao-Long,Guo Shi-Ning
Oxidative medicine and cellular longevity
Generally, inflammatory bowel disease (IBD) can be caused by psychology, genes, environment, and gut microbiota. Therefore, IBD therapy should be improved to utilize multiple strategies. Shen Ling Bai Zhu San (SLBZS) adheres to the aim of combating complex diseases from an integrative and holistic perspective, which is effective for IBD therapy. Herein, a systems pharmacology and microbiota approach was developed for these molecular mechanisms exemplified by SLBZS. First, by systematic absorption-distribution-metabolism-excretion (ADME) analysis, potential active compounds and their corresponding direct targets were retrieved. Then, the network relationships among the active compounds, targets, and disease were built to deduce the pharmacological actions of the drug. Finally, an "IBD pathway" consisting of several regulatory modules was proposed to dissect the therapeutic effects of SLBZS. In addition, the effects of SLBZS on gut microbiota were evaluated through analysis of the V3-V4 region and multivariate statistical methods. SLBZS significantly shifted the gut microbiota structure in a rat model. Taken together, we found that SLBZS has multidimensionality in the regulation of IBD-related physiological processes, which provides new sights into herbal medicine for the treatment of IBD.
10.1155/2019/8194804
The improvement of intestinal dysbiosis and hepatic metabolic dysfunction in dextran sulfate sodium-induced colitis mice: effects of curcumin.
Journal of gastroenterology and hepatology
BACKGROUND AND AIM:Curcumin may have promising application in the prevention and amelioration of inflammatory bowel disease (IBD). However, the underlying mechanisms underpinning the ability of curcumin to interact with the gut and liver in IBD remains to be defined, which is the exploration aim of this study. METHODS:Mice with dextran sulfate sodium salt (DSS)-induced acute colitis were treated either with 100 mg/kg of curcumin or phosphate buffer saline (PBS). Hematoxylin-eosin (HE) staining, 16S rDNA Miseq sequencing, proton nuclear magnetic resonance ( H NMR) spectroscopy, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were applied for analysis. Spearman's correlation coefficient (SCC) was utilized to assess the correlation between the modification of intestinal bacteria and hepatic metabolite parameters. RESULTS:Curcumin supplementation not only prevented further loss of body weight and colon length in IBD mice but also improved diseases activity index (DAI), colonic mucosal injury, and inflammatory infiltration. Meanwhile, curcumin restored the composition of the gut microbiota, significantly increased Akkermansia, Muribaculaceae_unclassified, and Muribaculum, and significantly elevated the concentration of propionate, butyrate, glycine, tryptophan, and betaine in the intestine. For hepatic metabolic disturbances, curcumin intervention altered 14 metabolites, including anthranilic acid and 8-amino-7-oxononanoate while enriching pathways related to the metabolism of bile acids, glucagon, amino acids, biotin, and butanoate. Furthermore, SCC analysis revealed a potential correlation between the upregulation of intestinal probiotics and alterations in liver metabolites. CONCLUSION:The therapeutic mechanism of curcumin against IBD mice occurs by improving intestinal dysbiosis and liver metabolism disorders, thus contributing to the stabilization of the gut-liver axis.
10.1111/jgh.16205
Therapeutic Mechanism of Baicalin in Experimental Colitis Analyzed Using Network Pharmacology and Metabolomics.
Drug design, development and therapy
Background:Baicalin is an important active flavonoid isolated from the roots of Scutellaria baicalensis (S. baicalensis), a well-known traditional Chinese herb used in treating inflammatory bowel disease (IBD). The objectives of this study were to assess the potential benefit of baicalin in experimental colitis, as well as to investigate metabolic biomarkers of experimental colitis in conjunction with network pharmacology. Methods:Using a widely utilized network pharmacology technique, baicalin's targets and pathways were predicted. Simultaneously, experimental colitis was induced by intrarectal administration of TNBS. Histopathology examinations were performed to confirm pathological changes. Plasma samples were examined by using an untargeted metabolomics technique based on ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) to screen differential metabolites and associated metabolic pathways. Additionally, network pharmacology and integrated analysis of metabolomics were used to identify the primary targets. Results:Through network pharmacology research, tumor necrosis factor (TNF), interleukin 6 (IL6), serine/threonine-protein kinase (AKT1), and other 7 proteins were found to be the main targets of baicalin against IBD. The untargeted metabolomics results showed that 47 metabolites in glycerophospholipids and sphingolipid metabolism were involved as key pathways in the experimental colitis model group. 19 metabolites, including Sphingomyelin (SM d42:2, SM d42:1, SM d34:1), Lysophosphatidic acids (LPA 18:4), 1-Palmitoylglycerophosphocholine, and 17(18)-EpETE were demonstrated as key metabolites for baicalin to exert effects. Moreover, udp-glucose ceramide glucosyltransferase (UGCG), sphingomyelin synthase 1 (SGMS1), and sphingosine kinase (SPHK1) were predicted as sphingolipids-linked targets of baicalin against experimental colitis by integrative analysis. Conclusion:Based on these results, it implies that sphingolipid metabolism and sphingolipid signaling pathway might be acted as therapeutic mechanism for baicalin against experimental colitis.
10.2147/DDDT.S399290
Network pharmacology and molecular docking reveal zedoary turmeric-trisomes in Inflammatory bowel disease with intestinal fibrosis.
World journal of clinical cases
BACKGROUND:Inflammatory bowel disease (IBD) is a complex chronic IBD that is closely associated with risk factors such as environment, diet, medications and lifestyle that may influence the host microbiome or immune response to antigens. At present, with the increasing incidence of IBD worldwide, it is of great significance to further study the pathogenesis of IBD and seek new therapeutic targets. Traditional Chinese medicine (TCM) treatment of diseases is characterized by multiple approaches and multiple targets and has a long history of clinical application in China. The mechanism underlying the effect of zedoary turmeric-trisomes on inducing mucosal healing in IBD is not clear. AIM:To explore the effective components and potential mechanism of zedoary turmeric-trisomes in the treatment of IBD with intestinal fibrosis using network pharmacology and molecular docking techniques. METHODS:The chemical constituents and targets of and were screened using the TCMSP database. The GeneCards database was searched to identify targets associated with intestinal fibrosis in IBD. The intersection of chemical component targets and disease targets was obtained using the Venny 2.1 online analysis platform, and the common targets were imported into the STRING 11.0 database to construct a protein interaction regulatory network. A "zedoary turmeric-trisomes-chemical composition-target-disease" network diagram was subsequently constructed using Cytoscape 3.7.2 software, and the topological properties of the network were analyzed using the "Network Analysis" plug-in. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the common targets were performed using the DAVID 6.8 database to elucidate the mechanism of zedoary turmeric-trisomes in the treatment of IBD. Subsequently, molecular docking of the compounds and targets with the highest intermediate values in the "zedoary turmeric-trisomes-chemical composition-target-disease" network was performed using Sybyl-x 2.1.1 software. RESULTS:A total of 5 chemical components with 60 targets were identified, as well as 3153 targets related to IBD and 44 common targets. The protein-protein interaction network showed that the core therapeutic targets included JUN, MAPK14, CASP3, AR, and PTGS2. The GO enrichment analysis identified 759 items, and the KEGG enrichment analysis yielded 52 items, including the cancer pathway, neuroactive ligand-receptor interaction, hepatitis B, and the calcium signaling pathway, reflecting the complex biological processes of the multicomponent, multitarget and multipathway treatment of diseases with zedoary turmeric-trisomes. Molecular docking showed that the compound bonded with the target through hydrogen bond interactions and exhibited good docking activity. CONCLUSION:This study identified the potential mechanism of action of zedoary turmeric-trisomes in the treatment of inflammatory bowel fibrosis using network pharmacology and molecular docking technology, providing a scientific basis for further expansion of their clinical use.
