1. Loss of P53 Function Activates JAK2-STAT3 Signaling to Promote Pancreatic Tumor Growth, Stroma Modification, and Gemcitabine Resistance in Mice and Is Associated With Patient Survival.
期刊:Gastroenterology
日期:2016-03-19
DOI :10.1053/j.gastro.2016.03.010
BACKGROUND & AIMS:One treatment strategy for pancreatic ductal adenocarcinoma is to modify, rather than deplete, the tumor stroma. Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) is associated with progression of pancreatic and other solid tumors. We investigated whether loss of P53 function contributes to persistent activation of STAT3 and modification of the pancreatic tumor stroma in patients and mice. METHODS:Stat3, Il6st (encodes gp130), or Trp53 were disrupted, or a mutant form of P53 (P53R172H) or transgenic sgp130 were expressed, in mice that developed pancreatic tumors resulting from expression of activated KRAS (KrasG12D, KC mice). Pancreata were collected and analyzed by immunohistochemistry, in situ hybridization, quantitative reverse-transcription polymerase chain reaction (qPCR), or immunoblot assays; fluorescence-activated cell sorting was performed to identify immune cells. We obtained frozen pancreatic tumor specimens from patients and measured levels of phosphorylated STAT3 and P53 by immunohistochemistry; protein levels were associated with survival using Kaplan-Meier analyses. We measured levels of STAT3, P53, ligands for gp130, interleukin 6, cytokines, sonic hedgehog signaling, STAT3 phosphorylation (activation), and accumulation of reactive oxygen species in primary pancreatic cells from mice. Mice with pancreatic tumors were given gemcitabine and a Janus kinase 2 (JAK2) inhibitor; tumor growth was monitored by 3-dimensional ultrasound. RESULTS:STAT3 was phosphorylated constitutively in pancreatic tumor cells from KC mice with loss or mutation of P53. Tumor cells of these mice accumulated reactive oxygen species and had lower activity of the phosphatase SHP2 and prolonged phosphorylation of JAK2 compared with tumors from KC mice with functional P53. These processes did not require the gp130 receptor. Genetic disruption of Stat3 in mice, or pharmacologic inhibitors of JAK2 or STAT3 activation, reduced fibrosis and the numbers of pancreatic stellate cells in the tumor stroma and altered the types of immune cells that infiltrated tumors. Mice given a combination of gemcitabine and a JAK2 inhibitor formed smaller tumors and survived longer than mice given control agents; the tumor stroma had fewer activated pancreatic stellate cells, lower levels of periostin, and alterations in collagen production and organization. Phosphorylation of STAT3 correlated with P53 mutation and features of infiltrating immune cells in human pancreatic tumors. Patients whose tumors had lower levels of phosphorylated STAT3 and functional P53 had significantly longer survival times than patients with high levels of phosphorylated STAT3 and P53 mutation. CONCLUSIONS:In pancreatic tumors of mice, loss of P53 function activates JAK2-STAT3 signaling, which promotes modification of the tumor stroma and tumor growth and resistance to gemcitabine. In human pancreatic tumors, STAT3 phosphorylation correlated with P53 mutation and patient survival time. Inhibitors of this pathway slow tumor growth and stroma formation, alter immune cell infiltration, and prolong survival of mice. Transcript profiling: ArrayExpress accession number: E-MTAB-3278.
添加收藏
创建看单
引用
4区Q2影响因子: 2.6
跳转PDF
登录
英汉
2. Desmoplastic Crosstalk in Pancreatic Ductal Adenocarcinoma Is Reflected by Different Responses of Panc-1, MIAPaCa-2, PaTu-8902, and CAPAN-2 Cell Lines to Cancer-associated/Normal Fibroblasts.
