logo logo
Efferocytosis in atherosclerotic lesions: Malfunctioning regulatory pathways and control mechanisms. Tajbakhsh Amir,Rezaee Mehdi,Kovanen Petri T,Sahebkar Amirhossein Pharmacology & therapeutics Atherosclerosis is a dynamic and progressive inflammatory process in the intimal layer of large and medium-sized arteries, and it is the major contributor to the atherosclerotic cardiovascular disease (ACVD), the leading cause of death worldwide. In an atherosclerotic plaque, phagocytosis of apoptotic cells occurs through an intricate process designated efferocytosis. Defective efferocytosis has emerged as a causal factor in the etiopathogenesis of atherosclerosis and its progression into overt ACVD. Both specialized phagocytes (macrophages and dendritic cells) and non-specialized cells with phagocytic capabilities (smooth muscle and endothelial cells) are involved in the efferocytotic process. Moreover, several signaling and regulatory molecules are involved in the different steps of efferocytosis, and they include "Find-Me" signals (lysophosphatidylcholine), "Eat-Me" signals [phosphatidylserine, Mer tyrosine kinase (MerTK), and milk fat globule-EGF factor 8], and "Don't Eat-Me" signals [cluster of differentiation 47 (CD47)]. Regulation of efferocytosis is in a close nexus with inflammation, the key component in atherosclerosis. The predominance of pro-inflammatory and anti-inflammatory molecules plays a crucial role in lesion progression and regression, respectively. Polarization of macrophages towards the M1 phenotype causes them to secrete proinflammatory cytokines, while polarization towards the M2 phenotype causes them to secrete of anti-inflammatory cytokines, including interleukin-10 and transforming growth factor β, so tending to shift the balance towards resolution of the inflammation. Dysfunction of any regulatory signal may cause expansion of the necrotic core of an atherosclerotic plaque with ensuing conversion of the plaque into an unstable plaque with an increased susceptibility to rupture and to atherothrombotic complication. In this review we aim at elucidating the determinant factors and pathways of efferocytosis which can be considered as potential novel targets when striving to develop more personalized and efficient treatment regimens for patients with ACVD. 10.1016/j.pharmthera.2018.02.003
Genome-Wide Search Links Senescence-Associated Secretory Proteins With Susceptibility for Coronary Artery Disease in Mouse and Human. The journals of gerontology. Series A, Biological sciences and medical sciences Advanced age is an independent risk factor for coronary artery disease (CAD), the leading global cause of mortality. Senescent vascular cells in the atherosclerotic plaques exhibit senescence-associated secretory phenotype (SASP). How SASP contributes to atherosclerosis and CAD, however, remains unclear. Here, we integrated RNA-array datasets of senescent human coronary arterial endothelial cells (HCAECs) and aortic smooth muscle cells (HASMCs) as well as genome-wide association data for CAD. We identified 26 genes from HCAECs and 6 genes from HASMCs related to SASP and CAD in both in-house and published datasets. Of which, Cystatin C (CST3), a CAD susceptibility gene, was found to be expressed in both HCAECs and HASMCs, thus, it was prioritized for further investigation. We demonstrated it was significantly elevated in senescent vascular cells, aged arteries, and early atherosclerosis. In vitro experiments showed that CST3 enhances the monocyte-endothelial cell adhesion. Additionally, ligand-receptor pairing analyses revealed two important pathways, COL4A1-ITGA1 and LPL-LRP1 pathways, linked to the critical processes in the development of atherosclerosis, including cell adhesion, inflammation response, extracellular matrix organization, and lipid metabolism. We further demonstrated a reduced monocyte-endothelial cell adhesion following the knockdown of COL4A1 or ITGA1 and a significantly increased expression of COL4A1, ITGA1, and LPL in arterial intima of aged mice and ApoE-/- mice. Our findings demonstrate that vascular cell-derived SASP proteins increase the CAD susceptibility and identify CST3 functionally contributing to atherosclerosis. 10.1093/gerona/glae070
LRP1-Dependent BMPER Signaling Regulates Lipopolysaccharide-Induced Vascular Inflammation. Lockyer Pamela,Mao Hua,Fan Qiying,Li Luge,Yu-Lee Li-Yuan,Eissa N Tony,Patterson Cam,Xie Liang,Pi Xinchun Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:Bacterial endotoxin (lipopolysaccharide)-mediated sepsis involves dysregulated systemic inflammation, which injures the lung and other organs, often fatally. Vascular endothelial cells act as both targets and mediators of lipopolysaccharide-induced inflammatory responses. Dysfunction of endothelium results in increases of proinflammatory cytokine production and permeability leakage. BMPER (bone morphogenetic protein-binding endothelial regulator), an extracellular modulator of bone morphogenetic protein signaling, has been identified as a vital component in chronic endothelial inflammatory responses and atherosclerosis. However, it is unclear whether BMPER also regulates inflammatory response in an acute setting such as sepsis. To address this question, we investigated the role of BMPER during lipopolysaccharide-induced acute lung injury. APPROACH AND RESULTS:Mice missing 1 allele of BMPER (BMPER mice used in the place of BMPER mice that die at birth) were used for lipopolysaccharide challenge. Lipopolysaccharide-induced pulmonary inflammation and injury was reduced in BMPER mice as shown by several measures, including survival rate, infiltration of inflammatory cells, edema, and production of proinflammatory cytokines. Mechanistically, we have demonstrated that BMPER is required and sufficient for the activation of nuclear factor of activated T cells c1. This BMPER-induced nuclear factor of activated T cells activation is coordinated by multiple signaling pathways, including bone morphogenetic protein-independent low-density lipoprotein receptor-related protein 1-extracellular signal-regulated kinase activation, calcineurin signaling, and low-density lipoprotein receptor-related protein 1β-mediated nuclear factor 45 nuclear export in response to BMPER treatment. CONCLUSIONS:We conclude that BMPER plays a pivotal role in pulmonary inflammatory response, which provides new therapeutic options against sepsis shock. The new signaling pathway initiated by BMPER/low-density lipoprotein receptor-related protein 1 axis broadens our understanding about BMPER's role in vascular homeostasis. 10.1161/ATVBAHA.117.309521
Dietary-Induced Elevations of Triglyceride-Rich Lipoproteins Promote Atherosclerosis in the Low-Density Lipoprotein Receptor Knockout Syrian Golden Hamster. Lin Xiao,Ma Ping,Yang Chun,Wang Jinjie,He Kunxiang,Chen Gonglie,Huang Wei,Fan Jianglin,Xian Xunde,Wang Yuhui,Liu George Frontiers in cardiovascular medicine Elevated triglycerides are associated with an increased risk of cardiovascular disease (CVD). Therefore, it is very important to understand the metabolism of triglyceride-rich lipoproteins (TRLs) and their atherogenic role in animal models. Using low-density lipoprotein receptor knockout (LDLR) Syrian golden hamsters, this study showed that unlike LDLR mice, when LDLR hamsters were fed a high cholesterol high-fat diet (HFD), they had very high plasma levels of triglycerides and cholesterol. We found that LDLR hamsters exhibited increased serum TRLs and the ApoB100 and 48 in these particles after being fed with HFD. Treatment with ezetimibe for 2 weeks decreased these large particles but not the LDL. In addition, ezetimibe simultaneously reduced ApoB48 and ApoE in plasma and TRLs. The expression of LRP1 did not change in the liver. These findings suggested that the significantly reduced large particles were mainly chylomicron remnants, and further, the remnants were mainly cleared by the LDL receptor in hamsters. After 40 days on an HFD, LDLR hamsters had accelerated aortic atherosclerosis, accompanied by severe fatty liver, and ezetimibe treatment reduced the consequences of hyperlipidemia. Compared with the serum from LDLR hamsters, that from ezetimibe-treated LDLR hamsters decreased the expression of vascular adhesion factors in vascular endothelial cells and lipid uptake by macrophages. Our results suggested that in the LDLR hamster model, intestinally-derived lipoprotein remnants are highly atherogenic and the inflammatory response of the endothelium and foam cells from macrophages triggered atherosclerosis. The LDL receptor might be very important for chylomicrons remnant clearance in the Syrian golden hamster, and this may not be compensated by another pathway. We suggest that the LDLR hamster is a good model for the study of TRLs-related diseases as it mimics more complex hyperlipidemia. 10.3389/fcvm.2021.738060
Genetic variability within the cholesterol lowering pathway and the effectiveness of statins in reducing the risk of MI. Peters Bas J M,Pett Helmi,Klungel Olaf H,Stricker Bruno H Ch,Psaty Bruce M,Glazer Nicole L,Wiggins Kerri L,Bis Josh C,de Boer Anthonius,Maitland-van der Zee Anke-Hilse Atherosclerosis Genetic variability has been shown to affect statin responsiveness. Participants from the Utrecht Cardiovascular Pharmacogenetics (UCP) studies were enrolled from a population-based registry of pharmacy records linked to hospital discharge records (PHARMO) to investigate tagging SNPs within candidate genes involved in the cholesterol lowering pathway for modification of the effectiveness of statins in reducing the risk of myocardial infarction (MI). Patients who received a prescription for an antihypertensive drug and/or had hypercholesterolemia were selected from the PHARMO database. We designed a nested case-control study in which cases were hospitalized for MI and controls were not. Patients were contacted through their community pharmacies. For this study, only hypercholesterolemic participants were selected. Logistic regression analysis was used to investigate pharmacogenetic interactions. The Heart and Vascular Health Study (HVH) was used to replicate findings from UCP. The study population included 668 cases and 1217 controls. We selected 231 SNPs of which 209 SNPs in 27 genes passed quality control. Ten SNPs in eight genes were found to influence the effectiveness of statins in UCP, of which the most significant interaction was found with SCARB1 rs4765615. Other genes that reached statistical significance (p<0.05) included two SNPs in PCSK9 (rs10888896 and rs505151 (E670G)), two SNPs in ABCG5 (rs4245786 and rs1864815), LIPC rs16940379, ABCA1 rs4149264, PPARG rs2972164, LRP1 rs715948, and SOAT1 rs2493121. None of the total of 5 SNPs that were available for replication in HVH reached statistical significance. In conclusion, ten SNPs were found to modify the effectiveness of statins in reducing the risk of MI in the UCP study. Five were also tested in the HVH study, but no interactions reached statistical significance. 10.1016/j.atherosclerosis.2011.06.023
Update on lipids, inflammation and atherothrombosis. Badimon Lina,Storey Robert F,Vilahur Gemma Thrombosis and haemostasis Atherosclerosis is an inflammatory disease that involves the arterial wall and is characterised by the progressive accumulation of lipids in the vessel wall. The first step is the internalisation of lipids (LDL) in the intima with endothelial activation which enhances the permeability of the endothelial layer and the expression of cytokines/chemokines and adhesion molecules. These events increase LDL particles accumulation in the extracellular matrix where they aggregate/fuse, are retained by proteoglycans and become targets for oxidative and enzymatic modifications. In turn, retained pro-atherogenic LDLs enhance selective leukocyte recruitment and attachment to the endothelial layer inducing their transmigration across the endothelium into the intima. While smooth muscle cell numbers decline with the severity of plaque progression, monocytes differentiate into macrophages, a process associated with the upregulation of pattern recognition receptors including scavenger receptors and Toll-like receptors leading to foam cell formation. Foam cells release growth factors, cytokines, metalloproteinases and reactive oxygen species all of which perpetuate and amplify the vascular remodelling process. In addition, macrophages release tissue factor that, upon plaque rupture, contributes to thrombus formation. Smooth muscle cells exposed in eroded lesions are also able to internalise LDL through LRP-1 receptors acquiring a pro-thrombotic phenotype and releasing tissue factor. Platelets recognise ligands in the ruptured or eroded atherosclerotic plaque, initiate platelet activation and aggregation leading to thrombosis and to the clinical manifestation of the atherothrombotic disease. Additionally, platelets contribute to the local inflammatory response and may also participate in progenitor cell recruitment. 10.1160/THS10-11-0717
An Evolving Understanding of the Genetic Causes of Abdominal Aortic Aneurysm Disease. Miner Grace H,Costa Kevin D,Hanss Basil G,Marin Michael L Surgical technology international Aneurysms of the abdominal aorta (AAA) are relatively common - affecting as many as 8% of men and 1% of women over the age of 65. AAAs are characterized by a 50% increase in the diameter of the aneurysmal aorta compared with the normal vessel. Degeneration of structural components of the aortic wall is believed to be central in the pathogenesis of AAAs. The exact mechanism of degeneration is not well characterized, although degradation of elastin and collagen has been clearly shown. At least six genetic variants have been associated with AAA in genome-wide association studies: CDKN2BAS1, DAB2IP, LDLR, LRP1, SORT1, and IL6R. These variants reach genome-wide significance; however, they have not been replicated in multiple cohorts, nor have they been clearly shown to be disease causative. AAA is a challenging disease for investigation because it is most often asymptomatic and generally has a late disease onset, making it difficult to diagnose. Determination of the genetic mechanism behind aneurysm formation, progression, and rupture crosses disciplines requiring input from multiple fields of study, larger patient cohorts, and the evolving modalities of genetic testing.