10.12998/wjcc.v10.i22.7674
Bge. (Danshen) for Inflammatory Bowel Disease: Clinical Evidence and Network Pharmacology-Based Strategy for Developing Supplementary Medical Application.
Zhang Siyuan,Luo Hua,Sun Shiyi,Zhang Yating,Ma Jiaqi,Lin Yuting,Yang Lin,Tan Dechao,Fu Chaomei,Zhong Zhangfeng,Wang Yitao
Frontiers in pharmacology
Inflammatory bowel disease (IBD) is a non-specific colorectal disease caused by multifaceted triggers. Although conventional treatments are effective in the management of IBD, high cost and frequent side effects limit their applications and have turned sufferers toward alternative and complementary approaches. Bge (Danshen) is an herbal medicine that reportedly alleviates the symptoms of IBD. A large body of research, including clinical trials in which Danshen-based products or botanical compounds were used, has unmasked its multiple mechanisms of action, but no review has focused on its efficacy as a treatment for IBD. Here, we discussed triggers of IBD, collected relevant clinical trials and analyzed experimental reports, in which bioactive compounds of Danshen attenuated rodent colitis in the management of intestinal integrity, gut microflora, cell death, immune conditions, cytokines, and free radicals. A network pharmacology approach was applied to describe sophisticated mechanisms in a holistic view. The safety of Danshen was also discussed. This review of evidence will help to better understand the potential benefits of Danshen for IBD treatment and provide insights for the development of innovative applications of Danshen.
10.3389/fphar.2021.741871
Pulsatilla chinensis saponins ameliorated murine depression by inhibiting intestinal inflammation mediated IDO1 overexpression and rebalancing tryptophan metabolism.
Phytomedicine : international journal of phytotherapy and phytopharmacology
BACKGROUND:Current antidepressant therapy remains unsatisfactory due to the complex pathogenesis. Emerging evidence suggested that depression is associated with inflammatory bowel disease (IBD), intestinal inflammation is an increasingly accepted factor that influences depression, but the mechanism is unclear. PURPOSE:In the current study, we determined whether Pulsatilla chinensis saponins (PRS), a phytomedicine from Pulsatilla chinensis (Bunge) Regel with excellent anti-IBD effect, could improve the depression. Furthermore, we investigated the mechanisms to explore the relationship between IBD and depression and provide new source for the urgent development of antidepressants from phytomedicine. METHODS:The antidepressant activity of PRS was accessed by behavioral test and multichannel technology in depression mice induced by Chronic Unpredictable Mild Stress (CUMS). 16S rDNA-based microbiota and RNA-seq in colon was used to explore potential intestinal metabolism affected by PRS. To illustrate the underlying mechanisms of anti-depression effect of PRS, targeted metabolomics, ELISA assay, immunofluorescence staining, Western Blot, and qPCR were carried out. RESULTS:The results clarified that CUMS induced depression with tryptophan (Trp) metabolism and intestinal inflammation. PRS effectively suppressed the depression and acted as a regulator of Trp/kynurenine (Kyn) metabolic and intestinal inflammation confirmed by analysis of microflora and colon RNA. Meanwhile PRS reduced interferon gamma (IFN-γ), inhibited JAK1-STAT1 phosphorylation, decreased IDO1 levels to protect against the overactivity of Trp/kyn path, suggesting that IFN-γ activated IDO1 probably a significant target for PRS to exert anti-depression effects. To further confirm the mechanism, this research expressed that PRS improved IDO1 activity and depressive behavior in mice with IFN-γ-induced depression. Furthermore, the therapeutic effect of 1-methyl-tryptophan (1-MT) well known as an IDO1 inhibitor in depression and clinically used anti-UC drug Mesalazine (MS) was demonstrated to confirm the potential mechanism. CONCLUSION:The study is the first to reveal the antidepressant effect of PRS and further demonstrate its potential therapeutic targets. In addition, it also clarifies that the Trp/kyn pathway is the crosstalk between IBD and depression and provides new choice for depression treatment. And it also provides an important basis for the follow-up development and exploration of anti-intestinal antidepressants.
10.1016/j.phymed.2023.154852
Preclinical evidence for quercetin against inflammatory bowel disease: a meta-analysis and systematic review.
Inflammopharmacology
BACKGROUND:Inflammatory bowel disease (IBD) is a chronic, potentially cancerous disease with limited treatment options. Quercetin may be a novel treatment for IBD. However, its efficacy and safety are unknown. Our goal was to conduct a systematic evaluation to summarize the preclinical effects of quercetin, which may help guide future studies. METHODS:The literature was drawn from three English databases (PubMed, Embase, and Web of Science), and the quality of the included literature was assessed using the SYRCLE list (10 items). The meta-analysis was performed using STATA 15.1 software. RESULTS:A total of 11 animal studies with 199 animals were involved. The current meta-analysis showed that quercetin could reduce histological score (HS), Disease Activity Index (DAI), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), nitric oxide(NO), malondialdehyde (MDA), myeloperoxidase (MPO) activity and increase colon length (CL), weight change degree (WCD), interleukin-10 (IL-10), glutathione (GSH), superoxide dismutase (SOD) activity and catalase (CAT) activity, which may involve anti-inflammatory, anti-oxidative stress, cytoprotective, barrier protection, flora regulation. CONCLUSIONS:In conclusion, preclinical evidence suggests that quercetin is an ideal agent for IBD treatment. However, the validity of the findings may be compromised by the low methodological quality and the small number of studies included. There may be some discrepancies between the results of the current analysis and the real situation. More rigorous experimental designs and more comprehensive studies are needed to test the protection of quercetin against IBD.
10.1007/s10787-022-01079-8
Quercetin effectively improves LPS-induced intestinal inflammation, pyroptosis, and disruption of the barrier function through the TLR4/NF-κB/NLRP3 signaling pathway and .
