AI总结:
Scan me!
共3篇 平均IF=4.7 (3.3-23.1)更多分析
  • 1区Q1影响因子: 23.1
    1. SAP controls the cytolytic activity of CD8+ T cells against EBV-infected cells.
    期刊:Blood
    日期:2005-01-27
    DOI :10.1182/blood-2004-08-3269
    The adaptor protein SAP regulates signaling through signaling lymphocytic activation molecule (SLAM)-family receptors expressed on T and natural killer (NK) cells. In patients affected by X-linked lymphoproliferative (XLP) disease, mutations in the SH2D1A gene result in defective lytic activity. However, the mechanism by which SAP controls cytotoxic activity remains unclear. T-cell-receptor (TCR) activation of CD8(+) cytotoxic T cells (CTLs) results in down-regulation of SAP, suggesting that this protein is involved in early activation events. Here, we show that SAP-deficient CTLs from patients with XLP and hemophagocytic lymphohistiocytosis (HLH) display a specific lytic defect against autologous and allogeneic Epstein-Barr virus (EBV)-positive B cells. This defect is associated with the defective polarization of 2B4, perforin, and lipid rafts at the contact area of CTLs with EBV-positive targets. Blockade of 2B4 in normal CTLs reproduces the defects in lysis and polarization observed in SAP-deficient CTLs. Expression and regulation of the SLAM-family receptors SLAM, CD84, and 2B4, as well as the lytic effectors perforin and granzyme-B are normal in SAP-deficient CTLs. In addition, TCR stimulation leads to normal proliferation and production of interleukin 2 (IL-2), IL-4, and interferon-gamma (IFN-gamma). These results demonstrate that the SAP/2B4 pathway plays a key role in CTL lytic activity against EBV-positive targets by promoting the polarization of the lytic machinery.
  • 3区Q2影响因子: 3.3
    跳转PDF
    2. Proteomic analysis of human osteoarthritis synovial fluid.
    作者:Balakrishnan Lavanya , Nirujogi Raja Sekhar , Ahmad Sartaj , Bhattacharjee Mitali , Manda Srikanth S , Renuse Santosh , Kelkar Dhanashree S , Subbannayya Yashwanth , Raju Rajesh , Goel Renu , Thomas Joji Kurian , Kaur Navjyot , Dhillon Mukesh , Tankala Shantal Gupta , Jois Ramesh , Vasdev Vivek , Ramachandra Yl , Sahasrabuddhe Nandini A , Prasad Ts Keshava , Mohan Sujatha , Gowda Harsha , Shankar Subramanian , Pandey Akhilesh
    期刊:Clinical proteomics
    日期:2014-02-17
    DOI :10.1186/1559-0275-11-6
    BACKGROUND:Osteoarthritis is a chronic musculoskeletal disorder characterized mainly by progressive degradation of the hyaline cartilage. Patients with osteoarthritis often postpone seeking medical help, which results in the diagnosis being made at an advanced stage of cartilage destruction. Sustained efforts are needed to identify specific markers that might help in early diagnosis, monitoring disease progression and in improving therapeutic outcomes. We employed a multipronged proteomic approach, which included multiple fractionation strategies followed by high resolution mass spectrometry analysis to explore the proteome of synovial fluid obtained from osteoarthritis patients. In addition to the total proteome, we also enriched glycoproteins from synovial fluid using lectin affinity chromatography. RESULTS:We identified 677 proteins from synovial fluid of patients with osteoarthritis of which 545 proteins have not been previously reported. These novel proteins included ADAM-like decysin 1 (ADAMDEC1), alanyl (membrane) aminopeptidase (ANPEP), CD84, fibulin 1 (FBLN1), matrix remodelling associated 5 (MXRA5), secreted phosphoprotein 2 (SPP2) and spondin 2 (SPON2). We identified 300 proteins using lectin affinity chromatography, including the glycoproteins afamin (AFM), attractin (ATRN), fibrillin 1 (FBN1), transferrin (TF), tissue inhibitor of metalloproteinase 1 (TIMP1) and vasorin (VSN). Gene ontology analysis confirmed that a majority of the identified proteins were extracellular and are mostly involved in cell communication and signaling. We also confirmed the expression of ANPEP, dickkopf WNT signaling pathway inhibitor 3 (DKK3) and osteoglycin (OGN) by multiple reaction monitoring (MRM) analysis of osteoarthritis synovial fluid samples. CONCLUSIONS:We present an in-depth analysis of the synovial fluid proteome from patients with osteoarthritis. We believe that the catalog of proteins generated in this study will further enhance our knowledge regarding the pathophysiology of osteoarthritis and should assist in identifying better biomarkers for early diagnosis.
  • 2区Q1影响因子: 4.7
    跳转PDF
    3. Comprehensive Analysis of Human Cytomegalovirus- and HIV-Mediated Plasma Membrane Remodeling in Macrophages.
    作者:Businger Ramona , Kivimäki Saima , Simeonov Stefan , Vavouras Syrigos Georgios , Pohlmann Justus , Bolz Michael , Müller Patrick , Codrea Marius C , Templin Corinna , Messerle Martin , Hamprecht Klaus , Schäffer Tilman E , Nahnsen Sven , Schindler Michael
    期刊:mBio
    日期:2021-08-17
    DOI :10.1128/mBio.01770-21
    The plasma membrane (PM) must be overcome by viruses during entry and release. Furthermore, the PM represents the cellular communication compartment and the immune system interface. Hence, viruses have evolved sophisticated strategies to remodel the PM, for instance to avoid immune sensing and clearance of infected cells. We performed a comprehensive analysis of cell surface dysregulation by two human-pathogenic viruses, human cytomegalovirus (HCMV) and human immunodeficiency virus type 1 (HIV-1), in primary macrophages, which are classical antigen-presenting cells and orchestrators of the immune system. Scanning ion conductance microscopy revealed a loss of roughness and an overall smooth phenotype of HCMV-infected macrophages, in contrast to HIV-1 infection. This phenotype was also evident on the molecular level. When we screened for cell surface receptors modulated by HCMV, 42 of 332 receptors tested were up- or downregulated, whereas HIV-1 affected only 7 receptors. In particular CD164, CD84, and CD180 were targeted by HCMV. Mechanistically, HCMV induced transcriptional silencing of these receptors in an interferon (IFN)-independent manner, and expression was reduced not only by lab-adapted HCMV but also by clinical HCMV isolates. Altogether, our plasma membrane profiling of human macrophages provides clues to understand how viruses evade the immune system and identified novel cell surface receptors targeted by HCMV. The PM is a key component that viruses have to cope with. It is a barrier for infection and egress and is critically involved in antiviral immune signaling. We hence asked the question how two immunomodulatory viruses, HIV-1 and HCMV, dysregulate this compartment in infected macrophages, relevant targets of both viruses. We employed a contact-free microscopic technique to image the PM of infected cells and performed a phenotypic flow cytometry-based screen to identify receptor modulations on a molecular level. Our results show that HIV-1 and HCMV differentially manipulate the PM of macrophages. While HIV-1-mediated changes are relatively subtle, HCMV induces major alterations of the PM. We identify novel immune receptors manipulated by HCMV and define mechanisms of how HCMV interferes with receptor expression. Altogether, our study reveals differential strategies of how two human-pathogenic viruses manipulate infected cells and identifies potential novel pathways of HCMV immune evasion.
logo logo
$!{favoriteKeywords}