Extracellular Hsp90α, which participates in vascular inflammation, is a novel serum predictor of atherosclerosis in type 2 diabetes. BMJ open diabetes research & care INTRODUCTION:Atherosclerosis is the main pathological change in diabetic angiopathy, and vascular inflammation plays an important role in early atherosclerosis. Extracellular heat shock protein 90 (eHsp90) is secreted into the serum and is involved in various physiological and pathophysiological processes. However, the specific mechanism of eHsp90 in early atherosclerosis remains unclear. This study explored the relationship between Hsp90 and diabetic lower extremity arterial disease and investigated the expression of eHsp90 in vascular endothelial cells under environmental stimulation and the function and mechanism of eHsp90α involved in diabetic atherosclerosis. RESEARCH DESIGN AND METHODS:One hundred and three selected patients were divided into three groups: the diabetes mellitus group (n=27), the diabetic lower extremity arterial disease group (n=46), and the diabetic critical limb ischemia group (n=30). The relationships among serum Hsp90, oxidative stress indexes, and patient outcomes and the correlations among the indexes were analyzed. H&E staining and immunohistochemistry were used to observe the vasculature of amputated feet from patients with diabetic foot. An oxidative stress endothelial injury model was established under high glucose in vitro to explore the role of eHsp90 release in atherosclerosis progression. RESULTS:The level of serum Hsp90 was upregulated with aggravation of diabetic vascular disease. Hsp90α was correlated with malondialdehyde to some extent and was an independent risk factor in the progression of diabetic vascular disease, with predictive ability. The expression area of Hsp90α was consistent with the area of inflammatory infiltration in the vessel lumen. Vascular endothelial cells were found to increase eHsp90α secretion under stress. Then inhibition of eHsp90α can reduce the degree of cellular inflammation and damage. Endothelial cell-conditioned medium and recombinant human Hsp90α increased monocyte migration via the low-denisity lipoprotein receptor-related protein 1 (LRP1) receptor to promote disease progression. CONCLUSIONS:eHsp90α plays a critical role in the early inflammatory injury stage of atherosclerosis. TRIAL REGISTRATION NUMBER:NCT04787770. 10.1136/bmjdrc-2021-002579
Inhibitory Effects of LRP1-Based Immunotherapy on Cardiac Extracellular Matrix Biophysical Alterations Induced by Hypercholesterolemia. Journal of medicinal chemistry The accumulation of lipids in cardiomyocytes contributes to cardiac dysfunction. The specific blockage of cardiomyocyte cholesteryl ester (CE) loading by antibodies (Abs) against the P3 sequence (Gly-Cys) of the LRP1 receptor improves cardiac insulin sensitivity. The impact of anti-P3 Abs on high-fat diet (HFD)-induced cardiac extracellular matrix (ECM) biophysical alterations was analyzed. Both IrP (without Abs) and P3-immunized rabbits (with Abs) were randomized into groups fed either HFD or a standard chow diet. Cardiac lipids, proteins, and carbohydrates were characterized by Fourier transform infrared spectroscopy in the attenuated total reflectance mode. The hydric organization and physical structure were determined by differential scanning calorimetry. HFD increased the levels of esterified lipids, collagen, and α-helical structures and upregulated fibrosis, bound water, and ECM plasticization in the heart. The inhibitory effect of anti-P3 Abs on cardiac CE accumulation was sufficient to reduce the collagen-filled extracellular space, the level of fibrosis, and the amount of bound water but did not counteract ECM plasticization in the heart of hypercholesterolemic rabbits. 10.1021/acs.jmedchem.2c02103
Endocytosis by macrophages: interplay of macrophage scavenger receptor-1 and LDL receptor-related protein-1. Haematologica 10.3324/haematol.2018.210682
Deletion of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Accelerates Atherosclerosis Regression and Increases C-C Chemokine Receptor Type 7 (CCR7) Expression in Plaque Macrophages. Circulation BACKGROUND:We previously showed that mice lacking MΦLRP1 (low-density lipoprotein receptor-related protein 1 in macrophages) undergo accelerated atherosclerotic plaque formation due to changes in macrophages including increased apoptosis, decreased efferocytosis, and exaggerated transition to the inflammatory M1 phenotype. Here we sought to explore the role of macrophage low-density lipoprotein receptor-related protein 1 during regression of atherosclerosis since regressing plaques are characterized by transitioning of macrophages to M2 status as inflammation resolves. METHODS:Apolipoprotein E mice on a high-fat diet for 12 weeks were reconstituted with bone marrow from apolipoprotein E-producing wild-type or MΦLRP1 mice, and then placed on a chow diet for 10 weeks (n=9 to 11 mice/group). A cohort of apolipoprotein E mice reconstituted with apolipoprotein E bone marrow served as baseline controls (n=9). RESULTS:Plaques of both wild-type and MΦLRP1 bone marrow recipients regressed compared with controls (11% and 22%, respectively; P<0.05), and plaques of MΦLRP1 recipients were 13% smaller than those of wild-type recipients ( P<0.05). Recipients of MΦLRP1 marrow had 36% fewer M1 macrophages ( P<0.01) and 2.5-fold more CCR7 (C-C chemokine receptor type 7)-positive macrophages in the plaque relative to wild-type mice ( P<0.01). Additionally, in vivo studies of cellular egress showed a 4.6-fold increase in 5-ethynyl-2´-deoxyuridine-labeled CCR7 macrophages in mediastinal lymph nodes. Finally, in vivo studies of reverse cholesterol transport showed a 1.4-fold higher reverse cholesterol transport in MΦLRP1 recipient mice ( P<0.01). CONCLUSIONS:Absence of macrophage low-density lipoprotein receptor-related protein 1 unexpectedly accelerates atherosclerosis regression, enhances reverse cholesterol transport, and increases expression of the motility receptor CCR7, which drives macrophage egress from lesions. 10.1161/CIRCULATIONAHA.117.031702
Apolipoprotein and LRP1-Based Peptides as New Therapeutic Tools in Atherosclerosis. Benitez Amaro Aleyda,Solanelles Curco Angels,Garcia Eduardo,Julve Josep,Rives Jose,Benitez Sonia,Llorente Cortes Vicenta Journal of clinical medicine Apolipoprotein (Apo)-based mimetic peptides have been shown to reduce atherosclerosis. Most of the ApoC-II and ApoE mimetics exert anti-atherosclerotic effects by improving lipid profile. ApoC-II mimetics reverse hypertriglyceridemia and ApoE-based peptides such as Ac-hE18A-NH2 reduce cholesterol and triglyceride (TG) levels in humans. Conversely, other classes of ApoE and ApoA-I mimetic peptides and, more recently, ApoJ and LRP1-based peptides, exhibit several anti-atherosclerotic actions in experimental models without influencing lipoprotein profile. These other mimetic peptides display at least one atheroprotective mechanism such as providing LDL stability against mechanical modification or conferring protection against the action of lipolytic enzymes inducing LDL aggregation in the arterial intima. Other anti-atherosclerotic effects exerted by these peptides also include protection against foam cell formation and inflammation, and induction of reverse cholesterol transport. Although the underlying mechanisms of action are still poorly described, the recent findings suggest that these mimetics could confer atheroprotection by favorably influencing lipoprotein function rather than lipoprotein levels. Despite the promising results obtained with peptide mimetics, the assessment of their stability, atheroprotective efficacy and tissue targeted delivery are issues currently under progress. 10.3390/jcm10163571
Publisher Correction: Soluble LRP1 is an independent biomarker of epicardial fat volume in patients with type 1 diabetes mellitus. de Gonzalo-Calvo David,Colom Cristina,Vilades David,Rivas-Urbina Andrea,Moustafa Abdel-Hakim,Pérez-Cuellar Montserrat,Sánchez-Quesada Jose Luis,Pérez Antonio,LLorente-Cortes Vicenta Scientific reports An amendment to this paper has been published and can be accessed via a link at the top of the paper. 10.1038/s41598-019-53407-8
Cholesteryl esters accumulate in the heart in a porcine model of ischemia and reperfusion. Drevinge Christina,Karlsson Lars O,Ståhlman Marcus,Larsson Thomas,Perman Sundelin Jeanna,Grip Lars,Andersson Linda,Borén Jan,Levin Malin C PloS one Myocardial ischemia is associated with intracellular accumulation of lipids and increased depots of myocardial lipids are linked to decreased heart function. Despite investigations in cell culture and animal models, there is little data available on where in the heart the lipids accumulate after myocardial ischemia and which lipid species that accumulate. The aim of this study was to investigate derangements of lipid metabolism that are associated with myocardial ischemia in a porcine model of ischemia and reperfusion. The large pig heart enables the separation of the infarct area with irreversible injury from the area at risk with reversible injury and the unaffected control area. The surviving myocardium bordering the infarct is exposed to mild ischemia and is stressed, but remains viable. We found that cholesteryl esters accumulated in the infarct area as well as in the bordering myocardium. In addition, we found that expression of the low density lipoprotein receptor (LDLr) and the low density lipoprotein receptor-related protein 1 (LRP1) was up-regulated, suggesting that choleteryl ester uptake is mediated via these receptors. Furthermore, we found increased ceramide accumulation, inflammation and endoplasmatic reticulum (ER) stress in the infarcted area of the pig heart. In addition, we found increased levels of inflammation and ER stress in the myocardium bordering the infarct area. Our results indicate that lipid accumulation in the heart is one of the metabolic derangements remaining after ischemia, even in the myocardium bordering the infarct area. Normalizing lipid levels in the myocardium after ischemia would likely improve myocardial function and should therefore be considered as a target for treatment. 10.1371/journal.pone.0061942
Cell-surface transglutaminase undergoes internalization and lysosomal degradation: an essential role for LRP1. Zemskov Evgeny A,Mikhailenko Irina,Strickland Dudley K,Belkin Alexey M Journal of cell science Tissue transglutaminase functions as a protein crosslinking enzyme and an integrin-binding adhesion co-receptor for fibronectin on the cell surface. These activities of transglutaminase and the involvement of this protein in cell-matrix adhesion, integrin-mediated signaling, cell migration and matrix organization suggest a precise and efficient control of its cell-surface expression. We report a novel mechanism of regulation of surface transglutaminase through internalization and subsequent lysosomal degradation. Constitutive endocytosis of cell-surface transglutaminase depends on plasma membrane cholesterol and the activity of dynamin-2, and involves both clathrin-coated pits and lipid rafts or caveolae. Furthermore, the key matrix ligands of transglutaminase, fibronectin and platelet-derived growth factor, promote its endocytosis from the cell surface. Our results also indicate that transglutaminase interacts in vitro and on the cell surface with the major endocytic receptor, low-density lipoprotein receptor-related protein 1, and demonstrate the requirement for this receptor in the endocytosis of transglutaminase. Finally, a deficiency of this endocytic receptor or blockade of endo-lysosomal function upregulate transglutaminase expression on the cell surface, leading to increased cell adhesion and matrix crosslinking. These findings characterize a previously unknown pathway of transglutaminase internalization and degradation that might be crucial for regulation of its adhesive and signaling functions on the cell surface and reveal a novel functional link between cell-matrix adhesion and endocytosis. 10.1242/jcs.010397
Second Heart Field-Derived Cells Contribute to Angiotensin II-Mediated Ascending Aortopathies. Circulation BACKGROUND:The ascending aorta is a common location for aneurysm and dissection. This aortic region is populated by a mosaic of medial and adventitial cells that are embryonically derived from either the second heart field (SHF) or the cardiac neural crest. SHF-derived cells populate areas that coincide with the spatial specificity of thoracic aortopathies. The purpose of this study was to determine whether and how SHF-derived cells contribute to ascending aortopathies. METHODS:Ascending aortic pathologies were examined in patients with sporadic thoracic aortopathies and angiotensin II (AngII)-infused mice. Ascending aortas without overt pathology from AngII-infused mice were subjected to mass spectrometry-assisted proteomics and molecular features of SHF-derived cells were determined by single-cell transcriptomic analyses. Genetic deletion of either (low-density lipoprotein receptor-related protein 1) or (transforming growth factor-β receptor type 2) in SHF-derived cells was conducted to examine the effect of SHF-derived cells on vascular integrity. RESULTS:Pathologies in human ascending aortic aneurysmal tissues were predominant in outer medial layers and adventitia. This gradient was mimicked in mouse aortas after AngII infusion that was coincident with the distribution of SHF-derived cells. Proteomics indicated that brief AngII infusion before overt pathology occurred evoked downregulation of smooth muscle cell proteins and differential expression of extracellular matrix proteins, including several LRP1 ligands. LRP1 deletion in SHF-derived cells augmented AngII-induced ascending aortic aneurysm and rupture. Single-cell transcriptomic analysis revealed that brief AngII infusion decreased and mRNA abundance in SHF-derived cells and induced a unique fibroblast population with low abundance of mRNA. SHF-specific deletion led to embryonic lethality at E12.5 with dilatation of the outflow tract and retroperitoneal hemorrhage. Integration of proteomic and single-cell transcriptomics results identified PAI1 (plasminogen activator inhibitor 1) as the most increased protein in SHF-derived smooth muscle cells and fibroblasts during AngII infusion. Immunostaining revealed a transmural gradient of PAI1 in both ascending aortas of AngII-infused mice and human ascending aneurysmal aortas that mimicked the gradient of medial and adventitial pathologies. CONCLUSIONS:SHF-derived cells exert a critical role in maintaining vascular integrity through LRP1 and transforming growth factor-β signaling associated with increases of aortic PAI1. 10.1161/CIRCULATIONAHA.121.058173
Differential distribution of cholesterol pools across arteries under high-cholesterol diet. Biochimica et biophysica acta. Molecular and cell biology of lipids Excessive cholesterol constitutes a major risk factor for vascular disease. Within cells, cholesterol is distributed in detergent-sensitive and detergent-resistant fractions, with the largest amount of cholesterol residing in cellular membranes. We set out to determine whether various arteries differ in their ability to accumulate esterified and non-esterified cholesterol in detergent-sensitive versus detergent-resistant fractions throughout the course of a high-cholesterol diet. Male Sprague-Dawley rats were placed on 2 % cholesterol diet while a control group was receiving iso-caloric standard chow. Liver, aorta, and pulmonary, mesenteric, and cerebral arteries were collected at 2-6, 8-12, 14-18, and 20-24 weeks from the start of high-cholesterol diet. After fraction separation, esterified and free non-esterified cholesterol levels were measured. In all arteries, largest cholesterol amounts were present in detergent-sensitive fractions in the non-esterified form. Overall, cholesterol in aorta and cerebral arteries was elevated during 14-18 weeks of high-cholesterol diet. Cerebral arteries also exhibited increase in esterified cholesterol within detergent-sensitive domains, as well as increase in cholesterol level in the detergent-resistant fraction at earlier time-points of diet. Pulmonary artery and mesenteric artery were largely resistant to cholesterol accumulation. Quantitative polymerase chain reaction (qPCR) analysis revealed up-regulation of low-density lipoprotein receptor (Ldlr) and low-density lipoprotein receptor-related protein 1 (Lrp1) gene expression in cerebral arteries when compared to mesenteric and pulmonary arteries, respectively. In summary, we unveiled the differential ability of arteries to accumulate cholesterol over the course of a high-cholesterol diet. The differential accumulation of cholesterol seems to correlate with the up-regulated gene expression of proteins responsible for cholesterol uptake. 10.1016/j.bbalip.2022.159235
Mechanisms by Which LRP1 (Low-Density Lipoprotein Receptor-Related Protein-1) Maintains Arterial Integrity. Arteriosclerosis, thrombosis, and vascular biology 10.1161/ATVBAHA.118.311882
Association of low-density lipoprotein receptor-related protein 1 rs11613352 and angiopoietin-like 3 rs2131925 with hypertension in men-the Tampere adult population cardiovascular risk study. Kunnas Tarja,Solakivi Tiina,Nikkari Seppo T Molecular genetics & genomic medicine BACKGROUND:We examined the association of three known genome-wide association study loci for blood lipids that have lead traits for triglycerides with hypertension in the Tampere adult population cardiovascular risk study. METHODS:A Finnish cohort of 190 men with diagnosed hypertension and 279 controls were analyzed. Samples were genotyped for low-density lipoprotein receptor-related protein 1 rs11613352 (C>T), angiopoietin-like 3 rs2131925 (T>G), and fatty acid desaturase 1 rs174546 (C>T) polymorphisms using competitive allele-specific polymerase chain reaction technique. RESULTS:At the age of 50, subjects with low-density lipoprotein receptor-related protein 1 rs11613352 (C>T) minor genotype TT had significantly more hypertension than those with the C allele (OR 5.17, CI 2.03-12.74, p < 0.001). Subjects with angiopoietin-like 3 rs2131925 (T>G) T allele had more hypertension than those with the minor genotype GG (OR 5.02, CI 1.40-17.98, p = 0.013). Fatty acid desaturase 1 rs174546 (C>T) did not associate with hypertension. CONCLUSION:Association of low-density lipoprotein receptor-related protein 1 rs11613352 and angiopoietin-like 3 rs2131925 with hypertension might imply a direct effect at the artery wall. 10.1002/mgg3.450
Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability. Journal of thrombosis and haemostasis : JTH The low-density lipoprotein (LDL) receptor related protein (LRP1 or LRP) is a large endocytic receptor widely expressed in several tissues and known to play roles in areas as diverse as lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes and cellular entry of bacterial toxins and viruses. This member of the LDL receptor superfamily is constitutively endocytosed from the membrane and recycled back to the cell surface. Its many functions were long thought to involve its ability to bind over 30 different ligands and deliver them to lysosomes for degradation. However, LRP has since been shown to interact with scaffolding and signaling proteins via its intracellular domain in a phosphorylation-dependent manner and to function as a co-receptor partnering with other cell surface or integral membrane proteins. This multi-talented receptor has been implicated in regulation of platelet derived growth factor receptor activity, integrin maturation and recycling, and focal adhesion disassembly. These functions may account for recent studies identifying LRP's role in protection of the vasculature, regulation of cell migration, and modulation of the integrity of the blood-brain barrier. 10.1111/j.1538-7836.2005.01371.x
Loss of the adaptor protein ShcA in endothelial cells protects against monocyte macrophage adhesion, LDL-oxydation, and atherosclerotic lesion formation. Abou-Jaoude Antoine,Badiqué Lise,Mlih Mohamed,Awan Sara,Guo Sunning,Lemle Alexandre,Abboud Clauda,Foppolo Sophie,Host Lionel,Terrand Jérôme,Justiniano Hélène,Herz Joachim,Matz Rachel L,Boucher Philippe Scientific reports ShcA is an adaptor protein that binds to the cytoplasmic tail of receptor tyrosine kinases and of the Low Density Lipoprotein-related receptor 1 (LRP1), a trans-membrane receptor that protects against atherosclerosis. Here, we examined the role of endothelial ShcA in atherosclerotic lesion formation. We found that atherosclerosis progression was markedly attenuated in mice deleted for ShcA in endothelial cells, that macrophage content was reduced at the sites of lesions, and that adhesion molecules such as the intercellular adhesion molecule-1 (ICAM-1) were severely reduced. Our data indicate that transcriptional regulation of ShcA by the zinc-finger E-box-binding homeobox 1 (ZEB1) and the Hippo pathway effector YAP, promotes ICAM-1 expression independently of p-NF-κB, the primary driver of adhesion molecules expressions. In addition, ShcA suppresses endothelial Akt and nitric oxide synthase (eNOS) expressions. Thus, through down regulation of eNOS and ZEB1-mediated ICAM-1 up regulation, endothelial ShcA promotes monocyte-macrophage adhesion and atherosclerotic lesion formation. Reducing ShcA expression in endothelial cells may represent an obvious therapeutic approach to prevent atherosclerosis. 10.1038/s41598-018-22819-3
Role of ADAMTS-5 in Aortic Dilatation and Extracellular Matrix Remodeling. Fava Marika,Barallobre-Barreiro Javier,Mayr Ursula,Lu Ruifang,Didangelos Athanasios,Baig Ferheen,Lynch Marc,Catibog Norman,Joshi Abhishek,Barwari Temo,Yin Xiaoke,Jahangiri Marjan,Mayr Manuel Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:Thoracic aortic aneurysm (TAA), a degenerative disease of the aortic wall, is accompanied by changes in the structure and composition of the aortic ECM (extracellular matrix). The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of proteases has recently been implicated in TAA formation. This study aimed to investigate the contribution of ADAMTS-5 to TAA development. APPROACH AND RESULTS:A model of aortic dilatation by AngII (angiotensin II) infusion was adopted in mice lacking the catalytic domain of ADAMTS-5 (Adamts5). Adamts5 mice showed an attenuated rise in blood pressure while displaying increased dilatation of the ascending aorta (AsAo). Interestingly, a proteomic comparison of the aortic ECM from AngII-treated wild-type and Adamts5 mice revealed versican as the most upregulated ECM protein in Adamts5 mice. This was accompanied by a marked reduction of ADAMTS-specific versican cleavage products (versikine) and a decrease of LRP1 (low-density lipoprotein-related protein 1). Silencing expression in human aortic smooth muscle cells reduced the expression of , attenuated the generation of versikine, but increased soluble ADAMTS-1. A similar increase in ADAMTS-1 was observed in aortas of AngII-treated Adamts5 mice but was not sufficient to maintain versican processing and prevent aortic dilatation. CONCLUSIONS:Our results support the emerging role of ADAMTS proteases in TAA. ADAMTS-5 rather than ADAMTS-1 is the key protease for versican regulation in murine aortas. Further studies are needed to define the ECM substrates of the different ADAMTS proteases and their contribution to TAA formation. 10.1161/ATVBAHA.117.310562
Increased sLRP1 and decreased atrial natriuretic peptide plasma levels in newly diagnosed T2DM patients are normalized after optimization of glycemic control. Frontiers in endocrinology Background:Low-density lipoprotein receptor-related protein 1 (LRP1) negatively modulates circulating atrial natriuretic peptide (ANP) levels. Both molecules are involved in the regulation of cardiometabolism. Objectives:To evaluate soluble LRP1 (sLRP1) and ANP levels in people with newly diagnosed type 2 diabetes mellitus (T2DM) and determine the effects of metabolic optimization. Methods:This single-center longitudinal observational study recruited patients with newly diagnosed T2DM ( = 29, HbA1c > 8.5%), and 12 healthy control, age- and sex-matched volunteers. sLRP1 and ANP levels were measured by immunoassays at T2DM onset and at one year after optimization of glycemic control (HbA1c ≤ 6.5%). Results:T2DM had higher sLRP1 levels than the control group (p = 0.014) and lower ANP levels (p =0.002). At 12 months, 23 T2DM patients reached the target of HbA1c ≤ 6.5%. These patients significantly reduced sLRP1 and increased ANP levels. Patients who did not achieve HbA1c < 6.5% failed to normalize sLRP1 and ANP levels. There was an inverse correlation in the changes in sLRP1 and ANP (p = 0.031). The extent of sLRP1 changes over 12 months of metabolic control positively correlated with those of total cholesterol, LDL cholesterol, TG, TG/HDLc, and apolipoprotein B. Conclusions:Newly diagnosed T2DM patients have an increased sLRP1/ANP ratio, and increased sLRP1 and decreased ANP levels are normalized in the T2DM patients that reached an strict glycemic and metabolic control. sLRP1/ANP ratio could be a reliable marker of cardiometabolic function. 10.3389/fendo.2023.1236487
Soluble LRP1 is an independent biomarker of epicardial fat volume in patients with type 1 diabetes mellitus. de Gonzalo-Calvo David,Colom Cristina,Vilades David,Rivas-Urbina Andrea,Moustafa Abdel-Hakim,Pérez-Cuellar Montserrat,Sánchez-Quesada Jose Luis,Pérez Antonio,LLorente-Cortes Vicenta Scientific reports Epicardial adipose tissue (EAT) is a metabolically active tissue intimately associated with metabolic syndrome and cardiovascular disease. Quantification of EAT volume is an interesting clinical tool for the evaluation of cardiometabolic disease. Nevertheless, current methodology presents serious disadvantages. The soluble form of the receptor LRP1 (sLRP1) is a non-invasive biomarker of EAT in general population. Here, we analysed the potential of circulating sLRP1 as biomarker of EAT volume in patients with type 1 diabetes mellitus (T1DM). The study included a well-characterized cohort of T1DM patients without clinical cardiovascular disease (N = 73). EAT volume was assessed by a multidetector computed tomography (MDCT). sLRP1 and panel of inflammatory and endocrine mediators were measured using commercially available ELISA. EAT volume showed a direct association with circulating sLRP1 (β = 0.398, P = 0.001) in univariate linear regression analysis. This association was higher than that observed for other potential inflammatory and endocrine biomarkers. Using multivariate linear regression analyses, we demonstrated that the association between EAT volume and circulating sLRP1 was independent of potential confounding factors, including age, sex, body mass index, CRP, HbA1c and LDL-C (P < 0.050 for all multivariate linear regression models). In conclusion, sLRP1 is an independent biomarker of EAT in T1DM patients. 10.1038/s41598-018-19230-3
[Inhibitory effect of ilexpernoside C from Ilex pernyi on aggregated LDL-induced foam cells formation]. Lun Qi-Xing,Liu Bing-Lin,Li Jun,Zhao Yun-Fang,Zheng Jiao,Tu Peng-Fei Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica The aggregation of macrophage-derived foam cells on vascular wall is considered to be a main cause of atherosclerosis. In the present study, we evaluated the inhibitory effect of the compound ilexpernoside C (IC1) extracted from Ilex pernyi (Aquifoliaceae) on foam cell formation in THP-1 macrophages cells which were induced by low density lipoproteins aggregates (LDL aggregates). Results showed that IC1 could significantly inhibit the formation of foam cells. The analysis on related receptors of foam cells indicated that IC1 could significantly decrease the expression of low density lipoprotein-related receptor 1(LRP1). Therefore, these findings indicated that IC1 inhibited the formation of foam cells by inhibiting endocytosis of macrophages, thus it may act as a potential anti-atherosclerotic agent. 10.4268/cjcmm20160323
Loss of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 Confers Resistance to the Antiatherogenic Effects of Tumor Necrosis Factor-α Inhibition. Zhu Lin,Giunzioni Ilaria,Tavori Hagai,Covarrubias Roman,Ding Lei,Zhang Youmin,Ormseth Michelle,Major Amy S,Stafford John M,Linton MacRae F,Fazio Sergio Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:Antiatherosclerotic effects of tumor necrosis factor-α (TNF-α) blockade in patients with systemic inflammatory states are not conclusively demonstrated, which suggests that effects depend on the cause of inflammation. Macrophage LRP1 (low-density lipoprotein receptor-related protein 1) and apoE contribute to inflammation through different pathways. We studied the antiatherosclerosis effects of TNF-α blockade in hyperlipidemic mice lacking either LRP1 (MΦLRP1(-/-)) or apoE from macrophages. APPROACH AND RESULTS:Lethally irradiated low-density lipoprotein receptor (LDLR)(-/-) mice were reconstituted with bone marrow from either wild-type, MΦLRP1(-/-), apoE(-/-) or apoE(-/-)/MΦLRP1(-/-)(DKO) mice, and then treated with the TNF-α inhibitor adalimumab while fed a Western-type diet. Adalimumab reduced plasma TNF-α concentration, suppressed blood ly6C(hi) monocyte levels and their migration into the lesion, and reduced lesion cellularity and inflammation in both wild-type→LDLR(-/-) and apoE(-/-)→LDLR(-/-) mice. Overall, adalimumab reduced lesion burden by 52% to 57% in these mice. Adalimumab reduced TNF-α and blood ly6C(hi) monocyte levels in MΦLRP1(-/-)→LDLR(-/-) and DKO→LDLR(-/-) mice, but it did not suppress ly6C(hi) monocyte migration into the lesion or atherosclerosis progression. CONCLUSIONS:Our results show that TNF-α blockade exerts antiatherosclerotic effects that are dependent on the presence of macrophage LRP1. 10.1161/ATVBAHA.116.307736
Activation of TRPV1 reduces vascular lipid accumulation and attenuates atherosclerosis. Ma Liqun,Zhong Jian,Zhao Zhigang,Luo Zhidan,Ma Shuangtao,Sun Jing,He Hongbo,Zhu Tianqi,Liu Daoyan,Zhu Zhiming,Tepel Martin Cardiovascular research AIMS:Activation of transient receptor potential vanilloid type-1 (TRPV1) channels may affect lipid storage and the cellular inflammatory response. Now, we tested the hypothesis that activation of TRPV1 channels attenuates atherosclerosis in apolipoprotein E knockout mice (ApoE(-/-)) but not ApoE(-/-)TRPV1(-/-) double knockout mice on a high-fat diet. METHODS AND RESULTS:Both TRPV1 mRNA and protein expression were identified in vascular smooth muscle cells (VSMC) and in aorta from C57BL/6J mice using RT-PCR, immunoblotting, and immunohistochemistry. In vitro, activation of TRPV1 by the specific agonists capsaicin and resiniferatoxin dose-dependently increased cytosolic calcium and significantly reduced the accumulation of lipids in VSMC from C57BL/6J mice but not from TRPV1(-/-) mice. TRPV1 activation increased ATP-binding cassette transporter A1 (ABCA1) expression and reduced low-density lipoprotein-related protein 1 (LRP1) expression in VSMC by calcium-dependent and calcineurin- and protein kinase A-dependent mechanisms. These results showed increased cellular cholesterol efflux and reduced cholesterol uptake. In vivo, long-term activation of TRPV1 by capsaicin for 24 weeks increased ABCA1 and reduced LRP1 expression in aorta from ApoE(-/-) mice on a high-fat diet. Long-term activation of TRPV1 significantly reduced lipid storage and atherosclerotic lesions in the aortic sinus and in the thoracoabdominal aorta from ApoE(-/-) mice but not from ApoE(-/-)TRPV1(-/-) mice on a high-fat diet. These findings indicated that TRPV1 activation ameliorates high-fat diet-induced atherosclerosis. CONCLUSION:Activation of TRPV1 may be a novel therapeutic tool to attenuate atherosclerosis caused by a high-fat diet. 10.1093/cvr/cvr245
The Expression of Lipoprotein Receptors Is Increased in the Infarcted Area After Myocardial Infarction Induced in Rats With Cardiac Dysfunction. de Lima Aline D,Guido Maria C,Tavares Elaine R,Carvalho Priscila O,Marques Alyne F,de Melo Marcelo D T,Salemi Vera M C,Kalil-Filho Roberto,Maranhão Raul C Lipids Left ventricular (LV) remodeling after myocardial infarction constitutes the structural basis for ventricular dysfunction and heart failure. The characterization underlying the expression of lipoprotein receptors in cardiac dysfunction is scarcely explored. The aim of this study was to analyze the status of lipoprotein receptors on the infarcted and noninfarcted areas of LV and to verify whether nanoparticles that mimic the lipid structure of low-density lipoprotein (LDL) and have the ability to bind to LDL receptors (LDE) are taken up more avidly by the noninfarcted LV. 13 male Wistar rats with left coronary artery ligation (myocardial infarction [MI]) and 12 animals with SHAM operation (SHAM) were used in this study. 6 weeks after the procedure, the quantification of low-density lipoprotein receptor (LDLR), LDL receptor-related protein 1 (LRP1), scavenger receptor-class B type I (SR-BI) lipoprotein receptors, and PCNA proliferation marker, and tissue uptake of radioactively labeled LDE were performed. Immunohistochemistry and Western blot analysis showed that LDLR, LRP1, SR-BI, and PCNA, expression in infarcted area of MI was remarkably higher than SHAM and noninfarcted subendocardial (SEN) and interstitial (INT) areas. In addition, in SEN noninfarcted area of MI, the presence of LDLR was about threefold higher than in SHAM SEN and INT noninfarcted areas. The LDE uptake of noninfarcted LV of MI group was about 30% greater than that of SHAM group. In conclusion, these findings regarding the status of lipoprotein receptors after MI induction could help to establish mechanisms on myocardial repairing. In conclusion, infarcted rats with LV dysfunction showed increased expression of lipoprotein receptors mainly in the infarcted area. 10.1002/lipd.12014
Extracellular Matrix Protein-1 as a Mediator of Inflammation-Induced Fibrosis After Myocardial Infarction. JACC. Basic to translational science Irreversible fibrosis is a hallmark of myocardial infarction (MI) and heart failure. Extracellular matrix protein-1 (ECM-1) is up-regulated in these hearts, localized to fibrotic, inflammatory, and perivascular areas. ECM-1 originates predominantly from fibroblasts, macrophages, and pericytes/vascular cells in uninjured human and mouse hearts, and from M1 and M2 macrophages and myofibroblasts after MI. ECM-1 stimulates fibroblast-to-myofibroblast transition, up-regulates key fibrotic and inflammatory pathways, and inhibits cardiac fibroblast migration. ECM-1 binds HuCFb cell surface receptor LRP1, and LRP1 inhibition blocks ECM-1 from stimulating fibroblast-to-myofibroblast transition, confirming a novel ECM-1-LRP1 fibrotic signaling axis. ECM-1 may represent a novel mechanism facilitating inflammation-fibrosis crosstalk. 10.1016/j.jacbts.2023.05.010
Genetic Variants in LRP1 and ULK4 Are Associated with Acute Aortic Dissections. Guo Dong-Chuan,Grove Megan L,Prakash Siddharth K,Eriksson Per,Hostetler Ellen M,LeMaire Scott A,Body Simon C,Shalhub Sherene,Estrera Anthony L,Safi Hazim J,Regalado Ellen S,Zhou Wei,Mathis Michael R, , ,Eagle Kim A,Yang Bo,Willer Cristen J,Boerwinkle Eric,Milewicz Dianna M American journal of human genetics Acute aortic dissections are a preventable cause of sudden death if individuals at risk are identified and surgically repaired in a non-emergency setting. Although mutations in single genes can be used to identify at-risk individuals, the majority of dissection case subjects do not have evidence of a single gene disorder, but rather have the other major risk factor for dissections, hypertension. Initial genome-wide association studies (GWASs) identified SNPs at the FBN1 locus associated with both thoracic aortic aneurysms and dissections. Here, we used the Illumina HumanExome array to genotype 753 individuals of European descent presenting specifically with non-familial, sporadic thoracic aortic dissection (STAD) and compared them to the genotypes of 2,259 control subjects from the Atherosclerosis Risk in Communities (ARIC) study matched for age, gender, and, for the majority of cases, hypertension. SNPs in FBN1, LRP1, and ULK4 were identified to be significantly associated with STAD, and these results were replicated in two independent cohorts. Combining the data from all cohorts confirmed an inverse association between LRP1 rs11172113 and STAD (p = 2.74 × 10(-8); OR = 0.82, 95% CI = 0.76-0.89) and a direct association between ULK4 rs2272007 and STAD (p = 1.15 × 10(-9); OR = 1.35, 95% CI = 1.23-1.49). Genomic copy-number variation analysis independently confirmed that ULK4 deletions were significantly associated with development of thoracic aortic disease. These results indicate that genetic variations in LRP1 and ULK4 contribute to risk for presenting with an acute aortic dissection. 10.1016/j.ajhg.2016.06.034