Food & nutrition research
Background:Inflammatory bowel diseases are characterized by the alterations of the mucosa and gastrointestinal physiology, and the core of these alterations is endothelial cells. Quercetin is a flavonoid presents in some traditional Chinese medicine, plants, and fruits. Its protective effects in several gastrointestinal tumors have been demonstrated, but its effects on bacterial enteritis and pyroptosis-related diseases have rarely been studied. Objective:This study aimed to evaluate the effect of quercetin on bacterial enteritis and pyroptosis. Design: experiments were performed using rat intestinal microvascular endothelial cells divided into seven groups: control group (no treatment), model group (10 μg/mL lipopolysaccharide (LPS)+1 mM adenosine triphosphate [ATP]), LPS group (10 μg/mL LPS), ATP group (1 mM ATP), and treatment groups (10 μg/mL LPS+1 mM ATP and 5, 10, and 20 μM quercetin). The expression of pyroptosis-associated proteins, inflammatory factors, tight junction proteins, and the percentage of late apoptotic and necrotic cells were measured. analysis was performed using specific pathogen-free Kunming mice pretreated with quercetin and the water extract of for 2 weeks followed by 6 mg/kg LPS on day 15. Inflammation in the blood and intestinal pathological changes were evaluated. Results:Quercetin used significantly reduced the expression of Toll-like receptor 4 (TLR4), NOD-like receptor 3 (NLRP3), caspase-1, gasdermin D, interleukin (IL)-1β, IL-18, IL-6, and tumor necrosis factor-α. It also inhibited phosphorylation of nuclear factor-kappa B (NF-κB) p65 and increased cell migration and the expression of zonula occludens 1 and claudins, while reduced the number of late apoptotic cells. The results showed that and quercetin significantly reduced inflammation, protected the structure of the colon and cecum, and prevent fecal occult blood induced by LPS. Conclusions:These findings suggested the ability of quercetin to reduce inflammation induced by LPS and pyroptosis through TLR4/NF-κB/NLRP3 pathway.
10.29219/fnr.v66.8948
The Pivotal Role of Microbiota in Modulating the Neuronal-Glial-Epithelial Unit.
Infection and drug resistance
The enteric nervous system (ENS) consists of enteric neurons and enteric glial cells (EGCs) and controls the function of the epithelial barrier. Thus, a novel concept of neuronal-glial-epithelial unit in the gut was put forward by analogy with neuronal-glial-endothelial unit in the brain. The environment in the gastrointestinal (GI) tract is complex as it harbours millions of bacteria, which extensively attach with intestinal epithelium. The cross-talk between the neuronal-glial-endothelial unit and microbiota plays a pivotal role in modulating the epithelial barrier's permeability, intestinal development and immune response. And evidence shows dysbiosis is the potent risk factor in the pathologic process of Parkinson's disease (PD) and inflammatory bowel disease (IBD). In this review, we summarize the compelling results in favor of microbiota serving as the key modulator in the neuronal-glial-epithelial unit development and function, with profound effects on intestinal homeostasis.
10.2147/IDR.S342782
Ginsenoside from ginseng: a promising treatment for inflammatory bowel disease.
Kang Zengping,Zhonga Youbao,Wu Tiantian,Huang Jiaqi,Zhao Haimei,Liu Duanyong
Pharmacological reports : PR
Inflammatory bowel disease (IBD) is an autoimmune disease mediated by immune disorder and termed as one of the most refractory diseases by the Word Health Organization. Its morbidity has increased steadily over the past half century worldwide. Environmental, genetic, infectious, and immune factors are integral to the pathogenesis of IBD. Commonly known as the king of herbs, ginseng has been consumed in many countries for the past 2000 years. Its active ingredient ginsenosides, as the most prominent saponins of ginseng, have a wide range of pharmacological effects. Recent studies have confirmed that the active components of Panax ginseng have anti-inflammatory and immunomodulatory effects on IBD, including regulating the balance of immune cells, inhibiting the expression of cytokines, as well as activating Toll-like receptor 4, Nuclear factor-kappa B (NF-κB), nucleotide-binding oligomerization domain-like receptor (NLRP), mitogen-activated protein kinase signaling, and so on. Accumulated evidence indicates that ginsenosides may serve as a potential novel therapeutic drug or health product additive in IBD prevention and treatment in the future.
10.1007/s43440-020-00213-z
Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease?
Antioxidants (Basel, Switzerland)
Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress can affect the progression and development of IBD by regulating the homeostasis of the gut microbiota and immune response. Therefore, redox-targeted therapy is a promising treatment option for IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for implementing natural antioxidants as potential IBD candidate medications. In addition, we demonstrate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived polyphenols, including novel delivery systems, chemical modifications, and combination strategies.
10.3390/antiox12040967
Review of the Effects and Mechanism of Curcumin in the Treatment of Inflammatory Bowel Disease.
Frontiers in pharmacology
Curcumin is extracted from the rhizomes of . It is now widely used in food processing, cosmetics, dyes, etc. Current researching indicates that curcumin has high medical value, including anti-inflammatory, antioxidant, anti-tumor, anti-apoptotic, anti-fibrosis, immune regulation and other effects, and can be used to treat a variety of diseases. Inflammatory bowel disease (IBD) is a nonspecific inflammatory disease of the intestine including Crohn's disease (CD) and ulcerative colitis (UC). The drug treatment effect is often limited and accompanied by side effects. A large number of basic and clinical studies have shown that curcumin has the effect of treating IBD and also can maintain the remission of IBD. In this review, the research of curcumin on IBD in recent years is summarized in order to provide reference for further research and application of curcumin.
10.3389/fphar.2022.908077
Natural Products: Experimental Efficient Agents for Inflammatory Bowel Disease Therapy.
Cao Fan,Liu Jie,Sha Bing-Xian,Pan Hai-Feng
Current pharmaceutical design
Inflammatory bowel disease (IBD) is a chronic, elusive disorder resulting in relapsing inflammation of intestine with incompletely elucidated etiology, whose two representative forms are ulcerative colitis (UC) and Crohn's disease (CD). Accumulating researches have revealed that the individual genetic susceptibility, environmental risk elements, intestinal microbial flora, as well as innate and adaptive immune system are implicated in the pathogenesis and development of IBD. Despite remarkable progression of IBD therapy has been achieved by chemical drugs and biological therapies such as aminosalicylates, corticosteroids, antibiotics, anti-tumor necrosis factor (TNF)-α, anti-integrin agents, etc., healing outcome still cannot be obtained, along with inevitable side effects. Consequently, a variety of researches have focused on exploring new therapies, and found that natural products (NPs) isolated from herbs or plants may serve as promising therapeutic agents for IBD through antiinflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic effects, which implicates the modulation on nucleotide- binding domain (NOD) like receptor protein (NLRP) 3 inflammasome, gut microbiota, intestinal microvascular endothelial cells, intestinal epithelia, immune system, etc. In the present review, we will summarize the research development of IBD pathogenesis and current mainstream therapy, as well as the therapeutic potential and intrinsic mechanisms of NPs in IBD.
10.2174/1381612825666191216154224
Rutin-Loaded Stimuli-Responsive Hydrogel for Anti-Inflammation.