作者:Novák Štepán , Kolář Michal , Szabó Arpád , Vernerová Zdena , Lacina Lukáš , Strnad Hynek , Šáchová Jana , Hradilová Miluše , Havránek Jan , Španko Michal , Čoma Matúš , Urban Lukáš , Kaňuchová Miriam , Melegová Nikola , Gürlich Robert , Dvořák Josef , Smetana Karel , Gál Peter , Szabo Pavol
期刊:Cancer genomics & proteomics
日期:2021 May-Jun
DOI :10.21873/cgp.20254
BACKGROUND/AIM:Pancreatic ductal adenocarcinoma (PDAC) still represents one of the most aggressive cancers. Understanding of the epithelial-mesenchymal crosstalk as a crucial part of the tumor microenvironment should pave the way for therapies to improve patient survival rates. Well-established cell lines present a useful and reproducible model to study PDAC biology. However, the tumor-stromal interactions between cancer cells and cancer-associated fibroblasts (CAFs) are still poorly understood. MATERIALS AND METHODS:We studied interactions between four PDAC cell lines (Panc-1, CAPAN-2, MIAPaCa-2, and PaTu-8902) and conditioned media derived from primary cultures of normal fibroblasts/PDAC-derived CAFs (PANFs). RESULTS:When the tested PDAC cell lines were stimulated by PANF-derived conditioned media, the most aggressive behavior was acquired by the Panc-1 cell line (increased number and size of colonies, remaining expression of vimentin and keratin 8 as well as increase of epithelial-to-mesenchymal polarization markers), whereas PaTu-8902 cells were rather inhibited. Of note, administration of the conditioned media to MIAPaCa-2 cells resulted in an inverse effect on the size and number of colonies, whereas CAPAN-2 cells were rather stimulated. To explain the heterogeneous pattern of the observed PDAC crosstalk at the in vitro level, we further compared the phenotype of primary cultures of cells derived from ascitic fluid with that of the tested PDAC cell lines, analyzed tumor samples of PDAC patients, and performed gene expression profiling of PANFs. Immuno-cyto/histo-chemical analysis found specific phenotype differences within the group of examined patients and tested PDAC cell lines, whereas the genomic approach in PANFs found the key molecules (IL6, IL8, MFGE8 and periostin) that may contribute to the cancer aggressive behavior. CONCLUSION:The desmoplastic patient-specific regulation of cancer cells by CAFs (also demonstrated by the heterogeneous response of PDAC cell lines to fibroblasts) precludes simple targeting and development of an effective treatment strategy and rather requires establishment of an individualized tumor-specific treatment protocol.
添加收藏
创建看单
引用
1区Q1影响因子: 7.3
跳转PDF
登录
英汉
3. Tumor-derived exosomal long noncoding RNA LINC01133, regulated by Periostin, contributes to pancreatic ductal adenocarcinoma epithelial-mesenchymal transition through the Wnt/β-catenin pathway by silencing AXIN2.
期刊:Oncogene
日期:2021-04-06
DOI :10.1038/s41388-021-01762-0
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies and rapidly progressive diseases. Exosomes and long noncoding RNAs (lncRNAs) are emerging as vital mediators in tumor cells and their microenvironment. However, the detailed roles and mechanisms of exosomal lncRNAs in PDAC progression remain unknown. Here, we aimed to clarify the clinical significance and mechanisms of exosomal lncRNA 01133 (LINC01133) in PDAC. We analyzed the expression of LINC01133 in PDAC and found that exosomal LINC01133 expression was high and positively correlated with higher TNM stage and poor overall survival rate of PDAC patients. Further research demonstrated that Periostin could increase exosome secretion and then enhance LINC01133 expression. In addition, Periostin increased p-EGFR, p-Erk, and c-myc expression, and c-myc could bind to the LINC01133 promoter region. These findings suggested that LINC01133 can be regulated by Periostin via EGFR pathway activity. We also observed that LINC01133 promoted the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. We subsequently evaluated the effect of LINC01133 on the Wnt/β-catenin pathway and confirmed that LINC01133 can interact with Enhancer Of Zeste Homolog 2 (EZH2) and then promote H3K27 trimethylation. This can further silence AXIN2 and suppress GSK3 activity, ultimately activating β-catenin. Collectively, these data indicate that exosomal LINC01133 plays an important role in pancreatic tumor progression, and targeting LINC01133 may provide a potential treatment strategy for PDAC.