Immunization with the Gly-Cys amino acid sequence of the LRP1 receptor reduces atherosclerosis in rabbits. Molecular, immunohistochemical and nuclear imaging studies. Bornachea Olga,Benitez-Amaro Aleyda,Vea Angela,Nasarre Laura,de Gonzalo-Calvo David,Escola-Gil Juan Carlos,Cedo Lidia,Iborra Antoni,Martínez-Martínez Laura,Juarez Candido,Camara Juan Antonio,Espinet Carina,Borrell-Pages Maria,Badimon Lina,Castell Joan,Llorente-Cortés Vicenta Theranostics : The LRP1 (CR9) domain and, in particular, the sequence Gly-Cys (P3) plays a critical role in the binding and internalization of aggregated LDL (agLDL). We aimed to evaluate whether immunization with P3 reduces high-fat diet (HFD)-induced atherosclerosis. : Female New Zealand White (NZW) rabbits were immunized with a primary injection and four reminder doses (R1-R4) of IrP (irrelevant peptide) or P3 conjugated to the carrier. IrP and P3-immunized rabbits were randomly divided into a normal diet group and a HFD-fed group. Anti-P3 antibody levels were determined by ELISA. Lipoprotein profile, circulating and tissue lipids, and vascular pro-inflammatory mediators were determined using standardized methods while atherosclerosis was determined by confocal microscopy studies and non-invasive imaging (PET/CT and Doppler ultrasonography). Studies treating human macrophages (hMΦ) and coronary vascular smooth muscle cells (hcVSMC) with rabbit serums were performed to ascertain the potential impact of anti-P3 Abs on the functionality of these crucial cells. : P3 immunization specifically induced the production of anti-P3 antibodies (Abs) and did not alter the lipoprotein profile. HFD strongly induced cholesteryl ester (CE) accumulation in the aorta of both the control and IrP groups, and their serum dose-dependently raised the intracellular CE of hMΦ and hcVSMC, promoting TNFR1 and phospho-NF-kB (p65) overexpression. These HFD pro-inflammatory effects were dramatically decreased in the aorta of P3-immunized rabbits and in hMΦ and hcVSMC exposed to the P3 rabbit serums. Microscopy studies revealed that P3 immunization reduced the percentage of lipids, macrophages, and SMCs in the arterial intima, as well as the atherosclerotic extent and lesion area in the aorta. PET/CT and Doppler ultrasonography studies showed that the average standardized uptake value (SUV) of the aorta and the arterial resistance index (ARI) of the carotids were more upregulated by HFD in the control and IrP groups than the P3 group. : P3 immunization counteracts HFD-induced fatty streak formation in rabbits. The specific blockade of the LRP1 (CR9) domain with Anti-P3 Abs dramatically reduces HFD-induced intracellular CE loading and harmful coupling to pro-inflammatory signaling in the vasculature. 10.7150/thno.37305
Structural and functional consequences of tyrosine phosphorylation in the LRP1 cytoplasmic domain. Betts Gina N,van der Geer Peter,Komives Elizabeth A The Journal of biological chemistry The cytoplasmic domain of LRP1 contains two NPXY motifs that have been shown to interact with signaling proteins. In previous work, we showed that Tyr(4507) in the distal NPXY motif is phosphorylated by v-Src, whereas denaturation of the protein was required for phosphorylation of Tyr(4473) in the membraneproximal NPXY motif. Amide H/D exchange studies reveal that the distal NPXY motif is fully solvent-exposed, whereas the proximal one is not. Phosphopeptide mapping combined with in vitro and in vivo kinase experiments show that Tyr(4473) can be phosphorylated, but only if Tyr(4507) is phosphorylated or substituted with glutamic acid. Amide H/D exchange experiments indicate that solvent accessibility increases across the entire LRP1 cytoplasmic region upon phosphorylation at Tyr(4507); in particular the NPXY(4473) motif becomes much more exposed. This differential phosphorylation is functionally relevant: binding of Snx17, which is known to bind at the proximal NPXY motif, is inhibited by phosphorylation at Tyr(4473). Conversely, Shp2 binds most strongly when both of the NPXY motifs in LRP1 are phosphorylated. 10.1074/jbc.M709514200
UPA promotes lipid-loaded vascular smooth muscle cell migration through LRP-1. Lugano Roberta,Peña Esther,Casani Laura,Badimon Lina,Padró Teresa Cardiovascular research AIM:Migration of vascular smooth muscle cells (VSMCs) is a crucial event in atherosclerosis and vascular repair. Low-density lipoprotein (LDL) infiltrated in the vessel wall become aggregated (agLDL) and internalized by VSMC through the LDL receptor-related protein LRP1, deriving in lipid-loaded cells with reduced motility capacity. The urokinase-plasminogen activator (UPA)/UPA receptor (UPAR) system plays a relevant role in vascular remodelling. Here, we investigated whether UPA-ligand binding is involved in the detrimental effects of lipid loading in VSMC migration. METHODS AND RESULTS:Animals fed a high-fat diet had 10-fold higher cholesterol-LDL plasma levels, >60% decrease in aortic UPA-protein expression, and VSMC showed impaired outgrowth from aortic explants. Angiotensin II infusion significantly increased aortic UPA expression and accelerated VSMC migration. Using an in vitro model of wound repair, we showed that agLDL inhibits UPA-mediated VSMC migration. UPA silencing reduced migration in control cells to levels observed in lipid-loaded VSMC. UPA silencing did not affect migration in lipid-loaded VSMC. UPA expression was significantly decreased in agLDL-exposed VSMC. agLDL also induced changes in the subcellular localization of UPA, with a reduction in colocalization with UPAR strongly evident at the front edge of agLDL-treated migrating cells. Rescue experiments showed that UPA acting as UPAR ligand restored migration capacity of agLDL-VSMC to control levels. The effects of UPA/UPAR on migration of lipid-loaded cells occurred through the binding to LRP-1. CONCLUSION:UPA-ligand binding regulates VSMC migration, a process that is interfered by LDL. Thus, tissue infiltrated LDL through the abrogation of UPA function reduces VSMC-regulated vascular repair. 10.1093/cvr/cvt171
Effect of Mediterranean diet on the expression of pro-atherogenic genes in a population at high cardiovascular risk. Llorente-Cortés Vicenta,Estruch Ramón,Mena Mari Pau,Ros Emilio,González Miguel Angel Martínez,Fitó Montserrat,Lamuela-Raventós Rosa María,Badimon Lina Atherosclerosis Experimental and epidemiological studies have demonstrated the beneficial effects of the traditional Mediterranean diet (TMD) on the incidence and progression of atherosclerosis. Several genes play a major role in determining atherosclerosis susceptibility. We compared the short-term effects of two TMD diets versus a control diet on the expression of pro-atherogenic genes. One TMD diet was supplemented with virgin olive oil (VOO) (TMD+VOO) and the other with nuts (TMD+nuts). Gene expression was analyzed in monocytes from 49 asymptomatic high cardiovascular-risk participants (23 men, 26 women), aged 55-80 years. Monocytes were isolated from blood before and 3 months after dietary intervention. We analyzed the expression of genes involved in inflammation [cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and monocyte chemoattractant protein (MCP-1)], genes involved in foam cell formation [low-density lipoprotein receptor-related protein (LRP1), LDL receptor and CD36], and genes involved in thrombosis [tissue factor (TF) and tissue factor pathway inhibitor (TFPI)]. We found that TMD+VOO intervention prevented an increase in COX-2 and LRP1, and reduced MCP-1 expression compared to TMD+nuts or control diet interventions. TMD+nuts specifically increased the expression of CD36 and TFPI compared to TMD+VOO and control diet intervention. Our findings showed that the Mediterranean diet influences expression of key genes involved in vascular inflammation, foam cell formation and thrombosis. Dietary intervention can thus actively modulate the expression of pro-atherothrombotic genes even in a high-risk population. 10.1016/j.atherosclerosis.2009.08.004
CREBH regulation of lipid metabolism through multifaceted functions that improve arteriosclerosis. Journal of diabetes investigation Cyclic adenosine monophosphate-responsive element-binding protein H (CREBH) activates lipoprotein lipase (LPL) activity by modulating apolipoproteins. Activated LPL hydrolyzes triglyceride-rich lipoproteins, such as very low-density lipoprotein (VLDL) and chylomicrons, resulting in remnant lipoproteins. CREBH increases apolipoprotein E (ApoE), a ligand that mediates the clearance of remnant particles and reduces ApoC3, which interferes with remnant clearance. CREBH also improves VLDL receptor (VLDLR) and LDL receptor-related protein 1 (LRP1) protein that mediates remnant clearance. Therefore, CREBH promotes the clearance of remnant particles from the blood, decreasing the atherogenic plaque area. CREBH induces the secretion of fibroblast growth factor 21 (FGF21) into the blood, decreasing plasma triglyceride. CREBH produces ApoA1 and so increases plasma HDL-cholesterol levels. 10.1111/jdi.13766
Exome sequencing identified new mutations in a Marfan syndrome family. Li Guangxin,Yu Jian,Wang Kun,Wang Bin,Wang Minghai,Zhang Shuguang,Qin Shiyong,Yu Zhenhai Diagnostic pathology Marfan syndrome is a common autosomal dominant hereditary connective tissue disorder. There is no cure for Marfan syndrome currently. Next-generation sequencing (NGS) technology is efficient to identify genetic lesions at the exome level. Here we carried out exome sequencing of two Marfan syndrome patients. Further Sanger sequencing validation in other five members from the same family was also implemented to confirm new variants which may contribute to the pathogenesis of the disease. Two new variants, including one nonsense SNP in the Marfan syndrome gene FBN1 and one missense mutation in exon 15 of LRP1, which may be related to the phenotype of the patients were identified. The exome sequencing analysis provides us a new insight into the molecular events governing pathogenesis of Marfan syndrome. VIRTUAL SLIDE:http://www.diagnosticpathology.diagnomx.eu/vs/1229110069114125. 10.1186/1746-1596-9-25
Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1. American journal of human genetics Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value < 1 × 10(-5)) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p < 1 × 10(-5)). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10(-10), odds ratio 1.15 [1.10-1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression. 10.1016/j.ajhg.2011.10.002
Interaction of PF4 (CXCL4) with the vasculature: a role in atherosclerosis and angiogenesis. Aidoudi Sallouha,Bikfalvi Andreas Thrombosis and haemostasis Platelet factor-4 (PF4), a platelet-derived chemokine, has two important functions in the vasculature. It has a pro-atherogenic role while also having anti-angiogenic effects. The activity of platelet factor-4 (PF4), unlike other chemokines that bind to specific receptors, depends on its unusually high affinity for proteoglycans and other negatively charged molecules. High affinity for heparan sulfates was thought to be central to all of PF4's biological functions. However, other mechanisms have been described such as direct growth factor binding, activation of the CXCR3B chemokine receptor isoform that is present in some vascular cells or binding to lipoprotein-related protein-1 (LRP1). Furthermore, PF4 also binds to integrins with affinities similar to matrix molecules. These interactions may explain the effects of PF4 in healthy and pathological tissues. However, the mechanisms involved in PF4's activity are complex and may depend on a given tissue or localisation. Overall, while much is already known about PF4, its specific role in atherosclerosis and angiogenesis remains still to be clarified. 10.1160/TH10-03-0193
Deficiency of receptor-associated protein attenuates angiotensin II-induced atherosclerosis in hypercholesterolemic mice without influencing abdominal aortic aneurysms. Wang Shaoping,Subramanian Venkateswaran,Lu Hong,Howatt Deborah A,Moorleghen Jessica J,Charnigo Richard,Cassis Lisa A,Daugherty Alan Atherosclerosis OBJECTIVE:Receptor-associated protein (RAP) was initially described as a regulator of low density lipoprotein receptor-related protein 1 (LRP1), but is now known to regulate many proteins. Since the direct effects of RAP on vascular pathologies have not been studied, this study determined whether RAP deficiency influenced angiotensin II (AngII)-induced atherosclerosis and abdominal aortic aneurysms (AAAs) in hypercholesterolemic mice. METHODS AND RESULTS:Male LDL receptor -/- mice that were either RAP +/+ or -/- were infused with AngII (500 ng/kg/min) for 4 weeks while consuming a saturated fat-enriched diet. RAP deficiency had no effects on body weight or AngII-induced increases of systolic blood pressure. Despite increased plasma cholesterol concentrations, RAP deficiency reduced atherosclerotic lesion size in aortic arches, while having no effect on AngII-induced AAAs. RAP deficiency profoundly reduced LRP1 protein abundance in macrophages, but did not change its abundance in aortic smooth muscle cells. Also, RAP deficiency had no effects on mRNA abundance of LRP1 or lipoprotein lipase in macrophages. To determine whether RAP deficiency in leukocytes influenced AngII-induced atherosclerosis, irradiated male LDL receptor -/- mice were repopulated with bone marrow-derived cells from either RAP +/+ or -/- male mice. The chimeric mice were infused with AngII (500 ng/kg/min) for 4 weeks while fed the saturated fat-enriched diet. RAP deficiency in bone marrow-derived cells did not influence either plasma cholesterol concentrations or atherosclerotic lesion size. CONCLUSIONS:Whole body RAP deficiency attenuated atherosclerosis without influencing AAAs in hypercholesterolemic mice infused with AngII. The anti-atherogenic effect was not attributable to RAP deficiency in bone marrow-derived cells. 10.1016/j.atherosclerosis.2011.11.013
Endocytosis of Peptidase Inhibitor SerpinE2 promotes Myocardial Fibrosis through activating ERK1/2 and β-catenin Signaling Pathways. International journal of biological sciences Cardiac fibrosis is one of the common pathological processes in many cardiovascular diseases characterized by excessive extracellular matrix deposition. SerpinE2 is a kind of protein that inhibits peptidase in extracellular matrix and up-regulated tremendously in mouse model of cardiac fibrosis induced by pressure-overloaded via transverse aortic constriction (TAC) surgery. However, its effect on cardiac fibroblasts (CFs), collagen secretion and the underlying mechanism remains unclear. In this study, DyLight® 488 green fluorescent dye or His-tagged proteins were used to label the exogenous serpinE2 protein. It was showed that extracellular serpinE2 translocated into CFs by low-density lipoprotein receptor-related protein 1 (LRP1) and urokinase plasminogen activator receptor (uPAR) of cell membrane through endocytosis. Knockdown of LRP1 or uPAR reduced the level of serpinE2 in CFs and down-regulated the collagen expression. Inhibition of the endocytosis of serpinE2 could inhibit ERK1/2 and β-catenin signaling pathways and subsequently attenuated collagen secretion. Knockdown of serpinE2 attenuates cardiac fibrosis in TAC mouse. We conclude that serpinE2 could be translocated into cardiac fibroblasts due to endocytosis through directly interact with the membrane protein LRP1 and uPAR, and this process activated the ERK1/2, β-catenin signaling pathways, consequently promoting collagen production. 10.7150/ijbs.67726
A common polymorphism decreases LRP1 mRNA stability and is associated with increased plasma factor VIII levels. Lee Jiann-Der,Hsiao Kuang-Ming,Chang Pey-Jium,Chen Chih-Cheng,Kuo Ya-Wen,Huang Yen-Chu,Hsu Huan-Lin,Lin Ya-Hui,Wu Chih-Ying,Huang Ying-Chih,Lee Meng,Hsu Chia-Yu,Pan Yi-Ting,Kuo Chih-Yu,Lin Chun-Hsien Biochimica et biophysica acta. Molecular basis of disease The low-density lipoprotein receptor-related protein 1 (LRP1) gene is associated with increased levels of plasma factor VIII (FVIII). We aimed to explore eight functional genetic LRP1 variants for their potential roles in regulating FVIII levels and acute ischemic stroke (AIS). This genetic association study enrolled 192 patients with AIS and 134 controls. There were no significant differences in the genetic frequency of the eight functional single-nucleotide polymorphisms (SNPs) between the control and AIS groups. However, while analyzing the association between the eight SNPs and plasma FVIII levels, subjects with T/T genotype of rs1800137 (vs. CC+CT) were found to be associated with higher FVIII levels (23.5IU/dL; 95% confidence interval, 7.4-39.5IU/dL; P=0.0044) after adjusting for age, gender, estimated glomerular filtration rate, O blood type, inflammatory state, and body mass index. An analysis of the mRNA stability and abundance was designed and performed using minigene system transfected into HepG2 cells to assess the possible differences in mRNA stabilities between rs1800137 CC (rs1800137C) and TT (rs1800137T) genotypes. Site-directed mutagenesis revealed that rs1800137T accounts for the observed decrease in mRNA stability. The SNP rs1800137, located in exon 8, has been identified as an exon-splicing enhancer in silico. However, alternative splicing of LRP1 without inclusion of exon 8 was not identified. In transfected HepG2 cells, cycloheximide slowed down the degradation of the rs1800137T-containing minigene. These results demonstrate that synonymous SNP rs1800137 can lead to increased plasma FVIII levels due to decreased mRNA stability via translation-dependent mRNA degradation associated with codon optimality. 10.1016/j.bbadis.2017.04.015
Identification of a de novo LRP1 mutation in a Saudi family with Tetralogy of Fallot. Gene BACKGROUND:Tetralogy of Fallot (TOF) is a rare, complex congenital heart defect caused by genetic and environmental interactions that results in abnormal heart development during the early stages of pregnancy. Genetic basis of TOF in Saudi populations is not yet studied. Therefore, the objective of this study is to screen for the molecular defects causing TOF in Saudi patients. METHODS:A family with non-syndromic TOF was recruited from the Western region of Saudi Arabia. Whole exome sequencing (WES) was performed on the proband and her parents. The identified candidate variant was verified by sanger sequencing. Also, different computational biology tools were used to figure out how candidate variants affect the structure and function of candidate protein involved in TOF. RESULTS:A novel heterozygous de novo mutation in LRP1 (p. G3311D) gene was identified in the index case. Also, this variant was absent in the in-house exome sequencing data of 80 healthy Saudi individuals. This variant was predicted to be likely pathogenic, as it negatively affects the biophysical chemical properties and stability of the protein. Furthermore, functional biology data from knock out mouse models confirms that molecular defects in LRP1 gene leads to cardiac defects and lethality. This variant was not previously reported in both Arab and global population genetic databases. CONCLUSION:The findings in this study postulate that the LRP1 variant has a role in TOF pathogenesis and facilitate accurate diagnosis as well as the understanding of underlying molecular mechanisms and pathophysiology of the disease. 10.1016/j.gene.2022.146909