ACS applied materials & interfaces
An active flavonoid compound rutin was incorporated into a guanosine phenylborate hydrogel () by a stimuli-responsive borate ester linkage for the treatment of inflammatory bowel disease (IBD). The components and morphology of the drug delivery system were characterized by NMR, UV-vis spectroscopy, and AFM. Rheological measurements revealed the required injectability and self-healing ability, which contributed to its application in rectal administration. The cell assays proved the excellent compatibility and safety of the system, and a possible pathway to form multicellular aggregates. drug-release studies showed that the hydrogel exhibited good stability in physiological medium, and the drug was almost completely released (more than 90 wt % after 24 h of incubation) in acidic pH and excessive ROS-containing medium, realizing the dual-responsive release of pH/ROS. activities of the hydrogel showed higher therapeutic efficacy than free rutin in a colitis mice model, and it could significantly inhibit overexpressed inflammatory cytokines, including TNF-α and IL-6. Degradation studies of the hydrogel provided further evidence for the safety of its application. The work provided a simple strategy to prepare a G-quadruplex drug carrier, which was expected to achieve multi-drug delivery.
10.1021/acsami.2c02295
Therapeutic implications of functional tea ingredients for ameliorating inflammatory bowel disease: a focused review.
Critical reviews in food science and nutrition
Inflammatory bowel disease (IBD) is a chronic gastro-intestinal disorders of unknown etiology. There are several drugs approved for treating IBD patients with active disease, including first-line use of aminosalicylates, and secondary choices of immunomodulators and other therapies. These medications might manage disease symptoms, but have also shown significant side-effects in IBD patients. Tea is the second largest beverage in the world and its main active ingredients including tea polyphenols, polysaccharides and tea pigments have been shown promising anti-inflammatory and antioxidant properties. In this review, we summarize the influence of different tea varieties including green tea, black tea and dark tea as potential nutritional therapy for preventing and treating IBD, and discuss the mechanisms of tea ingredients involved in the regulation of oxidative stress, inflammation, signaling pathways, and gut microbiota that could benefit for IBD disease management. Our observation directs further basic and clinical investigations on tea polyphenols and their derivatives as novel IBD therapeutic agents.
10.1080/10408398.2021.1884532
Saponins Modulate the Inflammatory Response and Improve IBD-Like Symptoms via TLR/NF-[Formula: see text]B and MAPK Signaling Pathways.
Luo Hua,Vong Chi Teng,Tan Dechao,Zhang Jinming,Yu Hua,Yang Lin,Zhang Chen,Luo Chun,Zhong Zhangfeng,Wang Yitao
The American journal of Chinese medicine
saponins (PNS) are the main active ingredients of (Burk) F. H. Chen, which are used as traditional Chinese medicine for thousands of years and have various clinical effects, including anti-inflammation, anti-oxidation, and cardiovascular protection. Inflammatory bowel disease (IBD) is a complex gastrointestinal inflammatory disease that cannot be cured completely nowadays. The anti-inflammatory and protective effects of PNS were analyzed and in dextran sulfate sodium (DSS)-induced colitis mouse model. PNS inhibited the release of nitric oxide (NO), tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text], interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) in Pam3CSK4-induced RAW 264.7 macrophages. In the animal study, compared with DSS-induced mice, PNS reduced the expression of pro-inflammatory cytokines (TNF-[Formula: see text], IL-6, and MCP-1) in the colon tissues. Furthermore, PNS treatment led to a remarkable reduction in the activation of the inhibitor of nuclear factor kappa-B kinase [Formula: see text]/[Formula: see text] (IKK[Formula: see text]/[Formula: see text], I[Formula: see text]B[Formula: see text] and p65 induced by DSS. On the other hand, PNS inhibited the phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular regulated protein kinase 1/2 (ERK1/2). Taken together, our results suggested that PNS conferred profound protection for colitis mice through the downregulation of mitogen-activated protein kinase (MAPK) and NF-[Formula: see text]B signaling pathways, which were associated with reducing inflammatory responses, alleviating tissue damage, and maintaining of intestinal integrity and functionality.
10.1142/S0192415X21500440
The Anti-Inflammatory Properties of Licorice ()-Derived Compounds in Intestinal Disorders.
International journal of molecular sciences
Intestinal diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancer (CRC), are a significant source of morbidity and mortality worldwide. Epidemiological data have shown that IBD patients are at an increased risk for the development of CRC. IBD-associated cancer develops against a background of chronic inflammation and oxidative stress, and their products contribute to cancer development and progression. Therefore, the discovery of novel drugs for the treatment of intestinal diseases is urgently needed. Licorice () has been largely used for thousands of years in traditional Chinese medicine. Licorice and its derived compounds possess antiallergic, antibacterial, antiviral, anti-inflammatory, and antitumor effects. These pharmacological properties aid in the treatment of inflammatory diseases. In this review, we discuss the pharmacological potential of bioactive compounds derived from Licorice and addresses their anti-inflammatory and antioxidant properties. We also discuss how the mechanisms of action in these compounds can influence their effectiveness and lead to therapeutic effects on intestinal disorders.
10.3390/ijms23084121
Phytochemicals as regulators of Th17/Treg balance in inflammatory bowel diseases.
Chang Yaoyao,Zhai Lixiang,Peng Jiao,Wu Haiqiang,Bian Zhaoxiang,Xiao Haitao
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disorder that is difficult to cure and characterized by periods of relapse. To face the challenges of limited treatment strategies and drawbacks of conventional medications, developing new and promising strategies as well as safe and effective drugs for treatment of IBD has become an urgent demand for clinics. The imbalance of Th17/Treg is a crucial event for the development of IBD, and studies have verified that correcting the imbalance of Th17/Treg is an effective strategy for preventing and treating IBD. Recently, a growing body of studies has indicated that phytochemicals derived from natural products are potent regulators of Th17/Treg, and exert preferable protective benefits against colonic inflammation. In this review, the great potential of anti-colitis agents derived from natural products through targeting Th17/Treg cells and their action mechanisms for the treatment or prevention of IBD in recent research is summarized, which may help further the development of new drugs for IBD treatment.
10.1016/j.biopha.2021.111931
as a Drug Candidate for Inflammatory Bowel Disease: The Preclinical Evidence.
The American journal of Chinese medicine
Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that include Crohn's disease (CD) and ulcerative colitis (UC). Today, IBD has no successful treatment. As a result, it is of paramount importance to develop novel therapeutic agents for IBD prevention and treatment. (AMS) is a traditional Chinese medicine found in the AMS root. Modern pharmacological studies indicate that AMS and its constituents exhibit multiple bioactivities, such as anti-inflammatory, anti-oxidant, immune regulatory, anticancer, hypolipidemic, hypoglycemic, hepatoprotective, expectorant, and diuretic effects. AMS and its active constituents, which have been reported to be effective in IBD treatment, are believed to be viable candidate drugs for IBD treatment. These underlying mechanisms are associated with anti-inflammation, anti-oxidation, immunomodulation, intestinal epithelial repair, gut microbiota homeostasis, and improved energy metabolism. In this review, we summarize the efficacy and underlying mechanisms involved in IBD treatment with AMS and its active constituents in preclinical studies.
10.1142/S0192415X23500684
Medicinal plant-based drug delivery system for inflammatory bowel disease.