添加收藏
创建看单
引用
1区Q1影响因子: 10.1
英汉
4. ANGPTL4 accelerates KRAS-Induced acinar to ductal metaplasia and pancreatic carcinogenesis.
期刊:Cancer letters
日期:2021-07-24
DOI :10.1016/j.canlet.2021.07.036
Oncogenic KRAS induces neoplastic transformation of pancreatic acinar cells through acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN), and drives pancreatic ductal adenocarcinoma (PDAC). Angiopoietin-like 4 (ANGPTL4) is known to be involved in the regulation of cancer growth and metastasis. However, whether ANGPTL4 affects KRAS-mediated ADM and early PDAC intervention remains unknown. In the current study, we investigated the role of ANGPTL4 in KRAS-induced ADM, PanIN formation, and PDAC maintenance. We found that ANGPTL4 was highly expressed in human and mouse ADM lesions and contributed to the promotion of KRAS-driven ADM in mice. Consistently, ANGPTL4 rapidly induced ADM in three-dimensional culture of acinar cells with KRAS mutation and formed ductal cysts that silenced acinar genes and activated ductal genes, which are characteristic of in vivo ADM/PanIN lesions. We also found that periostin works as a downstream regulator of ANGPTL4-mediated ADM/PDAC. Genetic ablation of periostin diminished the ADM/PanIN phenotype induced by ANGPTL4. A high correlation between ANGPTL4 and periostin was confirmed in human samples. These results demonstrate that ANGPTL4 is critical for ADM/PanIN initiation and PDAC progression through the regulation of periostin. Thus, the ANGPTL4/periostin axis is considered a potential target for ADM-derived PDAC.
添加收藏
创建看单
引用
1区Q1影响因子: 19.1
打开PDF
登录
英汉
5. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis.
期刊:Nature cell biology
日期:2016-04-18
DOI :10.1038/ncb3340
Pancreatic ductal adenocarcinoma (PDAC) is a devastating metastatic disease for which better therapies are urgently needed. Macrophages enhance metastasis in many cancer types; however, the role of macrophages in PDAC liver metastasis remains poorly understood. Here we found that PDAC liver metastasis critically depends on the early recruitment of granulin-secreting inflammatory monocytes to the liver. Mechanistically, we demonstrate that granulin secretion by metastasis-associated macrophages (MAMs) activates resident hepatic stellate cells (hStCs) into myofibroblasts that secrete periostin, resulting in a fibrotic microenvironment that sustains metastatic tumour growth. Disruption of MAM recruitment or genetic depletion of granulin reduced hStC activation and liver metastasis. Interestingly, we found that circulating monocytes and hepatic MAMs in PDAC patients express high levels of granulin. These findings suggest that recruitment of granulin-expressing inflammatory monocytes plays a key role in PDAC metastasis and may serve as a potential therapeutic target for PDAC liver metastasis.
添加收藏
创建看单
引用
2区Q1影响因子: 6.2
跳转PDF
登录
英汉
6. Intrapancreatic fat, pancreatitis, and pancreatic cancer.
期刊:Cellular and molecular life sciences : CMLS
日期:2023-07-15
DOI :10.1007/s00018-023-04855-z
Pancreatic cancer is typically detected at an advanced stage, and is refractory to most forms of treatment, contributing to poor survival outcomes. The incidence of pancreatic cancer is gradually increasing, linked to an aging population and increasing rates of obesity and pancreatitis, which are risk factors for this cancer. Sources of risk include adipokine signaling from fat cells throughout the body, elevated levels of intrapancreatic intrapancreatic adipocytes (IPAs), inflammatory signals arising from pancreas-infiltrating immune cells and a fibrotic environment induced by recurring cycles of pancreatic obstruction and acinar cell lysis. Once cancers become established, reorganization of pancreatic tissue typically excludes IPAs from the tumor microenvironment, which instead consists of cancer cells embedded in a specialized microenvironment derived from cancer-associated fibroblasts (CAFs). While cancer cell interactions with CAFs and immune cells have been the topic of much investigation, mechanistic studies of the source and function of IPAs in the pre-cancerous niche are much less developed. Intriguingly, an extensive review of studies addressing the accumulation and activity of IPAs in the pancreas reveals that unexpectedly diverse group of factors cause replacement of acinar tissue with IPAs, particularly in the mouse models that are essential tools for research into pancreatic cancer. Genes implicated in regulation of IPA accumulation include KRAS, MYC, TGF-β, periostin, HNF1, and regulators of ductal ciliation and ER stress, among others. These findings emphasize the importance of studying pancreas-damaging factors in the pre-cancerous environment, and have significant implications for the interpretation of data from mouse models for pancreatic cancer.