Genetics of abdominal aortic aneurysm. Golledge Jonathan,Kuivaniemi Helena Current opinion in cardiology PURPOSE OF REVIEW:Family history is a risk factor for abdominal aortic aneurysm (AAA), suggesting that genetic factors play an important role in AAA development, growth and rupture. Identification of these factors could improve understanding of the AAA pathogenesis and be useful to identify at risk individuals. RECENT FINDINGS:Many approaches are used to examine genetic determinants of AAA, including genome-wide association studies (GWAS) and DNA linkage studies. Two recent GWAS have identified genetic markers associated with an increased risk of AAA located within the genes for DAB2 interacting protein (DAB2IP) and low density lipoprotein receptor-related protein 1 (LRP1). In addition, a marker on 9p21 associated with other vascular diseases is also strongly associated with AAA. The exact means by which these genes currently control AAA risk is not clear; however, in support of these findings, mice with vascular smooth muscle cell deficiency of Lrp1 are prone to aneurysm development. Further current work is concentrated on other molecular mechanisms relevant in AAA pathogenesis, including noncoding RNAs such as microRNAs. SUMMARY:Current studies assessing genetic mechanisms for AAA have significant potential to identify novel mechanisms involved in AAA pathogenesis of high relevance to better clinical management of the disease. 10.1097/HCO.0b013e32835f0d55
Circulating soluble low-density lipoprotein receptor-related protein 1 (sLRP1) concentration is associated with hypercholesterolemia: A new potential biomarker for atherosclerosis. de Gonzalo-Calvo D,Cenarro A,Martínez-Bujidos M,Badimon L,Bayes-Genis A,Ordonez-Llanos J,Civeira F,Llorente-Cortés V International journal of cardiology BACKGROUND:There is clinical interest in identifying novel lipid biomarkers for evaluating cardiovascular risk and targeting lipid-lowering treatment. Low-density lipoprotein receptor-related protein 1 (LRP1) plays a crucial role in the dysregulated cholesterol transfer from modified lipoproteins to human coronary vascular smooth muscle cells (hVSMCs), promoting hVSMC-derived foam cell formation. LRP1 has a soluble and circulating form (sLRP1) generated from LRP1. Cholesterol modulates the release of the soluble form of LRP1. Using in vitro, ex vivo and patient-based approaches, we tested the association between circulating sLRP1 concentrations and hypercholesterolemia and the potential of sLRP1 as a biomarker of atherosclerosis. METHODS AND RESULTS:Circulating sLRP1 concentrations were higher in severe hypercholesterolemia compared to moderate hypercholesterolemia or normocholesterolemia (Study 1). Circulating sLRP1 was significantly associated with established pro-atherogenic lipid parameters in two different hypercholesterolemic populations (Studies 2 and 3). sLRP1 concentrations decreased after statin treatment and increased after statin withdrawal (Study 3). In vitro experiments showed that native LDL, aggregated LDL and VLDL+IDL lipoproteins induced the release of sLRP1 from hVSMC. sLRP1 levels were increased in the conditioned medium of coronary atherosclerotic plaque areas extracted from patients compared to non-atherosclerotic areas of the same coronary artery and patient. Circulating sLRP1 concentrations were independently associated with the occurrence of carotid atherosclerosis in a hypercholesterolemic population (Study 2). The later association was higher than that observed for other classical or novel lipid parameters. CONCLUSIONS:Circulating sLRP1 is a new lipid-related parameter potentially useful as a biomarker for atherosclerosis. 10.1016/j.ijcard.2015.07.085
LRP1 gene polymorphisms are associated with premature risk of cardiovascular disease in patients with familial hypercholesterolemia. Aledo Rosa,Alonso Rodrigo,Mata Pedro,Llorente-Cortés Vicenta,Padró Teresa,Badimon Lina Revista espanola de cardiologia (English ed.) INTRODUCTION AND OBJECTIVES:LRP1 gene overexpression in atherosclerotic plaque is associated with increased lipid uptake through the vascular wall. The aim of the study was to analyze whether LRP1 modulates the genetic risk of developing premature cardiovascular disease in familial hypercholesterolemia, using single nucleotide polymorphism association analysis. METHODS:Ten polymorphisms of the LRP1 gene (rs715948, rs1799986, rs1800127, rs7968719, rs1800176, rs1800194, rs1800181, rs1140648, rs1800164, and rs35282763) were genotyped in 339 patients (77 with premature cardiovascular disease and 262 without) in the SAFEHEART study. RESULTS:The c.677C>T (rs1799986) polymorphism showed a significant association with premature cardiovascular disease after adjusting by sex, age, body mass index, and the effect of the low-density lipoprotein receptor mutation in the dominant model (CT+TT vs CC: odds ratio=1.94; 95% confidence interval, 1.08-3.48; P=.029). Similar results were observed after increasing the sample to 648 subjects (133 with premature cardiovascular disease vs 515 without [odds ratio=1.83; 95% confidence interval, 1.16-2.88; P=.011]). CONCLUSIONS:The c.677C>T polymorphism is associated with increased rates of premature cardiovascular disease in familial hypercholesterolemia. Although we were unable to show that this polymorphism was involved in the alteration of normal mRNA splicing patterns, the possibility that it is in strong linkage disequilibrium with another functional polymorphism cannot be ruled out and would explain the cause-effect relationship with cardiovascular disease risk in this population. Further studies are needed to replicate the results and to localize the putative genetic variants associated with this polymorphism. 10.1016/j.recesp.2012.03.013
A soluble derivative of PrP activates cell-signaling and regulates cell physiology through LRP1 and the NMDA receptor. The Journal of biological chemistry Cellular prion protein (PrP) is a widely expressed glycosylphosphatidylinositol-anchored membrane protein. Scrapie prion protein is a misfolded and aggregated form of PrP responsible for prion-induced neurodegenerative diseases. Understanding the function of the nonpathogenic PrP monomer is an important objective. PrP may be shed from the cell surface to generate soluble derivatives. Herein, we studied a recombinant derivative of PrP (soluble cellular prion protein, S-PrP) that corresponds closely in sequence to a soluble form of PrP shed from the cell surface by proteases in the A Disintegrin And Metalloprotease (ADAM) family. S-PrP activated cell-signaling in PC12 and N2a cells. TrkA was transactivated by Src family kinases and extracellular signal-regulated kinase 1/2 was activated downstream of Trk receptors. These cell-signaling events were dependent on the -methyl-d-aspartate receptor (NMDA-R) and low-density lipoprotein receptor-related protein-1 (LRP1), which functioned as a cell-signaling receptor system in lipid rafts. Membrane-anchored PrP and neural cell adhesion molecule were not required for S-PrP-initiated cell-signaling. S-PrP promoted PC12 cell neurite outgrowth. This response required the NMDA-R, LRP1, Src family kinases, and Trk receptors. In Schwann cells, S-PrP interacted with the LRP1/NMDA-R system to activate extracellular signal-regulated kinase 1/2 and promote cell migration. The effects of S-PrP on PC12 cell neurite outgrowth and Schwann cell migration were similar to those caused by other proteins that engage the LRP1/NMDA-R system, including activated α-macroglobulin and tissue-type plasminogen activator. Collectively, these results demonstrate that shed forms of PrP may exhibit important biological activities in the central nervous system and the peripheral nervous system by serving as ligands for the LRP1/NMDA-R system. 10.1074/jbc.RA120.013779
LRP-1 Pathway Targeted Inhibition of Vascular Abnormalities in the Retina of Diabetic Mice. Hossain Ahamed,Tauhid Lamiya,Davenport Ian,Huckaba Thomas,Graves Richard,Mandal Tarun,Muniruzzaman Syed,Ahmed Syed A,Bhattacharjee Partha S Current eye research PURPOSE:The cell surface LDL (low-density lipoprotein) receptor-related protein-1 (LRP-1) is important for lipid transport and several cell signaling processes. Human apolipoprotein E (apoE) is a ligand of LRP-1. We previously reported that a short peptide (apoEdp) mimicking the LRP-1 binding region of apoE prevents hyperglycemia-induced retinal endothelial cell dysfunction in vitro. The in-vivo outcome of apoE-based peptidomimetic inhibition of LRP-1 in the treatment of diabetic retinopathy is unknown. METHODS:Six months after streptozotocin induction of diabetes, male C57Bl/6 mice were intravitreally inoculated with apoEdp in a controlled release formulation. On the 15th day post-apoEdp treatment, mouse retinas were harvested to examine (1) blood-retinal-barrier (BRB) permeability by Evans blue dye, inflammatory leukostasis by concanavalin staining of leukocytes and LRP-1 pathway-related protein expression by Western blot analysis and gelatin zymography. RESULTS:Intravitreal apoEdp treatment of diabetic mice significantly reduced Evans blue extravasation and the number of adherent leukocytes in the diabetic mouse retinas. ApoEdp treatment inhibited the expression of extracellular matrix (ECM) degrading proteases heparanase and MMP-2, and restores the BRB tight junction proteins occludin and ZO-1. ApoEdp treatment also inhibited Wnt/β-catenin-related expression of pro-inflammatory molecules ICAM-1, HIF-1α, and VEGF through negative regulation by LRP-1. CONCLUSION:Intravitreal apoEdp treatment of diabetic mice resulted a significant decrease in retinal vascular abnormalities through downregulation of LRP-1-related ECM protein degradation and Wnt/β-catenin-related pro-angiogenic molecules. 10.1080/02713683.2016.1203441
Low density lipoprotein receptor-related protein-1 promotes beta1 integrin maturation and transport to the cell surface. Salicioni Ana María,Gaultier Alban,Brownlee Cristina,Cheezum Michael K,Gonias Steven L The Journal of biological chemistry Low density lipoprotein receptor-related protein-1 (LRP-1) mediates the endocytosis of multiple plasma membrane proteins and thereby models the composition of the cell surface. LRP-1 also functions as a catabolic receptor for fibronectin, limiting fibronectin accumulation in association with cells. The goal of the present study was to determine whether LRP-1 regulates cell surface levels of the beta(1) integrin subunit. We hypothesized that LRP-1 may down-regulate cell surface beta(1) by promoting its internalization; however, unexpectedly, LRP-1 expression was associated with a substantial increase in cell surface beta(1) integrin in two separate cell lines, murine embryonic fibroblasts (MEFs) and CHO cells. The total amount of beta(1) integrin was unchanged because LRP-1-deficient cells retained increased amounts of beta(1) in the endoplasmic reticulum (ER). Expression of human LRP-1 in LRP-1-deficient MEFs reversed the shift in subcellular beta(1) integrin distribution. Metabolic labeling experiments demonstrated that the precursor form of newly synthesized beta(1) integrin (p105) is converted into mature beta(1) (p125) more slowly in LRP-1-deficient cells. Although low levels of cell surface beta(1) integrin, in LRP-1-deficient MEFs, were associated with decreased adhesion to fibronectin, the subcellular distribution of beta(1) integrin was most profoundly dependent on LRP-1 only after the cell cultures became confluent. A mutagen-treated CHO cell line, in which LRP-1 is expressed but retained in the secretory pathway, also demonstrated nearly complete ER retention of beta(1) integrin. These studies support a model in which LRP-1 either directly or indirectly promotes maturation of beta(1) integrin precursor and thereby increases the level of beta(1) integrin at the cell surface. 10.1074/jbc.M306625200
Regulation of Rac1 activation by the low density lipoprotein receptor-related protein. Ma Zhong,Thomas Keena S,Webb Donna J,Moravec Radim,Salicioni Ana Maria,Mars Wendy M,Gonias Steven L The Journal of cell biology The low density lipoprotein receptor-related protein (LRP-1) binds and mediates the endocytosis of multiple ligands, transports the urokinase-type plasminogen activator receptor (uPAR) and other membrane proteins into endosomes, and binds intracellular adaptor proteins involved in cell signaling. In this paper, we show that in murine embryonic fibroblasts (MEFs) and L929 cells, LRP-1 functions as a major regulator of Rac1 activation, and that this activity depends on uPAR. LRP-1-deficient MEFs demonstrated increased Rac1 activation compared with LRP-1-expressing MEFs, and this property was reversed by expressing the VLDL receptor, a member of the same gene family as LRP-1, with overlapping ligand-binding specificity. Neutralizing the activity of LRP-1 with receptor-associated protein (RAP) increased Rac1 activation and cell migration in MEFs and L929 cells. The same parameters were unaffected by RAP in uPAR-/- MEFs, prepared from uPAR gene knockout embryos, and in uPAR-deficient LM-TK- cells. Untreated uPAR+/+ MEFs demonstrated substantially increased Rac1 activation compared with uPAR-/- MEFs. In addition to Rac1, LRP-1 suppressed activation of extracellular signal-regulated kinase (ERK) in MEFs; however, it was Rac1 (and not ERK) that was responsible for the effects of LRP-1 on MEF migration. Thus, LRP-1 regulates two signaling proteins in the same cell (Rac1 and ERK), both of which may impact on cell migration. In uPAR-negative cells, LRP-1 neutralization does not affect Rac1 activation, and other mechanisms by which LRP-1 may regulate cell migration are not unmasked. 10.1083/jcb.200207070
The P2Y2 receptor mediates uptake of matrix-retained and aggregated low density lipoprotein in primary vascular smooth muscle cells. Atherosclerosis BACKGROUND AND AIMS:The internalization of aggregated low-density lipoproteins (agLDL) mediated by low-density lipoprotein receptor related protein (LRP1) may involve the actin cytoskeleton in ways that differ from the endocytosis of soluble LDL by the LDL receptor (LDLR). This study aims to define novel mechanisms of agLDL uptake through modulation of the actin cytoskeleton, to identify molecular targets involved in foam cell formation in vascular smooth muscle cells (VSMCs). The critical observation that formed the basis for these studies is that under pathophysiological conditions, nucleotide release from blood-derived and vascular cells activates SMC P2Y2 receptors (P2Y2Rs) leading to rearrangement of the actin cytoskeleton and cell motility. Therefore, we tested the hypothesis that P2Y2R activation mediates agLDL uptake by VSMCs. METHODS:Primary VSMCs were isolated from aortas of wild type (WT) C57BL/6 and.P2Y2R-/- mice to investigate whether P2Y2R activation modulates LRP1 expression. Cells were transiently transfected with cDNA encoding a hemagglutinin-tagged (HA-tagged) WT P2Y2R, or a mutant P2Y2R that unlike the WT P2Y2R does not bind the cytoskeletal actin-binding protein filamin-A (FLN-A). RESULTS:P2Y2R activation significantly increased agLDL uptake, and LRP1 mRNA expression decreased in P2Y2R-/- VSMCs versus WT. SMCs, expressing P2Y2R defective in FLN-A binding, exhibit 3-fold lower LDLR expression levels than SMCs expressing WT P2Y2R, while cells transfected with WT P2Y2R show greater agLDL uptake in both WT and P2Y2R-/- VSMCs versus cells transfected with the mutant P2Y2R. CONCLUSIONS:Together, these results show that both LRP1 and LDLR expression and agLDL uptake are regulated by P2Y2R in VSMCs, and that agLDL uptake due to P2Y2R activation is dependent upon cytoskeletal reorganization mediated by P2Y2R binding to FLN-A. 10.1016/j.atherosclerosis.2016.07.927
The low-density lipoprotein receptor-related protein-1 associates transiently with lipid rafts. Wu Lihua,Gonias Steven L Journal of cellular biochemistry The low-density lipoprotein receptor-related protein-1 (LRP-1) is a multifunctional receptor that undergoes constitutive endocytosis and recycling. To identify LRP-1 in lipid rafts, we biotin-labeled cells using a membrane-impermeable reagent and prepared Triton X-100 fractions. Raft-associated proteins were identified in streptavidin affinity-precipitates of the Triton X-100-insoluble fraction. PDGF beta-receptor was identified exclusively in lipid rafts, whereas transferrin receptor was excluded. LRP-1 distributed partially into rafts in murine embryonic fibroblasts (MEFs) and HT 1080 cells, but not in smooth muscle cells and CHO cells. LRP-1 partitioning into rafts was not altered by ligands, including alpha2-macroglobulin, platelet-derived growth factor-BB, and receptor-associated protein (RAP). To examine LRP-1 trafficking between membrane microdomains, we developed a novel method based on biotinylation and detergent fractionation. Association of LRP-1 with rafts was transient; by 15 min, nearly all of the LRP-1 that was initially raft-associated exited this compartment. LRP-1 in the Triton X-100-soluble fraction, which excludes lipid rafts, demonstrated complex kinetics, with phases reflecting import from rafts, endocytosis, and recycling. Potassium depletion blocked LRP-1 endocytosis but did not inhibit trafficking of LRP-1 from rafts into detergent-soluble microdomains. Our data support a model in which LRP-1 transiently associates with rafts but does not form a stable pool. Fluid movement of LRP-1 between microdomains may facilitate its function in promoting the endocytosis of other plasma membrane proteins, such as the urokinase receptor, which localizes in lipid rafts. 10.1002/jcb.20596