Frontiers in pharmacology
Inflammatory bowel disease (IBD) is a chronic recurrent intestinal disease. The incidence rate of IBD is increasing year by year, which seriously endangers human health worldwide. More and more studies have shown that medicinal plants or their main phytochemicals have great potential in the treatment of intestinal diseases. However, the disadvantages of low oral absorption rate, low biological distribution and low systemic bioavailability limit their clinical application to a certain extent. In recent years, the application of nanotechnology has made it possible to treat IBD. Nanoparticles (NPs) drug delivery system has attracted special attention in the treatment of IBD due to its small size, low immunogenicity, surface modification diversity, targeting and other advantages. Synthetic nanoparticles and extracellular vehicles (EVs) can deliver drug components to colon, and play a role in anti-inflammation, regulation of oxidative stress, improvement of intestinal flora, etc. In addition, some medicinal plants can secrete EVs by themselves, and carry biological molecules with therapeutic effects to act on the intestine. Some clinical trials to evaluate the safety, tolerance, toxicity and effectiveness of EVs-loaded drugs in IBD are also progressing steadily. This review introduces that synthetic nanoparticles and medicinal plants derived EVs can play an important role in the treatment of IBD by carrying the effective active phytochemicals of medicinal plants, and discuss the limitations of current research and future research needs, providing a scientific and reliable basis and perspective for further clinical application and promotion.
10.3389/fphar.2023.1158945
Houttuynia cordata thunb. alleviates inflammatory bowel disease by modulating intestinal microenvironment: a research review.
Frontiers in immunology
Inflammatory bowel disease (IBD) is a complex group of chronic intestinal diseases, the cause of which has not yet been clarified, but it is widely believed that the disorder of the intestinal microenvironment and its related functional changes are key factors in the development of the disease. Houttuynia cordata thunb. is a traditional plant with abundant resources and long history of utilization in China, which has attracted widespread attention in recent years due to its potential in the treatment of IBD. However, its development and utilization are limited owing to the aristolochic acid alkaloids contained in it. Therefore, based on the relationship between the intestinal microenvironment and IBD, this article summarizes the potential mechanisms by which the main active ingredients of Houttuynia cordata thunb., such as volatile oils, polysaccharides, and flavonoids, and related traditional Chinese medicine preparations, such as Xiezhuo Jiedu Formula, alleviate IBD by regulating the intestinal microenvironment. At the same time, combined with current reports, the medicinal and edible safety of Houttuynia cordata thunb. is explained for providing ideas for further research and development of Houttuynia chordate thunb. in IBD disease, more treatment options for IBD patients, and more insights into the therapeutic potential of plants with homology of medicine and food in intestinal diseases, and even more diseases.
10.3389/fimmu.2023.1306375
Mechanistic Understanding of Herbal Therapy in Inflammatory Bowel Disease.
Zhao Luqing,Zhang Shengsheng,He Peijian
Current pharmaceutical design
The incidence and prevalence of inflammatory bowel diseases (IBD), which comprise ulcerative colitis and Crohn's disease, are increasing dramatically worldwide. Immunomodulators and biological agents can help but cause severe side effects in long-term use. As such, complementary and alternative medicine, in particular herbal remedy, is becoming more and more popular in the treatment of IBD patients. Many natural compounds have been used in clinical trials and some have been proven promising in IBD treatment. To achieve a better understanding of herbal therapy, researchers focus on understanding the underlying mechanisms by using experimental rodent models. The mechanism of the pathogenesis of IBD is complex involving both environmental and genetic factors. IBD is considered as a consequence of impaired epithelial barrier function, gut microbiota dysbiosis, and aberrant immune response. Studies have demonstrated that herbal medicine can improve epithelial proliferation and barrier integrity, restore microbiota homeostasis, and suppress hyper-immune reaction. This review is to summarize current understanding of the molecular basis of herbal treatment of IBD at the levels of epithelial, microbial, and immune regulation.
10.2174/1381612823666171010124414
Phytochemicals targeting Toll-like receptors 4 (TLR4) in inflammatory bowel disease.
Chinese medicine
Inflammatory bowel disease (IBD) is a collective term for inflammatory diseases including Crohn's disease and ulcerative colitis. Toll-like receptor 4 (TLR4) is thought to play a key role in the pathogenesis of IBD. Inhibition of TLR4 has been recognized as an effective target for the treatment of IBD. Many phytochemicals have been shown to have potential as new drugs for the treatment of IBD. This review surveyed the available literature and reports which focused on the in vivo effects of phytochemicals targeting TLR4 in different models of IBD, and clarified the significance of TLR4 as a current therapeutic target for IBD. Based on our review, we have concluded that phytochemicals targeting TLR4 are potentially effective candidates for developing new therapeutic drugs against IBD.
10.1186/s13020-022-00611-w
[Application of active components from traditional Chinese medicine in treatment of inflammatory bowel disease].
Shao Mei-Juan,Yan Yu-Xi,Qi Qing,Tang Wei,Zuo Jian-Ping
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica
Inflammatory bowel disease(IBD) is a non-specific and chronic recurrent autoimmune disease that involves the gastrointestinal tract. Clinical symptoms of intestinal bleeding, diarrhea, and weight loss threat to human health and induce colorectal cancer. The pathogenesis included living environment, genetic factors, immune cell infiltration and immune stress, weakened mucosal barrier defense and intestinal flora imbalance. At present, clinical treatment drugs mainly include aminosalicylic acid, corticosteroids, immunosuppressants, biological agents, etc., in view of the disadvantages of poor therapeutic effect and expensive price. The active ingredients of traditional Chinese medicine(TCM) in the treatment IBD have various biological activities and multiple targets such as anti-inflammatory, antibacterial, anti-tumor and immune regulation. This article summarized the application and the research progress in protecting intestinal epithelial barrier, maintaining intestinal microbial homeostasis, inhibiting causative factors, and regulating Th1/Th17/Treg balance about TCM in the treatment of IBD. The review provided new ideas for further development of the new drugs on the mechanism based on active ingredients of TCM in IBD treatment.
10.19540/j.cnki.cjcmm.20180907.001
Natural products modulate NLRP3 in ulcerative colitis.
Frontiers in pharmacology
Ulcerative colitis (UC) is a clinically common, progressive, devastating, chronic inflammatory disease of the intestine that is recurrent and difficult to treat. Nod-like receptor protein 3 (NLRP3) is a protein complex composed of multiple proteins whose formation activates cysteine aspartate protease-1 (caspase-1) to induce the maturation and secretion of inflammatory mediators such as interleukin (IL)-1β and IL-18, promoting the development of inflammatory responses. Recent studies have shown that NLRP3 is associated with UC susceptibility, and that it maintains a stable intestinal environment by responding to a wide range of pathogenic microorganisms. The mainstay of treatment for UC is to control inflammation and relieve symptoms. Despite a certain curative effect, there are problems such as easy recurrence after drug withdrawal and many side effects associated with long-term medication. NLRP3 serves as a core link in the inflammatory response. If the relationship between NLRP3 and gut microbes and inflammation-associated factors can be analyzed concerning its related inflammatory signaling pathways, its expression status as well as specific mechanism in the course of IBD can be elucidated and further considered for clinical diagnosis and treatment of IBD, it is expected that the development of lead compounds targeting the NLRP3 inflammasome can be developed for the treatment of IBD. Research into the prevention and treatment of UC, which has become a hotbed of research in recent years, has shown that natural products are rich in therapeutic means, and multi-targets, with fewer adverse effects. Natural products have shown promise in treating UC in numerous basic and clinical trials over the past few years. This paper describes the regulatory role of the NLRP3 inflammasome in UC and the mechanism of recent natural products targeting NLRP3 against UC, which provides a reference for the clinical treatment of this disease.