添加收藏
创建看单
引用
英汉
7. Periostin promotes the chemotherapy resistance to gemcitabine in pancreatic cancer.
作者:Liu Yang , Li Fan , Gao Feng , Xing Lingxi , Qin Peng , Liang Xingxin , Zhang Jiajie , Qiao Xiaohui , Lin Lizhou , Zhao Qian , Du Lianfang
期刊:Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine
日期:2016-09-30
DOI :10.1007/s13277-016-5321-6
Pancreatic ductal adenocarcinoma (PDAC) ranks fourth among cancer-related deaths. The nucleoside analog gemcitabine has been the cornerstone of adjuvant chemotherapy in PDAC for decades. However, gemcitabine resistance develops within weeks of chemotherapy initiation, which might be intrinsic to cancer cells and influenced by tumor microenvironment. Recently, pancreatic stellate cells (PSCs) have greatly increased our attention on tumor microenvironment-mediated drug resistance. Periostin is exclusively overexpressed in PSCs and the stroma of PDAC creating a tumor-supportive microenvironment in the pancreas. However, whether periostin contributed to chemoresistance in PDAC remains unknown. Therefore, we focused on the role of periostin in PDAC by observing the effects of silencing this gene on gemcitabine resistance in vitro and in vivo aiming to explore the possible molecular mechanism. In this study, the pancreatic cancer cell (PCC) proliferation and apoptosis were assayed to investigate the sensitivity to gemcitabine after silencing periostin. We provide the evidence that periostin not only drives the carcinogenic process itself but also significantly associated with gemcitabine-induced apoptosis. These findings collectively indicated that periostin increases the chemoresistance to gemcitabine. Thus, targeting periostin might offer a new opportunity to overcome the gemcitabine resistance of PDAC.
添加收藏
创建看单
引用
打开PDF
登录
英汉
8. Role of microenvironmental periostin in pancreatic cancer progression.
作者:Liu Yang , Li Fan , Gao Feng , Xing Lingxi , Qin Peng , Liang Xingxin , Zhang Jiajie , Qiao Xiaohui , Lin Lizhou , Zhao Qian , Du Lianfang
期刊:Oncotarget
日期:2016-08-23
DOI :10.18632/oncotarget.11533
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic reaction. Pancreatic stellate cells (PSCs) are the principal effector cells responsible for stroma production. Aberrant up-regulation of periostin expression has been reported in activated PSCs. In this study, we investigated the role of periostin and the mechanisms underlying its aberrant upregulation in PDAC. We used lentiviral shRNA and human recombinant periostin protein to down and up regulate periostin expression . Specific oncogenic signaling pathways such as EGFR-Akt and EGFR-Erk-c-Myc were assessed and . Tissue microarray immunohistochemical assays including 80 pancreatic cancer tissues and paired normal tissues were used to understand the function relationship between periostin expression and PDAC pathologic stage and overall survival. We found that periostin was strongly expressed in PSCs and the stroma of PDAC tumors. We also observed a significant decrease in proliferation, metastasis, and clonality of pancreatic cancer cells when co-cultured with supernatant of periostin shRNA-transfected PSCs. Specifically, the biological behavior of periostin correlated with EGFR-Akt and EGER-Erk-c-Myc signaling pathways. Moreover, increased periostin expression significantly associated with advanced disease stage and decreased survival rate in PDAC patients. Together, our findings provide novel insights into the role of microenvironmental periostin in pancreatic cancer progression, and periostin may serve as a prognostic biomarker for PDAC.
添加收藏
创建看单
引用
英汉
9. Role of pancreatic stellate cells and periostin in pancreatic cancer progression.
作者:Liu Yang , Du Lianfang
期刊:Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine
日期:2015-04-04
DOI :10.1007/s13277-015-3386-2
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and one of the five most lethal malignancies characterized by prominent desmoplastic reaction. Accumulating evidences indicate that tumor desmoplasia plays a pivotal role in PDAC progression, and it has been largely ignored until recent times. It has now been unequivocally shown that pancreatic stellate cells (PSCs) are the principal effector cells responsible for stroma production. Periostin, also known as osteoblast-specific factor 2, is a secretory protein and originally identified as an osteoblast-specific factor that expressed in periosteum. Periostin is exclusively produced by activated PSCs, and periostin overexpression presents in various malignant tumors and closely relates with disease progression. In addition, periostin has been suggested to stimulate pancreatic cancer cells proliferation and enhance their resistance to serum starvation and hypoxia. Therefore, the interplay between cancer cells and stromal cells plays a vital role in PDAC development. However, the function of periostin in pancreatic cancer development is controversial. This review summarizes existing knowledge about the role of PSCs in cancer stroma production, the interaction between PSCs and pancreatic cancer cells, tumor angiogenesis, and hypoxic microenvironment, with particular focus on the expression and function as well as signaling pathways of periostin in PDAC cells and PSCs.