Low density lipoprotein receptor-related protein 1 mediated endocytosis of β1-integrin influences cell adhesion and cell migration. Rabiej Verena K,Pflanzner Thorsten,Wagner Timo,Goetze Kristina,Storck Steffen E,Eble Johannes A,Weggen Sascha,Mueller-Klieser Wolfgang,Pietrzik Claus U Experimental cell research The low density lipoprotein receptor-related protein 1 (LRP1) has been shown to interact with β1-integrin and regulate its surface expression. LRP1 knock-out cells exhibit altered cytoskeleton organization and decreased cell migration. Here we demonstrate coupled endocytosis of LRP1 and β1-integrin and the involvement of the intracellular NPxY2 motif of LRP1 in this process. Mouse embryonic fibroblasts harboring a knock in replacement of the NPxY2 motif of LRP1 by a multiple alanine cassette (AAxA) showed elevated surface expression of β1-integrin and decreased β1-integrin internalization rates. As a consequence, cell spreading was altered and adhesion rates were increased in our cell model. Cells formed more focal adhesion complexes, whereby in vitro cell migration rates were decreased. Similar results could be observed in a corresponding mouse model, the C57Bl6 LRP1 NPxYxxL knock in mice, therefore, the biochemistry of cellular adhesion was altered in primary cortical neurons. In vivo cell migration experiments demonstrated a disturbance of neuroblast cell migration along the rostral migratory stream. In summary, our results indicate that LRP1 interacts with β1-integrin mediating integrin internalization and thus correlates with downstream signaling of β1-integrin such as focal adhesion dynamics. Consequently, the disturbance of this interaction resulted in a dysfunction in in vivo and in vitro cell adhesion and cell migration. 10.1016/j.yexcr.2015.11.020
Loss of LRP1 promotes acquisition of contractile-myofibroblast phenotype and release of active TGF-β1 from ECM stores. Schnieder Jennifer,Mamazhakypov Argen,Birnhuber Anna,Wilhelm Jochen,Kwapiszewska Grazyna,Ruppert Clemens,Markart Philipp,Wujak Lukasz,Rubio Karla,Barreto Guillermo,Schaefer Liliana,Wygrecka Malgorzata Matrix biology : journal of the International Society for Matrix Biology In healing tissue, fibroblasts differentiate to α-smooth muscle actin (SMA)-expressing contractile-myofibroblasts, which pull the wound edges together ensuring proper tissue repair. Uncontrolled expansion of the myofibroblast population may, however, lead to excessive tissue scarring and finally to organ dysfunction. Here, we demonstrate that the loss of low-density lipoprotein receptor-related protein (LRP) 1 overactivates the JNK1/2-c-Jun-Fra-2 signaling pathway leading to the induction of α-SMA and periostin expression in human lung fibroblasts (hLF). These changes are accompanied by increased contractility of the cells and the integrin- and protease-dependent release of active transforming growth factor (TGF)-β1 from the extracellular matrix (ECM) stores. Liberation of active TGF-β1 from the ECM further enhances α-SMA and periostin expression thus accelerating the phenotypic switch of hLF. Global gene expression profiling of LRP1-depleted hLF revealed that the loss of LRP1 affects cytoskeleton reorganization, cell-ECM contacts, and ECM production. In line with these findings, fibrotic changes in the skin and lung of Fra-2 transgenic mice were associated with LRP1 depletion and c-Jun overexpression. Altogether, our results suggest that dysregulation of LRP1 expression in fibroblasts in healing tissue may lead to the unrestrained expansion of contractile myofibroblasts and thereby to fibrosis development. Further studies identifying molecules, which regulate LRP1 expression, may provide new therapeutic options for largely untreatable human fibrotic diseases. 10.1016/j.matbio.2019.12.001
Low-Density Lipoprotein Receptor-Related Protein-1 Is a Therapeutic Target in Acute Myocardial Infarction. JACC. Basic to translational science Low-density lipoprotein receptor-related protein-1 (LRP1) is a ubiquitous membrane receptor functioning as a scavenger and regulatory receptor, inducing anti-inflammatory and prosurvival signals. Based on the known structure-activity of the LRP1 receptor binding site, the authors synthesized a small peptide (SP16). SP16 induced a >50% reduction in infarct size (p < 0.001) and preservation of left ventricular systolic function (p < 0.001), and treatment with an LRP1 blocking antibody eliminated the protective effects of SP16. In conclusion, LRP1 activation with SP16 given within 30 min of reperfusion during experimental acute myocardial infarction leads to a cardioprotective signal reducing infarct size and preservation of cardiac systolic function. 10.1016/j.jacbts.2017.05.007
sLRP1 (Soluble Low-Density Lipoprotein Receptor-Related Protein 1): A Novel Biomarker for P2Y12 (P2Y Purinoceptor 12) Receptor Expression in Atherosclerotic Plaques. Chen Jiefang,Pi Shulan,Yu Cheng,Shi Hanqing,Liu Yuxiao,Guo Xiaoqing,Zhou Lian,Li Yuanyuan,He Hui,Xia Yuanpeng,Mao Ling,Hu Bo Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:Recent studies suggest that the P2Y12 (P2Y purinoceptor 12) receptor of vascular smooth muscle cells in atherosclerotic plaques aggravates atherosclerosis, and P2Y12 receptor inhibitors such as CDL (clopidogrel) may effectively treat atherosclerosis. It is imperative to identify an effective biomarker for reflecting the P2Y12 receptor expression on vascular smooth muscle cells in plaques. Approach and Results: We found that there was a positive correlation between the level of circulating sLRP1 (soluble low-density lipoprotein receptor-related protein 1) and the number of LRP1 α-SMA (α-smooth muscle actin), P2Y12, or P2Y12 LRP1 cells in plaques from apoE mice fed a high-fat diet. Furthermore, activation of the P2Y12 receptor increased the expression and shedding of LRP1 in vascular smooth muscle cells by inhibiting cAMP (3'-5'-cyclic adenosine monophosphate)/PKA (protein kinase A)/SREBP-2 (sterol regulatory element binding transcription factor 2). Conversely, genetic knockdown or pharmacological inhibition of the P2Y12 receptor had the opposite effects. Additionally, CDL decreased the number of lesional LRP1 α-SMA cells and the levels of circulating sLRP1 by activating cAMP/PKA/SREBP-2 in apoE mice fed a high-fat diet. CONCLUSIONS:Our study suggests that sLRP1 may be a biomarker that reflects the P2Y12 receptor level in plaques and has the potential to be an indicator for administering P2Y12 receptor inhibitors for patients with atherosclerosis. 10.1161/ATVBAHA.120.314350
Letter by Potere et al Regarding Article, "Deletion of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Accelerates Atherosclerosis Regression and Increases C-C Chemokine Receptor Type 7 (CCR7) Expression in Plaque Macrophages". Potere Nicola,Toldo Stefano,Abbate Antonio Circulation 10.1161/CIRCULATIONAHA.118.036486
Cholesteryl esters of aggregated LDL are internalized by selective uptake in human vascular smooth muscle cells. Llorente-Cortés Vicenta,Otero-Viñas Marta,Camino-López Sandra,Costales Paula,Badimon Lina Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:Low-density lipoprotein (LDL) receptor-related protein (LRP1) mediates the internalization of aggregated LDL (agLDL)-LDL trapped in the arterial intima bound to proteoglycans-into human vascular smooth muscle cells (VSMC). LRP1-mediated agLDL uptake induces high-intracellular cholesteryl ester (CE) accumulation. The aim of this study was to characterize the mechanism of agLDL internalization in human VSMC. METHODS AND RESULTS:The lipidic component of LDL was labeled with [3H] and the apolipoprotein component with [(125)I]. We found that >90% of intracellular CE derived from agLDL uptake was not associated with apoB100 degradation but was selectively taken up from agLDL. The inhibition of LRP1 expression by small interfering RNA treatment led to a decrease of 80+/-0.05% in agLDL-CE selective uptake. AgLDL induced intracellular CE accumulation without a concomitant CE synthesis. Cytosolic and cytoskeletal proteins were not required for CE transport. Electron and confocal microscopy experiments indicate that CE derived from agLDL accumulated in adipophilin-stained lipid droplets that were not removable by high-density lipoprotein. CONCLUSIONS:Taken together, these results demonstrate that LRP1 mediates the selective uptake of CE from agLDL and that CE derived from agLDL is not intracellularly processed but stored in lipid droplets in human VSMC. 10.1161/01.ATV.0000193618.32611.8b
Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). Canuel Maryssa,Sun Xiaowei,Asselin Marie-Claude,Paramithiotis Eustache,Prat Annik,Seidah Nabil G PloS one Elevated LDL-cholesterol (LDLc) levels are a major risk factor for cardiovascular disease and atherosclerosis. LDLc is cleared from circulation by the LDL receptor (LDLR). Proprotein convertase subtilisin/kexin 9 (PCSK9) enhances the degradation of the LDLR in endosomes/lysosomes, resulting in increased circulating LDLc. PCSK9 can also mediate the degradation of LDLR lacking its cytosolic tail, suggesting the presence of as yet undefined lysosomal-targeting factor(s). Herein, we confirm this, and also eliminate a role for the transmembrane-domain of the LDLR in mediating its PCSK9-induced internalization and degradation. Recent findings from our laboratory also suggest a role for PCSK9 in enhancing tumor metastasis. We show herein that while the LDLR is insensitive to PCSK9 in murine B16F1 melanoma cells, PCSK9 is able to induce degradation of the low density lipoprotein receptor-related protein 1 (LRP-1), suggesting distinct targeting mechanisms for these receptors. Furthermore, PCSK9 is still capable of acting upon the LDLR in CHO 13-5-1 cells lacking LRP-1. Conversely, PCSK9 also acts on LRP-1 in the absence of the LDLR in CHO-A7 cells, where re-introduction of the LDLR leads to reduced PCSK9-mediated degradation of LRP-1. Thus, while PCSK9 is capable of inducing degradation of LRP-1, the latter is not an essential factor for LDLR regulation, but the LDLR effectively competes with LRP-1 for PCSK9 activity. Identification of PCSK9 targets should allow a better understanding of the consequences of PCSK9 inhibition for lowering LDLc and tumor metastasis. 10.1371/journal.pone.0064145
Low-density lipoprotein receptor-related protein-1 (LRP-1) expression in a rat model of oxygen-induced retinal neovascularization. Sánchez María C,Barcelona Pablo F,Luna Jose D,Ortiz Susana G,Juarez Patricio C,Riera Clelia M,Chiabrando Gustavo A Experimental eye research The low-density lipoprotein receptor-related protein-1 (LRP-1) is a high-molecular weight receptor of the LDL receptor gene family. Its ability to bind and internalize both proteinases and proteinase-inhibitor complexes from the extracellular space suggests that it has a major role in modulating uncontrolled retinal cell proliferation. In order to test this assumption, we investigated the expression of LRP-1 and receptor-associated ligands in a rat model of oxygen-induced retinal neovascularization. Wistar albino rats were placed into incubators at birth and exposed to an atmosphere alternating between 50% and 10% of oxygen every 24 h. After 14 days, the animals were allowed to recover in room air and sacrificed at postnatal day 20 (P20). The protein expression of LRP-1 and alpha2-macroglobulin (alpha2M) in the retina from unexposed and hyperoxia-exposed rats was investigated by Western blot. The localization of LRP-1 after neovascularization was assessed by immunohistochemical staining. The activity of metalloproteinases (MMPs) was determined by zymography. Histological analysis was done to quantitate the neovascular response in these animals. Western blot analysis showed that LRP-1 was expressed, along with alpha2M, in the retina of rats with oxygen-induced neovascularization at P20. By immunohistochemical analysis, positive staining for LRP-1 appeared in cells extending from the inner limiting membrane (ILM) to the outer limiting membrane (OLM). The cells of the retina that expressed LRP-1 were identified by immunofluorescence as Müller cells. Zymographic analysis demonstrated increased activity of MMP-2 and MMP-9 under neovascular conditions. This is the first demonstration of the involvement of LRP-1 in retinal neovascularization. In retinas of rats with oxygen-induced neovascularization, the expression of LRP-1 and alpha2M was increased along with an enhanced activity of MMPs, suggesting that LRP-1 expression may play a role in modulating retinal neovascularization by regulating proteolytic activity. 10.1016/j.exer.2006.07.016
High glucose facilitated endothelial heparanase transfer to the cardiomyocyte modifies its cell death signature. Wang Fulong,Jia Jocelyn,Lal Nathaniel,Zhang Dahai,Chiu Amy Pei-Ling,Wan Andrea,Vlodavsky Israel,Hussein Bahira,Rodrigues Brian Cardiovascular research AIMS:The secretion of enzymatically active heparanase (Hep) has been implicated as an essential metabolic adaptation in the heart following diabetes. However, the regulation and function of the enzymatically inactive heparanase (Hep) remain poorly understood. We hypothesized that in response to high glucose (HG) and secretion of Hep from the endothelial cell (EC), Hep uptake and function can protect the cardiomyocyte by modifying its cell death signature. METHODS AND RESULTS:HG promoted both Hep and Hep secretion from microvascular (rat heart micro vessel endothelial cells, RHMEC) and macrovascular (rat aortic endothelial cells, RAOEC) EC. However, only RAOEC were capable of Hep reuptake. This occurred through a low-density lipoprotein receptor-related protein 1 (LRP1) dependent mechanism, as LRP1 inhibition using small interfering RNA (siRNA), receptor-associated protein, or an LRP1 neutralizing antibody significantly reduced uptake. In cardiomyocytes, which have a negligible amount of heparanase gene expression, LRP1 also participated in the uptake of Hep. Exogenous addition of Hep to rat cardiomyocytes produced a dramatically altered expression of apoptosis-related genes, and protection against HG and HO induced cell death. Cardiomyocytes from acutely diabetic rats demonstrated a robust increase in LRP1 expression and levels of heparanase, a pro-survival gene signature, and limited evidence of cell death, observations that were not apparent following chronic and progressive diabetes. CONCLUSION:Our results highlight EC-to-cardiomyocyte transfer of heparanase to modulate the cardiomyocyte cell death signature. This mechanism was observed in the acutely diabetic heart, and its interruption following chronic diabetes may contribute towards the development of diabetic cardiomyopathy. 10.1093/cvr/cvw211
Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice. Basford Joshua E,Koch Sheryl,Anjak Ahmad,Singh Vivek P,Krause Eric G,Robbins Nathan,Weintraub Neal L,Hui David Y,Rubinstein Jack PloS one Valvular disease is common in patients with Marfan syndrome and can lead to cardiomyopathy. However, some patients develop cardiomyopathy in the absence of hemodynamically significant valve dysfunction, suggesting alternative mechanisms of disease progression. Disruption of LDL receptor-related protein-1 (Lrp1) in smooth muscle cells has been shown to cause vascular pathologies similar to Marfan syndrome, with activation of smooth muscle cells, vascular dysfunction and aortic aneurysms. This study used echocardiography and blood pressure monitoring in mouse models to determine whether inactivation of Lrp1 in vascular smooth muscle leads to cardiomyopathy, and if so, whether the mechanism is a consequence of valvular disease. Hemodynamic changes during treatment with captopril were also assessed. Dilation of aortic roots was observed in young Lrp1-knockout mice and progressed as they aged, whereas no significant aortic dilation was detected in wild type littermates. Diastolic blood pressure was lower and pulse pressure higher in Lrp1-knockout mice, which was normalized by treatment with captopril. Aortic dilation was followed by development of aortic insufficiency and subsequent dilated cardiomyopathy due to valvular disease. Thus, smooth muscle cell Lrp1 deficiency results in aortic dilation and insufficiency that causes secondary cardiomyopathy that can be improved by captopril. These findings provide novel insights into mechanisms of cardiomyopathy associated with vascular activation and offer a new model of valvular cardiomyopathy. 10.1371/journal.pone.0082026
Angiotensin II-induced smooth muscle cell migration is mediated by LDL receptor-related protein 1 via regulation of matrix metalloproteinase 2 expression. Jung Hae Ok,Uhm Jae Sun,Seo Suk Min,Kim Jee Hee,Youn Ho-Joong,Baek Sang Hong,Chung Wook Sung,Seung Ki Bae Biochemical and biophysical research communications Angiotensin II (Ang II), one of the main vasoactive hormones of the renin-angiotensin system, contributes to the development and progression of atherosclerosis by inducing vascular smooth muscle cells (VSMCs) migration. Although previous studies have shown that Ang II upregulates low density lipoprotein receptor-related protein 1 (LRP1) expression in VSMCs and increases VSMCs migration, the role of LRP1 in Ang II-induced VSMCs migration remains unclear. Here, we reveal a novel mechanism by which LRP1 induces the expression of matrix metalloproteinase 2 (MMP2) and thereby promotes the migration of rat aortic SMCs (RAoSMCs). Knockdown of LRP1 expression greatly decreased RAoSMCs migration, which was rescued by forced expression of a functional LRP1 minireceptor, suggesting that LRP1 is a key regulator of Ang II-induced RAoSMCs migration. Inhibition of ligand binding to LRP1 by the specific antagonist receptor-associated protein (RAP) also led to reduced RAoSMCs migration. Because MMPs play critical roles in RAoSMCs migration, we examined the expression of several MMPs and found that the expression of functional MMP2 was selectively increased by Ang II treatment and decreased in LRP1-knockdown RAoSMCs. More interestingly, reduced MMP2 expression in LRP1-knockdown cells was completely rescued by exogenous expression of mLRP4, suggesting that MMP2 is a downstream regulator of LRP1 in Ang II-induced RAoSMCs migration. Together, our data strongly suggest that LRP1 promotes the migration of RAoSMCs by regulating the expression and function of MMP2. 10.1016/j.bbrc.2010.10.019
Myeloid-Specific Deletion of Epsins 1 and 2 Reduces Atherosclerosis by Preventing LRP-1 Downregulation. Circulation research RATIONALE:Atherosclerosis is, in part, caused by immune and inflammatory cell infiltration into the vascular wall, leading to enhanced inflammation and lipid accumulation in the aortic endothelium. Understanding the molecular mechanisms underlying this disease is critical for the development of new therapies. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution lesion macrophages make to fuel atherosclerosis, whether and how myeloid-specific epsins promote atherogenesis is an open and significant question. OBJECTIVE:We will determine the role of myeloid-specific epsins in regulating lesion macrophage function during atherosclerosis. METHODS AND RESULTS:We engineered myeloid cell-specific epsins double knockout mice (LysM-DKO) on an ApoE background. On Western diet, these mice exhibited marked decrease in atherosclerotic lesion formation, diminished immune and inflammatory cell content in aortas, and reduced necrotic core content but increased smooth muscle cell content in aortic root sections. Epsins deficiency hindered foam cell formation and suppressed proinflammatory macrophage phenotype but increased efferocytosis and anti-inflammatory macrophage phenotype in primary macrophages. Mechanistically, we show that epsin loss specifically increased total and surface levels of LRP-1 (LDLR [low-density lipoprotein receptor]-related protein 1), an efferocytosis receptor with antiatherosclerotic properties. We further show that epsin and LRP-1 interact via epsin's ubiquitin-interacting motif domain. ox-LDL (oxidized LDL) treatment increased LRP-1 ubiquitination, subsequent binding to epsin, and its internalization from the cell surface, suggesting that epsins promote the ubiquitin-dependent internalization and downregulation of LRP-1. Crossing ApoE/LysM-DKO mice onto an LRP-1 heterozygous background restored, in part, atherosclerosis, suggesting that epsin-mediated LRP-1 downregulation in macrophages plays a pivotal role in propelling atherogenesis. CONCLUSIONS:Myeloid epsins promote atherogenesis by facilitating proinflammatory macrophage recruitment and inhibiting efferocytosis in part by downregulating LRP-1, implicating that targeting epsins in macrophages may serve as a novel therapeutic strategy to treat atherosclerosis. 10.1161/CIRCRESAHA.118.313028