10.3389/fphar.2023.1265825
Natural products targeting Nrf2/ARE signaling pathway in the treatment of inflammatory bowel disease.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
Inflammatory bowel disease (IBD) is a special chronic intestinal inflammatory disease, which is mainly divided into Crohn's disease (CD) and ulcerative colitis (UC). Its occurrence is a complex process that regulated by multiple signaling pathways, including nuclear factor erythroid 2-related factor (Nrf2)/ antioxidant response element (ARE) signaling pathway. Nrf2/ARE pathway as the central defense mechanism against oxidative stress controls the expression of many antioxidant and anti-inflammatory genes in the nucleus, and plays a crucial role in the treatment of IBD. Various studies have proved that many natural compounds target Nrf2/ARE signaling pathway to treat IBD. Here, we introduced the regulatory mechanism of the Nrf2/ARE pathway, and its role in IBD and IBD complications (intestinal fibrosis and colorectal cancer (CRC)); summarized the research progress of Nrf2 targeted natural compounds and extracts in the treatment of IBD; and finally described the intestinal microbiota that alleviate or treat IBD via activating Nrf2/ARE signaling pathway. This review highlights the potential for targeting Nrf2/ARE pathway to treat IBD.
10.1016/j.biopha.2023.114950
Modified Gegen Qinlian Decoction Regulates Treg/Th17 Balance to Ameliorate DSS-Induced Acute Experimental Colitis in Mice by Altering the Gut Microbiota.
Wang Yifan,Zhang Jiaqi,Xu Lin,Ma Jing,Lu Mengxiong,Ma Jinxin,Liu Zhihong,Wang Fengyun,Tang Xudong
Frontiers in pharmacology
Inflammatory bowel disease (IBD) is characterized by chronic pathology associated with extensive intestinal microbial dysregulation and intestinal inflammation. Thus, efforts are underway to manipulate the gut microbiome to improve inflammatory pathology. Gegen Qinlian decoction (GQD), a traditional Chinese medicine prescription, has been widely utilized for treating diarrhea and ulcerative colitis (UC) for thousands of years. However, the underlying mechanism of its efficacy and whether its protective effect against colitis is mediated by the gut microbiota are poorly understood. In the present study, our data demonstrated that modified GQD (MGQD) administration significantly improved the pathological phenotypes and colonic inflammation challenged by DSS in mice, which were specifically manifested as reduced loss of body weight, shortening of colon length, DAI score, histological score and suppressed inflammatory response. 16S rRNA sequencing and targeted metabonomics analysis showed that MQGD altered the diversity and community landscape of the intestinal microbiota and the metabolic profiles. In particular, MQGD significantly boosted the abundance of the intestinal microbiota producing short-chain fatty acids (SCFAs), which are causally associated with promoting the development of Treg cells and suppressing the differentiation of pro-inflammatory Th17 cells. More importantly, transferring fecal microbiota from MGQD-treated or healthy controls exhibited equivalent alleviative effects on colitis mice. However, this protective effect could not be replicated in experiments of mice with depleted intestinal microbes through broad-spectrum antibiotic cocktails (ABX), further supporting the importance of SCFA-producing gut microbiota in the beneficial role of MGQD. In general, MGQD therapy has the potential to remodel the intestinal microbiome and reestablish immune homeostasis to ameliorate DSS-induced colitis.
10.3389/fphar.2021.756978
A recent update on the use of Chinese medicine in the treatment of inflammatory bowel disease.
Yang Lin,Luo Hua,Tan Dechao,Zhang Siyuan,Zhong Zhangfeng,Wang Shengpeng,Vong Chi Teng,Wang Yitao
Phytomedicine : international journal of phytotherapy and phytopharmacology
BACKGROUND:Inflammatory bowel disease (IBD) is a chronic idiopathic disease that is characterized by inflammation of the gastrointestinal tract. Proper management of IBD requires both early diagnosis and novel therapies and management programs. Many reports have suggested that Chinese medicine has unique properties favorable to the treatment of IBD. However, there are no systematic analyses on this topic. PURPOSE:This review summarizes recent studies that assessed the effects and mechanisms of Chinese medicine in the treatment of IBD in order to fully understand the advantages of Chinese medicine in the management of IBD. METHODS:A literature search was conducted using peer-reviewed and clinical databases, including PubMed, Web of Science, ClinicalTrials.gov, MEDLINE, EMBASE, Springer LINK, Wan-fang database, the Chinese Biomedicine Database, and the China National Knowledge Infrastructure (CNKI). Keywords used were inflammatory bowel disease (including Ulcerative colitis or Crohn's disease) and Chinese medicine. All selected articles were from 1997 to 2021, and each were assessed critically for our exclusion criteria. Studies describing the pathogenesis of IBD, the effects and mechanisms of Chinese medicine in the treatment of IBD, in particular their roles in immune regulation, intestinal flora regulation, and improvement of intestinal barrier function, were included. CONCLUSION:This review highlights recent progress in the use of Chinese medicine in the treatment of IBD. It also provides a reference for further evaluation and exploration of the potential of classical multi-herbal Chinese medicine in the treatment of IBD.
10.1016/j.phymed.2021.153709
Novel drug delivery systems of Chinese medicine for the treatment of inflammatory bowel disease.
Chinese medicine
Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease that comprises ulcerative colitis (UC) and Crohn's disease (CD). IBD involves the ileum, rectum, and colon, and common clinical manifestations of IBD are diarrhea, abdominal pain, and even bloody stools. Currently, non-steroidal anti-inflammatory drugs, glucocorticoids, and immunosuppressive agents are used for the treatment of IBD, while their clinical application is severely limited due to unwanted side effects. Chinese medicine (CM) is appealing more and more attention and investigation for the treatment of IBD owing to the potent anti-inflammation pharmacological efficacy and high acceptance by patients. In recent years, novel drug delivery systems are introduced apace to encapsulate CM and many CM-derived active constituents in order to improve solubility, stability and targeting ability. In this review, advanced drug delivery systems developed in the past and present to deliver CM for the treatment of IBD are summarized and future directions are discussed.
10.1186/s13020-019-0245-x
Biological and clinical implications of herbal medicine and natural products for the treatment of inflammatory bowel disease.
Guo Bao-Jian,Bian Zhao-Xiang,Qiu Hong-Cong,Wang Yi-Tao,Wang Ying
Annals of the New York Academy of Sciences
Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that includes Crohn's disease (CD) and ulcerative colitis (UC). Homeostasis of various regulatory factors involved with intestinal immunity is disrupted in IBD, including the intestinal epithelial barrier, macrophages, and cellular mediators such as cytokines and chemokines. No successful treatment is currently available for the management of IBD. Natural products and herbal medicines have exhibited efficacy for UC and CD in experimental models and clinical trials with the following activities: (1) maintenance of integrity of the intestinal epithelial barrier, (2) regulation of macrophage activation, (3) modulation of innate and adaptive immune response, and (4) inhibition of TNF-α activity. Here, we discuss the major factors involved in the pathogenesis of IBD and the current development of natural products and herbs for the treatment of IBD.
10.1111/nyas.13414
Holism of Chinese herbal medicine prescriptions for inflammatory bowel disease: A review based on clinical evidence and experimental research.
Phytomedicine : international journal of phytotherapy and phytopharmacology
BACKGROUND:Inflammatory bowel disease (IBD) is a chronic nonspecific inflammatory disease that causes a heavy burden and lacks effective treatments. Chinese herbal medicine prescriptions (CHMPs), which are characterized by a synergistic usage of herbs, are widely used in the management of IBD. The molecular mechanisms of action of CHMP are still ambiguous as the canonical "one-compound-one-target" approach has difficulty describing the dynamic bioreactions among CHMP objects. It seems more flexible to define the holism of CHMP for IBD by employing high-throughput analysis. However, studies that discuss the development of CHMP in treating IBD in a holistic view are still lacking. PURPOSE:This review appraised preclinical and clinical research to fully describe the anti-IBD capacity of CHMPs and discussed CHMPs' holistic characteristics that can contribute to better management of IBD. METHODS & RESULTS:We screened clinical and preclinical references of CHMP being used as treatments for IBD. We discussed the complexity of IBD and the development of CHMP to present the sophistication of CHMP treatments. To describe the clinical effectiveness of CHMPs against IBD, we performed an umbrella review of CHMP-associated META analyses, in which 1174 records were filtered down to 12 references. Then, we discussed 14 kinds of CHMPs that had a long history of use and analyzed their mechanisms of action. Representative herbs were employed to provide a subordinate explanation for the whole prescription. As holism is the dominant characteristic of CHMPs, we explored applications of CHMPs for IBD with the help of omics, gut microbiome, and network pharmacology, which are potential approaches to a dynamic figure of bioactions of CHMPs. CONCLUSION:This review is the first to discuss the potential of CHMPs to manage IBD in a holistic context and will provide inspiring explanations for CHMP applications for further product transformation and application to other diseases.
10.1016/j.phymed.2022.154202
Stigmasterol Restores the Balance of Treg/Th17 Cells by Activating the Butyrate-PPARγ Axis in Colitis.
Wen Shuting,He Long,Zhong Zhuotai,Zhao Runyuan,Weng Senhui,Mi Hong,Liu Fengbin
Frontiers in immunology
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder with gut microbiota disequilibrium and regulatory T (Treg)/T helper 17 (Th17) immune imbalance. Stigmasterol, a plant-derived sterol, has shown anti-inflammatory effects. Our study aimed to identify the effects of stigmasterol on experimental colitis and the related mechanisms. Stigmasterol treatment restored the Treg/Th17 balance and altered the gut microbiota in a dextran sodium sulfate (DSS)-induced colitis model. Transplantation of the faecal microbiota of stigmasterol-treated mice significantly alleviated inflammation. Additionally, stigmasterol treatment enhanced the production of gut microbiota-derived short-chain fatty acids (SCFAs), particularly butyrate. Next, human naïve CD4+ T cells sorted from IBD patients were cultured under Treg- or Th17-polarizing conditions; butyrate supplementation increased the differentiation of Tregs and decreased Th17 cell differentiation. Mechanistically, butyrate activated peroxisome proliferator-activated receptor gamma (PPARγ) and reprogrammed energy metabolism, thereby promoting Treg differentiation and inhibiting Th17 differentiation. Our results demonstrate that butyrate-mediated PPARγ activation restores the balance of Treg/Th17 cells, and this may be a possible mechanism, by which stigmasterol attenuates IBD.
10.3389/fimmu.2021.741934
Inflammatory bowel disease: an overview of Chinese herbal medicine formula-based treatment.
Chinese medicine
Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the intestine, including Crohn's disease (CD) and ulcerative colitis (UC), whose etiology and pathogenesis have not been fully understood. Due to its prolonged course and chronic recurrence, IBD imposes a heavy economic burden and psychological stress on patients. Traditional Chinese Herbal Medicine has unique advantages in IBD treatment because of its symptomatic treatment. However, the advantages of the Chinese Herbal Medicine Formula (CHMF) have rarely been discussed. In recent years, many scholars have conducted fundamental studies on CHMF to delay IBD from different perspectives and found that CHMF may help maintain intestinal integrity, reduce inflammation, and decrease oxidative stress, thus playing a positive role in the treatment of IBD. Therefore, this review focuses on the mechanisms associated with CHMF in IBD treatment. CHMF has apparent advantages. In addition to the exact composition and controlled quality of modern drugs, it also has multi-component and multi-target synergistic effects. CHMF has good prospects in the treatment of IBD, but its multi-agent composition and wide range of targets exacerbate the difficulty of studying its treatment of IBD. Future research on CHMF-related mechanisms is needed to achieve better efficacy.
10.1186/s13020-022-00633-4
Berberine improves colitis by triggering AhR activation by microbial tryptophan catabolites.
Pharmacological research
Inflammatory bowel diseases (IBD) are kind of recurrent inflammatory issues that occur in the gastrointestinal tract, and currently clinical treatment is still unideal due to the complex pathogenesis of IBD. Basically, gut barrier dysfunction is triggered by gut microbiota dysbiosis that is closely associated with the development of IBD, we thus investigated the therapeutic capacity of berberine (BBR) to improve the dysregulated gut microbiota, against IBD in rats, using a combinational strategy of targeted metabolomics and 16 s rDNA amplicon sequencing technology. Expectedly, our data revealed that BBR administration could greatly improve the pathological phenotype, gut barrier disruption, and the colon inflammation in rats with dextran sulfate sodium (DSS)-induced colitis. In addition, 16S rDNA-based microbiota analysis demonstrated that BBR could alleviate gut dysbiosis in rats. Furthermore, our targeted metabolomics analysis illustrated that the levels of microbial tryptophan catabolites in the gastrointestinal tract were significantly changed during the development of the colitis in rats, and BBR treatment can significantly restore such changes of the tryptophan catabolites accordingly. At last, our in vitro mechanism exploration was implemented with a Caco-2 cell monolayer model, which verified that the modulation of the dysregulated gut microbiota to change microbial metabolites coordinated the improvement effect of BBR on gut barrier disruption in the colitis, and we also confirmed that the activation of AhR induced by microbial metabolites is indispensable to the improvement of gut barrier disruption by BBR. Collectively, BBR has the capacity to treat DSS-induced colitis in rats through the regulation of gut microbiota associated tryptophan metabolite to activate AhR, which can greatly improve the disrupted gut barrier function. Importantly, our finding elucidated a novel mechanism of BBR to improve gut barrier function, which holds the expected capacity to promote the BBR derived drug discovery and development against the colitis in clinic setting.
10.1016/j.phrs.2020.105358
Artemisinin analogue SM934 ameliorates DSS-induced mouse ulcerative colitis via suppressing neutrophils and macrophages.
Yan Yu-Xi,Shao Mei-Juan,Qi Qing,Xu Yan-Sheng,Yang Xiao-Qian,Zhu Feng-Hua,He Shi-Jun,He Pei-Lan,Feng Chun-Lan,Wu Yan-Wei,Li Heng,Tang Wei,Zuo Jian-Ping
Acta pharmacologica Sinica
Ulcerative colitis (UC) is a chronic, nonspecific inflammatory bowel disease (IBD) characterized by complicated and relapsing inflammation in the gastrointestinal tract. SM934 is a water-soluble artemisinin analogue that shows anti-inflammatory and immuno-regulatory effects. In this study, we investigated the effects of SM934 on UC both in vivo and in vitro. A mouse model of colitis was established in mice by oral administration of 5% dextran sulfate sodium (DSS). SM934 (3, 10 mg/kg per day, ig) was administered to the mice for 10 days. After the mice were sacrificed, colons, spleens and mesenteric lymph nodes (MLNs) were collected for analyses. We showed that SM934 administration restored DSS-induced body weight loss, colon shortening, injury and inflammation scores. Furthermore, SM934 administration significantly decreased the disease activity index (DAI), histopathological scores, and myeloperoxidase (MPO) activities in colonic tissues. Moreover, SM934 administration dose-dependently decreased the mRNA and protein levels of DSS-induced pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α), and the percentage of macrophages and neutrophils in colon tissues. The effects of SM934 on LPS-stimulated RAW 264.7 cells and THP-1-derived macrophages were examined in vitro. Treatment with SM934 (0.8, 8, 80 μmol/L) dose-dependently decreased the production of pro-inflammatory mediators in LPS-stimulated RAW264.7 cells and THP-1-derived macrophages via inhibiting activation of the NF-κB signaling. Our results reveal the protective effects of SM934 on DSS-induced colitis can be attributed to its suppressing effects on neutrophils and macrophages and its inhibitory role in the NF-κB signaling, suggests that SM934 might be a potential effective drug for ulcerative colitis.
10.1038/aps.2017.185
Qingchang Huashi Formula attenuates DSS-induced colitis in mice by restoring gut microbiota-metabolism homeostasis and goblet cell function.
Hu Jingyi,Huang Hai,Che Yuan,Ding Chujie,Zhang Lu,Wang Yun,Hao Haiping,Shen Hong,Cao Lijuan
Journal of ethnopharmacology
ETHNOPHARMACOLOGICAL RELEVANCE:Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disease of the gastrointestinal tract, consisting of ulcerative colitis (UC) and Crohn's disease (CD). Gut microbiota and their metabolites may play a role in the pathogen of IBD, especially of the UC. Qingchang Huashi Formula (QHF), a traditional Chinese medicine formula, has shown therapeutic effect on treating UC based on the clinical practice without clear pharmacological mechanism. AIM OF THE STUDY:The aim of this study was to clearly define the effect of QHF and its components, Baitouweng (PBR) and Baizhi (ADR) on treating UC. MATERIALS AND METHODS:Pharmacodynamic effects of QHF and single herb were evaluated in dextran sulfate sodium (DSS) induced acute or chronic colitis mice. Body weight loss, disease activity index (DAI) and colon length were estimated. Histological changes were observed by H&E staining. The number and abundance of gut microbiota were measured with 16S rRNA sequencing. LC-MS and GC-MS were used to detect the concentration of metabolites (e.g., bile acids (BAs) and short chain fatty acids (SCFAs)). The goblet cell was observed by Alcian blue/periodic acid-Schiff (AB/PAS) straining and the crypt stem cell was estimated by immunohistochemical analyses. The colorectal tissues were used to detect levels of IL-1β, IL-6 and TNF-α by ELISA or qRT-PCR. The expression of NLRP3, Caspase 1 and IL-1β were examined by western blotting. RESULTS:QHF significantly inhibited colitis, protected mice from the loss of body weight and colon shorten. Comparatively, ADR and PBR showed strong efficacy in inhibiting DSS-induced colitis. We verified that while ADR was responsible for QHF's effect on maintaining gut microbiota homeostasis and metabolism, PBR was more prominent in keeping crypt stem cells proliferation and colonic goblet cells function. Moreover, we demonstrated that the alleviation of colitis by QHF was associated with the restoration of gut microbiota-metabolism homeostasis, protection of intestinal epithelial barrier and regulation of NLRP3/IL-1β pathway. CONCLUSIONS:The finding of the present study suggested that QHF is curative in DSS-induced colitis by restoring gut microbiota-metabolism homeostasis and goblet cells function. An optimized QHF was constituted by ADR and PBR, which showed comparable efficacy on colitis to that of QHF. Our work probed out the active constitutes as well as the relevant pharmacological mechanisms of QHF, shedding light on potential new drug combination for the treatment of IBD.
10.1016/j.jep.2020.113394
Traditional Chinese Medicine Regulates Th17/Treg Balance in Treating Inflammatory Bowel Disease.
Evidence-based complementary and alternative medicine : eCAM
Inflammatory bowel disease (IBD), also known as chronic nonspecific inflammatory disease of the colon and rectum, is primarily characterized by mucopurulent bloody stools, diarrhea, abdominal pain, and tenesmus. Its cause is uncertain. IBD patients frequently experience a high rate of recurrence, a protracted treatment course, and a high risk of carcinogenesis. Additionally, the difficulty of treatment is significantly increased by these illness characteristics. Currently, the normal treatment for this illness can lessen symptoms to some amount and even meet clinical treatment requirements, but due to serious side effects, unfavorable reactions, and high costs, we need to develop better complementary and alternative medicines. A number of studies have found that the imbalance of T helper cell 17 (Th17)/regulatory T cells (Treg) contributes significantly to the occurrence and progression of IBD and that Th17/Treg balance restoration is frequently useful in the management of IBD. As a result, regulating the Th17/Treg balance has also emerged as a novel approach to treating IBD. Traditional Chinese medicine (TCM) has gained popularity in recent years due to its advantages of low side effects, a variety of targets, and multiple regulatory mechanisms. A number of studies have shown that TCM can successfully intervene in the Th17/Treg imbalance and restore it, and research on the prevention and treatment of IBD by TCM by restoring Th17/Treg has also shown promising results. The characteristics of the Th17/Treg balance and its role in the pathogenesis of IBD, as well as the role of TCM in regulating the Th17/Treg imbalance, are analyzed. The research results are expected to provide a theoretical basis for the clinical treatment and pathology mechanism research of IBD.
10.1155/2022/6275136