LRP: role in vascular wall integrity and protection from atherosclerosis. Boucher Philippe,Gotthardt Michael,Li Wei-Ping,Anderson Richard G W,Herz Joachim Science (New York, N.Y.) Vascular smooth muscle cell (SMC) proliferation and migration are important events in the development of atherosclerosis. The low-density lipoprotein receptor-related protein (LRP1) mediates suppression of SMC migration induced by platelet-derived growth factor (PDGF). Here we show that LRP1 forms a complex with the PDGF receptor (PDGFR). Inactivation of LRP1 in vascular SMCs of mice causes PDGFR overexpression and abnormal activation of PDGFR signaling, resulting in disruption of the elastic layer, SMC proliferation, aneurysm formation, and marked susceptibility to cholesterol-induced atherosclerosis. The development of these abnormalities was reduced by treatment with Gleevec, an inhibitor of PDGF signaling. Thus, LRP1 has a pivotal role in protecting vascular wall integrity and preventing atherosclerosis by controlling PDGFR activation. 10.1126/science.1082095
Hypoxia induces metalloproteinase-9 activation and human vascular smooth muscle cell migration through low-density lipoprotein receptor-related protein 1-mediated Pyk2 phosphorylation. Revuelta-López Elena,Castellano José,Roura Santiago,Gálvez-Montón Carolina,Nasarre Laura,Benitez Sonia,Bayes-Genis Antoni,Badimon Lina,Llorente-Cortés Vicenta Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:Hypoxia disturbs vascular function by promoting extracellular matrix remodeling. Extracellular matrix integrity and composition are modulated by metalloproteinases (MMPs). Our aim was to investigate the role of low-density lipoprotein receptor-related protein 1 (LRP1) in regulating MMP-9/MMP-2 activation and vascular smooth muscle cells (VSMCs) migration in response to hypoxia, and to elucidate the LRP1-signaling pathways involved in this process. APPROACH AND RESULTS:Western blot analysis showed that hypoxia induced a sustained phosphorylation of proline-rich tyrosine kinase 2 concomitantly with LRP1 overexpression in human VSMCs (hVSMCs). Deletion of LRP1 using small-interfering RNA technology or treatment of hVSMCs with the Src family kinase inhibitor PP2 impaired hypoxia-induced phosphorylation of proline-rich tyrosine kinase 2 levels. Coimmunoprecipitation experiments showed that the higher amounts of phosphorylation of proline-rich tyrosine kinase 2/LRP1β immunoprecipitates in hypoxic hVSMCs were abolished in PP2-treated hVSMCs. Both LRP1 silencing and PP2 treatment were highly effective in the prevention of hypoxia-induced MMP-9 activation and hVSMC migration. Cellular subfractionation experiments revealed that PP2 effects may be caused by impairment of hypoxia-induced nuclear factor-κβ translocation to the nucleus. ELISA measurements showed that LRP1 silencing but not PP2 treatment increased interleukin-1β, interleukin-6, and monocyte chemoattractant protein-1 secretion by hypoxic hVSMCs. CONCLUSIONS:Our findings determine a crucial role of LRP1-mediated Pyk2 phosphorylation on hypoxia-induced MMP-9 activation and hVSMC migration and therefore in hypoxia-induced vascular remodeling. Both LRP1 silencing and PP2 treatments also influence hypoxia-induced proinflammatory effects in hVSMCs. Therefore, further studies are required to establish therapeutical strategies that efficiently modulate vascular remodeling and inflammation associated with hypoxia-vascular diseases. 10.1161/ATVBAHA.113.302323
Low-density lipoprotein receptor-related protein 1 mediates hypoxia-induced very low density lipoprotein-cholesteryl ester uptake and accumulation in cardiomyocytes. Cal Roi,Castellano José,Revuelta-López Elena,Aledo Rosa,Barriga Montse,Farré Jordi,Vilahur Gemma,Nasarre Laura,Hove-Madsen Leif,Badimon Lina,Llorente-Cortés Vicenta Cardiovascular research AIMS:The myocardium accumulates intracellular lipids under ischaemic conditions, and myocardial fat deposition is closely associated with cardiac dysfunction. Our aims were to analyse the effect of hypoxia on low-density lipoprotein receptor-related protein 1 (LRP1) expression in neonatal rat ventricular myocytes (NRVM) and cardiac-derived HL-1 cells and the molecular mechanisms involved in this effect, to determine the role of LRP1 in the very low density lipoprotein (VLDL) uptake by hypoxic cardiomyocytes, and to study the effect of hypoxia on lipoprotein receptor expression and myocardial lipid profile in an in vivo porcine experimental model of acute myocardial infarction. METHODS AND RESULTS:Thin-layer chromatography after lipid extraction showed that VLDL exposure leads to cholesteryl ester (CE) and triglyceride (TG) accumulation in a dose-dependent manner and that hypoxic conditions further increased VLDL-derived intracellular lipid accumulation in HL-1 cells. Knockdown of LRP1 through lentiviral-mediated interfering RNA specifically prevented hypoxia-induced VLDL-CE internalization in HL-1 cells and NRVM. Lipopolysaccharide (LPS)-induced LRP1 overexpression specifically increased VLDL-CE accumulation in NRVM. In addition, using double-radiolabelled [(3)H]CE-[(14)C]TG-VLDL, we found that LRP1 deficiency specifically prevented hypoxia-induced VLDL-[(3)H]CE uptake. Finally, in an in vivo porcine model of infarcted myocardium, ischaemic areas exhibited LRP1 protein up-regulation and intramyocardial CE overaccumulation. CONCLUSION:Our results demonstrate that hypoxia increases LRP1 expression through HIF-1α and that LRP1 overexpression mediates hypoxia-induced VLDL-CE uptake and accumulation in cardiomyocytes. 10.1093/cvr/cvs136
Smooth muscle cell deletion of low-density lipoprotein receptor-related protein 1 augments angiotensin II-induced superior mesenteric arterial and ascending aortic aneurysms. Davis Frank M,Rateri Debra L,Balakrishnan Anju,Howatt Deborah A,Strickland Dudley K,Muratoglu Selen C,Haggerty Christopher M,Fornwalt Brandon K,Cassis Lisa A,Daugherty Alan Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:Low-density lipoprotein receptor-related protein 1 (LRP1), a multifunctional protein involved in endocytosis and cell signaling pathways, leads to several vascular pathologies when deleted in vascular smooth muscle cells (SMCs). The purpose of this study was to determine whether LRP1 deletion in SMCs influenced angiotensin II-induced arterial pathologies. APPROACH AND RESULTS:LRP1 protein abundance was equivalent in selected arterial regions, but SMC-specific LRP1 depletion had no effect on abdominal and ascending aortic diameters in young mice. To determine the effects of LRP1 deficiency on angiotensin II vascular responses, SMC-specific LRP1 (smLRP1(+/+)) and smLRP1-deficient (smLRP1(-/-)) mice were infused with saline, angiotensin II, or norepinephrine. Several smLRP(-/-) mice died of superior mesenteric arterial (SMA) rupture during angiotensin II infusion. In surviving mice, angiotensin II profoundly augmented SMA dilation in smLRP1(-/-) mice. SMA dilation was blood pressure dependent as demonstrated by a similar response during norepinephrine infusion. SMA dilation was also associated with profound macrophage accumulation, but minimal elastin fragmentation. Angiotensin II infusion led to no significant differences in abdominal aorta diameters between smLRP1(+/+) and smLRP1(-/-) mice. In contrast, ascending aortic dilation was exacerbated markedly in angiotensin II-infused smLRP1(-/-) mice, but norepinephrine had no significant effect on either aortic region. Ascending aortas of smLRP1(-/-) mice infused with angiotensin II had minimal macrophage accumulation but significantly increased elastin fragmentation and mRNA abundance of several LRP1 ligands including MMP-2 (matrix metalloproteinase-2) and uPA (urokinase plasminogen activator). CONCLUSIONS:smLRP1 deficiency had no effect on angiotensin II-induced abdominal aortic aneurysm formation. Conversely, angiotensin II infusion in smLRP1(-/-) mice exacerbated SMA and ascending aorta dilation. Dilation in these 2 regions had differential association with blood pressure and divergent pathological characteristics. 10.1161/ATVBAHA.114.304683
Low density lipoprotein receptor-related protein 1 expression correlates with cholesteryl ester accumulation in the myocardium of ischemic cardiomyopathy patients. Cal Roi,Juan-Babot Oriol,Brossa Vicenç,Roura Santiago,Gálvez-Montón Carolina,Portoles Manolo,Rivera Miguel,Cinca Juan,Badimon Lina,Llorente-Cortés Vicenta Journal of translational medicine Our hypothesis was that overexpression of certain lipoprotein receptors might be related to lipid accumulation in the human ischemic myocardium. Intramyocardial lipid overload contributes to contractile dysfunction and arrhythmias in cardiomyopathy. Thus, the purpose of this study was to assess the effect of hypercholesterolemic LDL and hypertrigliceridemic VLDL dose on LRP1 expression in cardiomyocytes, as well as the potential correlation between LRP1 expression and neutral lipid accumulation in the left ventricle tissue from ischemic cardiomyopathy patients. Cell culture experiments include control and LRP1-deficient cardiomyocytes exposed to lipoproteins under normoxic and hypoxic conditions. Explanted hearts from 18 ICM patients and eight non-diseased hearts (CNT) were included. Low density lipoprotein receptor-related protein 1 (LRP1), very low density lipoprotein receptor (VLDLR) and low density lipoprotein receptor (LDLR) expression was analyzed by real time PCR and Western blotting. Cholesteryl ester (CE), triglyceride (TG) and free cholesterol (FC) content was assess by thin layer chromatography following lipid extraction. Western blotting experiments showed that protein levels of LRP1, VLDLR and HIF-1α were significantly upregulated in ischemic hearts. Immunohistochemistry and confocal microscopy analysis showed that LRP1 and HIF-1α were upregulated in cardiomyocytes of ICM patients. In vitro studies showed that VLDL, LDL and hypoxia exerted an upregulatory effect on LRP1 expression and that LRP1 played a major role in cholesteryl ester accumulation from lipoproteins in cardiomyocytes. Myocardial CE accumulation strongly correlated with LRP1 levels in ischemic hearts. Taken together, our results suggest that LRP1 upregulation is key for myocardial cholesterol ester accumulation in ischemic human hearts and that LRP1 may be a target to prevent the deleterious effects of myocardial cholesterol accumulation in ischemic cardiomyopathy. 10.1186/1479-5876-10-160
A pilot study on low-density lipoprotein receptor-related protein-1 in Chinese patients with abdominal aortic aneurysm. Chan C Y T,Chan Y C,Cheuk B L,Cheng S W European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery OBJECTIVE:There are no published data on the expression of low-density lipoprotein receptor-related protein 1 (LRP1) in human aortic tissues with abdominal aortic aneurysm (AAA), although some researchers have suggested that LRP1 may be a crucial regulator in the pathogenesis of AAA. The aim of this pilot study is to investigate LRP1 expression in aortic tissues from Chinese patients with AAA compared with normal control tissues. MATERIALS AND METHODS:This study used human abdominal aortic tissues with or without AAA as a research model. Aneurysmal abdominal aortas were collected from Chinese patients with AAA (n = 12) during open surgical aneurysmal repair at our institution, and normal control non-aneurysmal abdominal aortas were collected from Chinese healthy organ donors (n = 12) during organ transplantation. Protein expression of LRP1 was analyzed by western blotting and immunohistochemistry. RESULTS:LRP1 protein expression was significantly lower in AAA (mean LRP1AAA/LRP1(Normal Control) = 0.51 ± 0.28) than in normal control aortic tissues (mean LRP1(Normal Control)/LRP1(Normal Control) = 1 ± 0.18) in our small sample cohort (p < .001). No significant correlation was shown between LRP1 protein expression and the size of AAA (p > .05). CONCLUSIONS:Our pilot result suggests that a reduction in LRP1 protein expression may be associated with aneurysm progression. 10.1016/j.ejvs.2013.08.006
Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice. Gordts Philip L S M,Bartelt Alexander,Nilsson Stefan K,Annaert Wim,Christoffersen Christina,Nielsen Lars Bo,Heeren Joerg,Roebroek Anton J M PloS one OBJECTIVE:Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1) dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE. METHODS AND RESULTS:LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with apoE-deficient mice. In the absence of apoE, relative to LRP1 wild-type animals, LRP1 mutated mice showed an increased clearance of postprandial lipids despite a compromised LRP1 endocytosis rate and inefficient insulin-mediated translocation of the receptor to the plasma membrane, likely due to inefficient slow recycling of the mutated receptor. Postprandial lipoprotein improvement was explained by increased hepatic clearance of triglyceride-rich remnant lipoproteins and accompanied by a compensatory 1.6-fold upregulation of LDLR expression in hepatocytes. One year-old apoE-deficient mice having the dysfunctional LRP1 revealed a 3-fold decrease in spontaneous atherosclerosis development and a 2-fold reduction in LDL-cholesterol levels. CONCLUSION:These findings demonstrate that the NPxYxxL motif in LRP1 is important for insulin-mediated translocation and slow perinuclear endosomal recycling. These LRP1 impairments correlated with reduced atherogenesis and cholesterol levels in apoE-deficient mice, likely via compensatory LDLR upregulation. 10.1371/journal.pone.0038330
Sterol regulatory element-binding protein-2 negatively regulates low density lipoprotein receptor-related protein transcription. Llorente-Cortés V,Costales P,Bernués J,Camino-Lopez S,Badimon L Journal of molecular biology Low density lipoprotein receptor-related protein (LRP1) binds aggregated LDL (agLDL) leading to a high intracellular cholesteryl ester (CE) accumulation. AgLDL up-regulates LRP1 expression concomitantly with an LDL receptor (LDLR) and sterol regulatory element binding protein (SREBP-2) down-regulation. The objectives were to investigate whether SREBP-2 regulates LRP1 transcription and determine the molecular mechanisms involved in the process. Down-regulation of active SREBP-2 by nLDL and agLDL led to LDLR down-regulation and LRP1 up-regulation. Enforced expression of an active form of SREBP-2 (SREBP-2-NT, amino acid residues 1-468) decreased LRP1 expression and LRP1 promoter (WT-LRP1) luciferase activity in a dose-dependent manner. LDL did not exert any significant effect on LRP1 promoter activity when a putative sterol regulatory element (SRE) (5-GTGGGGTGA-3'; +225 to +233) was mutated (SRE-MT-LRP1). SREBP-2 overexpression exerted stronger down-regulatory effects on WT-LRP1 than on SRE-MT-LRP1 promoter activity both in control, nLDL- and agLDL-exposed HeLa cells. Gel mobility shift assays showed that recombinant SREBP-2-NT protein (1-468) binds to a double-stranded LRP1 DNA fragment (215 to 245) containing a wild-type (wt) SRE sequence but not to a mutated SRE (mt) sequence (5-GAATTCGA-3'). Our results demonstrate that LDL stimulates LRP1 transcription and decreases SREBP-2 active form which negatively regulates LRP1 transcription. SRE sequence (+225 to +233) plays a pivotal role for the down-regulatory effect of SREBP-2 on LRP1 promoter activity. 10.1016/j.jmb.2006.04.008
Thymosin β4 protects against aortic aneurysm via endocytic regulation of growth factor signaling. The Journal of clinical investigation Vascular stability and tone are maintained by contractile smooth muscle cells (VSMCs). However, injury-induced growth factors stimulate a contractile-synthetic phenotypic modulation which increases susceptibility to abdominal aortic aneurysm (AAA). As a regulator of embryonic VSMC differentiation, we hypothesized that Thymosin β4 (Tβ4) may function to maintain healthy vasculature throughout postnatal life. This was supported by the identification of an interaction with low density lipoprotein receptor related protein 1 (LRP1), an endocytic regulator of platelet-derived growth factor BB (PDGF-BB) signaling and VSMC proliferation. LRP1 variants have been implicated by genome-wide association studies with risk of AAA and other arterial diseases. Tβ4-null mice displayed aortic VSMC and elastin defects that phenocopy those of LRP1 mutants, and their compromised vascular integrity predisposed them to Angiotensin II-induced aneurysm formation. Aneurysmal vessels were characterized by enhanced VSMC phenotypic modulation and augmented PDGFR-β signaling. In vitro, enhanced sensitivity to PDGF-BB upon loss of Tβ4 was associated with dysregulated endocytosis, with increased recycling and reduced lysosomal targeting of LRP1-PDGFR-β. Accordingly, the exacerbated aneurysmal phenotype in Tβ4-null mice was rescued upon treatment with the PDGFR-β antagonist Imatinib. Our study identifies Tβ4 as a key regulator of LRP1 for maintaining vascular health, and provides insights into the mechanisms of growth factor-controlled VSMC phenotypic modulation underlying aortic disease progression. 10.1172/JCI127884
ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. Gordts Philip L S M,Nock Ryan,Son Ni-Huiping,Ramms Bastian,Lew Irene,Gonzales Jon C,Thacker Bryan E,Basu Debapriya,Lee Richard G,Mullick Adam E,Graham Mark J,Goldberg Ira J,Crooke Rosanne M,Witztum Joseph L,Esko Jeffrey D The Journal of clinical investigation Hypertriglyceridemia is an independent risk factor for cardiovascular disease, and plasma triglycerides (TGs) correlate strongly with plasma apolipoprotein C-III (ApoC-III) levels. Antisense oligonucleotides (ASOs) for ApoC-III reduce plasma TGs in primates and mice, but the underlying mechanism of action remains controversial. We determined that a murine-specific ApoC-III-targeting ASO reduces fasting TG levels through a mechanism that is dependent on low-density lipoprotein receptors (LDLRs) and LDLR-related protein 1 (LRP1). ApoC-III ASO treatment lowered plasma TGs in mice lacking lipoprotein lipase (LPL), hepatic heparan sulfate proteoglycan (HSPG) receptors, LDLR, or LRP1 and in animals with combined deletion of the genes encoding HSPG receptors and LDLRs or LRP1. However, the ApoC-III ASO did not lower TG levels in mice lacking both LDLR and LRP1. LDLR and LRP1 were also required for ApoC-III ASO-induced reduction of plasma TGs in mice fed a high-fat diet, in postprandial clearance studies, and when ApoC-III-rich or ApoC-III-depleted lipoproteins were injected into mice. ASO reduction of ApoC-III had no effect on VLDL secretion, heparin-induced TG reduction, or uptake of lipids into heart and skeletal muscle. Our data indicate that ApoC-III inhibits turnover of TG-rich lipoproteins primarily through a hepatic clearance mechanism mediated by the LDLR/LRP1 axis. 10.1172/JCI86610
Low density lipoprotein receptor-related protein 1 regulates cardiac hypertrophy induced by pressure overload. Ju Sujin,Park Seulki,Lim Leejin,Choi Dong-Hyun,Song Heesang International journal of cardiology BACKGROUND:Cardiac hypertrophy is associated with functional changes in cardiomyocytes, which often results in heart failure. The low-density lipoprotein receptor-related protein 1 (LRP1) is a large multifunctional endocytic receptor involved in many physiological and pathological processes. However, its function in the development of cardiac hypertrophy remains largely unclear. METHODS:Adenoviral constructs were used for either overexpression or silencing of LRP1 in both in vitro and in vivo experiments. Cardiac function was measured using the Millar catheter. RESULTS:LRP1 expression was upregulated in both transverse aortic constriction (TAC)-induced hypertrophic myocardium and catecholamine (phenylephrine (PE) and norepinephrine (NE))- and angiotensin II (AngII)-induced hypertrophic cardiomyocytes. In addition, cell surface area, protein/DNA ratio, and the mRNA levels of hypertrophic markers were significantly increased in LRP1-overexpressing cardiomyocytes without catecholamine stimulation. Conversely, LRP1 inhibition by LRP1-specific siRNA or a specific ligand-binding antagonist (RAP) significantly rescued hypertrophic effects in PE, NE, or AngII-induced cardiomyocytes. LRP1 overexpression induced PKCα, then activated ERK, resulting in cardiac hypertrophy with the downregulation of SERCA2a and calcium accumulation, which was successfully restored in both LRP1-silenced cardiomyocytes and TAC-induced hearts. CONCLUSIONS:LRP1 regulates cardiac hypertrophy via the PKCα-ERK dependent signaling pathway resulting in the alteration of intracellular calcium levels, demonstrating that LRP1 might be a potential therapeutic target for cardiac hypertrophy. 10.1016/j.ijcard.2019.07.049
Impact of PCSK9 on CTRP9-Induced Metabolic Effects in Adult Rat Cardiomyocytes. Rohrbach Susanne,Li Ling,Novoyatleva Tatyana,Niemann Bernd,Knapp Fabienne,Molenda Nicole,Schulz Rainer Frontiers in physiology The adipocytokine adiponectin and its structural homologs, the C1q/TNF-related proteins (CTRPs), increase insulin sensitivity, fatty acid oxidation and mitochondrial biogenesis. Adiponectin- and CTRP-induced signal transduction has been described to involve the adiponectin receptors and a number of co-receptors including the Low density lipoprotein receptor-related protein 1 (LRP1). LRP1 is another target of the proprotein convertase subtilisin/kexin-9 (PCSK9) in addition to the LDL-receptor (LDL-R). Here, we investigated the influence of PCSK9 on the metabolic effects of CTRP9, the CTRP with the highest homology to adiponectin. Knockdown of LRP1 in H9C2 cardiomyoblasts blunts the effects of CTRP9 on signal transduction and mitochondrial biogenesis, suggesting its involvement in CTRP9-induced cellular effects. Treatment of adult rat cardiomyocytes with recombinant PCSK9 but not knockdown of endogenous PCSK9 by siRNA results in a strong reduction in LRP1 protein expression and subsequently reduces the mitochondrial biogenic effect of CTRP9. PCSK9 treatment (24 h) blunts the effects of CTRP9-induced signaling cascade activation (AMP-dependent protein kinase, protein kinase B). In addition, the stimulating effects of CTRP9 on cardiomyocyte mitochondrial biogenesis and glucose metabolism (GLUT-4 translocation, glucose uptake) are largely blunted. Basal fatty acid (FA) uptake is strongly reduced by exogenous PCSK9, although protein expression of the PCSK9 target CD36, the key regulator of FA transport in cardiomyocytes, is not altered. In addition, only minor effects of PCSK9 were observed on CTRP9-induced FA uptake or the expression of genes involved in FA metabolism or uptake. Finally, this CTRP9-induced increase in CD36 expression occurs independent from LRP1 and LDL-R. In conclusion, PCSK9 treatment influences LRP1-mediated signaling pathways in cardiomyocytes. Thus, therapeutic PCSK9 inhibition may provide an additional benefit through stimulation of glucose metabolism and mitochondrial biogenesis in addition to the known lipid-lowering effects. This could be an important beneficial side effect in situations with impaired mitochondrial function and reduced metabolic flexibility thereby influencing cardiac function. 10.3389/fphys.2021.593862
Low-density lipoprotein receptor-related protein 1 deficiency in cardiomyocytes reduces susceptibility to insulin resistance and obesity. Benitez-Amaro Aleyda,Revuelta-López Elena,Bornachea Olga,Cedó Lídia,Vea Àngela,Herrero Laura,Roglans Nuria,Soler-Botija Carolina,de Gonzalo-Calvo David,Nasarre Laura,Camino-López Sandra,García Eduardo,Mato Eugenia,Blanco-Vaca Francisco,Bayes-Genis Antoni,Sebastian David,Laguna Joan Carles,Serra Dolors,Zorzano Antonio,Escola-Gil Joan Carles,Llorente-Cortes Vicenta Metabolism: clinical and experimental BACKGROUND:Low-density lipoprotein receptor-related protein 1 (LRP1) plays a key role in fatty acid metabolism and glucose homeostasis. In the context of dyslipemia, LRP1 is upregulated in the heart. Our aim was to evaluate the impact of cardiomyocyte LRP1 deficiency on high fat diet (HFD)-induced cardiac and metabolic alterations, and to explore the potential mechanisms involved. METHODS:We used TnT-iCre transgenic mice with thoroughly tested suitability to delete genes exclusively in cardiomyocytes to generate an experimental mouse model with conditional Lrp1 deficiency in cardiomyocytes (TNT-iCre-LRP1). FINDINGS:Mice with Lrp1-deficient cardiomyocytes (cm-Lrp1) have a normal cardiac function combined with a favorable metabolic phenotype against HFD-induced glucose intolerance and obesity. Glucose intolerance protection was linked to higher hepatic fatty acid oxidation (FAO), lower liver steatosis and increased whole-body energy expenditure. Proteomic studies of the heart revealed decreased levels of cardiac pro-atrial natriuretic peptide (pro-ANP), which was parallel to higher ANP circulating levels. cm-Lrp1 mice showed ANP signaling activation that was linked to increased fatty acid (FA) uptake and increased AMPK/ ACC phosphorylation in the liver. Natriuretic peptide receptor A (NPR-A) antagonist completely abolished ANP signaling and metabolic protection in cm-Lrp1 mice. CONCLUSIONS:These results indicate that an ANP-dependent axis controlled by cardiac LRP1 levels modulates AMPK activity in the liver, energy homeostasis and whole-body metabolism. 10.1016/j.metabol.2020.154191
PID1 regulates insulin-dependent glucose uptake by controlling intracellular sorting of GLUT4-storage vesicles. Fischer Alexander W,Albers Kirstin,Schlein Christian,Sass Frederike,Krott Lucia M,Schmale Hartwig,Gordts Philip L S M,Scheja Ludger,Heeren Joerg Biochimica et biophysica acta. Molecular basis of disease The phosphotyrosine interacting domain-containing protein 1 (PID1) serves as a cytosolic adaptor protein of the LDL receptor-related protein 1 (LRP1). By regulating its intracellular trafficking, PID1 controls the hepatic, LRP1-dependent clearance of pro-atherogenic lipoproteins. In adipose and muscle tissues, LRP1 is present in endosomal storage vesicles containing the insulin-responsive glucose transporter 4 (GLUT4). This prompted us to investigate whether PID1 modulates GLUT4 translocation and function via its interaction with the LRP1 cytosolic domain. We initially evaluated this in primary brown adipocytes as we observed an inverse correlation between brown adipose tissue glucose uptake and expression of LRP1 and PID1. Insulin stimulation in wild type brown adipocytes induced LRP1 and GLUT4 translocation from endosomal storage vesicles to the cell surface. Loss of PID1 expression in brown adipocytes prompted LRP1 and GLUT4 sorting to the plasma membrane independent of insulin signaling. When placed on a diabetogenic high fat diet, systemic and adipocyte-specific PID1-deficient mice presented with improved hyperglycemia and glucose tolerance as well as reduced basal plasma insulin levels compared to wild type control mice. Moreover, the improvements in glucose parameters associated with increased glucose uptake in adipose and muscle tissues from PID1-deficient mice. The data provide evidence that PID1 serves as an insulin-regulated retention adaptor protein controlling translocation of LRP1 in conjunction with GLUT4 to the plasma membrane of adipocytes. Notably, loss of PID1 corrects for insulin resistance-associated hyperglycemia emphasizing its pivotal role and therapeutic potential in the regulation of glucose homeostasis. 10.1016/j.bbadis.2019.03.010
Decreased low-density lipoprotein receptor-related protein 1 expression in pro-inflammatory monocytes is associated with subclinical atherosclerosis. Frontiers in cardiovascular medicine Subclinical atherosclerosis (SCA) occurs in asymptomatic individuals. Blood peripheral monocytes are involved in the development of atherosclerosis. Circulating monocytes acquire pro-inflammatory profiles, and they are involved in the early stages of atherosclerosis development. Low-density lipoprotein Receptor-related Protein 1 (LRP1) is expressed in monocytes, mainly in classical and intermediate subsets. Although LRP1 is highly expressed in macrophages and vascular smooth muscle cells (VSMCs) in atherosclerotic plaque formation, its expression in circulating monocytes has not been studied in SCA. The aim of this study was to characterize the LRP1 expression level in circulating monocytes of individuals with SCA and compared with individuals with low (LR) and intermediate (IR) risk of cardiovascular diseases, both without evidence of atherosclerotic lesions in carotid and coronary arteries. LRP1 and additional markers (CD11b, CD11c, and CD36) at cell surface of monocytes were analyzed by flow cytometry assays, whereas and pro-inflammatory factors gene expressions were measured in isolated monocytes by quantitative RT-PCRs. Both LRP1 protein and mRNA were significantly reduced in monocytes in SCA and IR respect to LR. Conversely, CD36, CD11b, and CD11c monocytic markers showed no significant changes between the different study groups. Finally, increased gene expressions of α and β were detected in monocytes of SCA, which were associated with decreased LRP1 expression at the cell surface in total monocytes. In summary, we propose that the decreased LRP1 expression at cell surface in total monocytes with pro-inflammatory profile is associated with the development of atherosclerosis in asymptomatic individuals. 10.3389/fcvm.2022.949778
Tissue factor induction by aggregated LDL depends on LDL receptor-related protein expression (LRP1) and Rho A translocation in human vascular smooth muscle cells. Camino-López S,Llorente-Cortés V,Sendra J,Badimon L Cardiovascular research OBJECTIVE:Low density lipoprotein (LDL) internalized in the vascular wall and modified by binding to extracellular matrix-proteoglycans (ECM) becomes aggregated (agLDL). AgLDL induces tissue factor (TF) expression and activity in human vascular smooth muscle cells (VSMC). TF expression in vascular cells promotes the prothrombotic transformation of the vascular wall. However, the mechanisms by which agLDL induces TF are not known. The aim of this study was to investigate the mechanisms involved in TF activation by extracellular matrix-modified LDL in human VSMC. METHODS AND RESULTS:AgLDL significantly induces TF expression (real time PCR and Western blot analysis) and procoagulant activity (factor Xa generation test) in human VSMC. HMG-CoA reductase inhibition completely prevents agLDL-induced TF expression and partially inhibits agLDL-TF activation. These effects are reverted by geranylgeranyl pyrophosphate (GGPP) but not by farnesyl pyrophosphate (FPP), suggesting the involvement of a geranylated protein in agLDL-TF induction. AgLDL increases Rho A translocation (2-fold) from the cytoplasm to the cell membrane in control but not in simvastatin-treated VSMC. Exoenzyme C3, a specific Rho A inhibitor, completely prevents agLDL-induced TF overexpression and partially agLDL-TF activation. Blocking LRP1, the receptor of agLDL, with anti-LRP1 antibodies or inhibiting LRP1 expression by small interference RNA treatment (siRNA-LRP1) impairs agLDL-induced TF overexpression and activation. CONCLUSIONS:These results demonstrate that TF induction by agLDL depends on LRP1 expression and requires Rho A translocation to the cellular membrane. 10.1016/j.cardiores.2006.10.017
Letter by Hoekstra et al Regarding Article, "Deletion of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Accelerates Atherosclerosis Regression and Increases C-C Chemokine Receptor Type 7 (CCR7) Expression in Plaque Macrophages". Hoekstra Menno,Snip Olga S C,Van Eck Miranda Circulation 10.1161/CIRCULATIONAHA.118.038423
The adaptor protein PID1 regulates receptor-dependent endocytosis of postprandial triglyceride-rich lipoproteins. Fischer Alexander W,Albers Kirstin,Krott Lucia M,Hoffzimmer Britta,Heine Markus,Schmale Hartwig,Scheja Ludger,Gordts Philip L S M,Heeren Joerg Molecular metabolism OBJECTIVE:Insulin resistance is associated with impaired receptor dependent hepatic uptake of triglyceride-rich lipoproteins (TRL), promoting hypertriglyceridemia and atherosclerosis. Next to low-density lipoprotein (LDL) receptor (LDLR) and syndecan-1, the LDLR-related protein 1 (LRP1) stimulated by insulin action contributes to the rapid clearance of TRL in the postprandial state. Here, we investigated the hypothesis that the adaptor protein phosphotyrosine interacting domain-containing protein 1 (PID1) regulates LRP1 function, thereby controlling hepatic endocytosis of postprandial lipoproteins. METHODS:Localization and interaction of PID1 and LRP1 in cultured hepatocytes was studied by confocal microscopy of fluorescent tagged proteins, by indirect immunohistochemistry of endogenous proteins, by GST-based pull down and by immunoprecipitation experiments. The in vivo relevance of PID1 was assessed using whole body as well as liver-specific Pid1-deficient mice on a wild type or Ldlr-deficient (Ldlr) background. Intravital microscopy was used to study LRP1 translocation in the liver. Lipoprotein metabolism was investigated by lipoprotein profiling, gene and protein expression as well as organ-specific uptake of radiolabelled TRL. RESULTS:PID1 co-localized in perinuclear endosomes and was found associated with LRP1 under fasting conditions. We identified the distal NPxY motif of the intracellular C-terminal domain (ICD) of LRP1 as the site critical for the interaction with PID1. Insulin-mediated NPxY-phosphorylation caused the dissociation of PID1 from the ICD, causing LRP1 translocation to the plasma membrane. PID1 deletion resulted in higher LRP1 abundance at the cell surface, higher LDLR protein levels and, paradoxically, reduced total LRP1. The latter can be explained by higher receptor shedding, which we observed in cultured Pid1-deficient hepatocytes. Consistently, PID1 deficiency alone led to increased LDLR-dependent endocytosis of postprandial lipoproteins and lower plasma triglycerides. In contrast, hepatic PID1 deletion on an Ldlr background reduced lipoprotein uptake into liver and caused plasma TRL accumulation. CONCLUSIONS:By acting as an insulin-dependent retention adaptor, PID1 serves as a regulator of LRP1 function controlling the disposal of postprandial lipoproteins. PID1 inhibition provides a novel approach to lower plasma levels of pro-atherogenic TRL remnants by stimulating endocytic function of both LRP1 and LDLR in the liver. 10.1016/j.molmet.2018.07.010
Imatinib mesylate stimulates low-density lipoprotein receptor-related protein 1-mediated ERK phosphorylation in insulin-producing cells. Fred Rikard G,Boddeti Santosh Kumar,Lundberg Marcus,Welsh Nils Clinical science (London, England : 1979) Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic and multi-functional type I cell surface membrane protein, which is known to be phosphorylated by the activated platelet-derived growth factor receptor (PDGFR). The tyrosine kinase inhibitor imatinib, which inhibits PDGFR and c-Abl, and which has previously been reported to counteract β-cell death and diabetes, has been suggested to reduce atherosclerosis by inhibiting PDGFR-induced LRP1 phosphorylation. The aim of the present study was to study LRP1 function in β-cells and to what extent imatinib modulates LRP1 activity. LRP1 and c-Abl gene knockdown was performed by RNAi using rat INS-1 832/13 and human EndoC1-βH1 cells. LRP1 was also antagonized by treatment with the antagonist low-density lipoprotein receptor-related protein associated protein 1 (LRPAP1). We have used PDGF-BB, a PDGFR agonist, and apolipoprotein E (ApoE), an LRP1 agonist, to stimulate the activities of PDGFR and LRP1 respectively. Knockdown or inhibition of LRP1 resulted in increased hydrogen peroxide (H2O2)- or cytokine-induced cell death, and glucose-induced insulin release was lowered in LRP1-silenced cells. These results indicate that LRP1 function is necessary for β-cell function and that LRP1 is adversely affected by challenges to β-cell health. PDGF-BB, or the combination of PDGF-BB+ApoE, induced phosphorylation of extracellular-signal-regulated kinase (ERK), Akt and LRP1. LRP1 silencing blocked this event. Imatinib blocked phosphorylation of LRP1 by PDGFR activation but induced phosphorylation of ERK. LRP1 silencing blocked imatinib-induced phosphorylation of ERK. Sunitinib also blocked LRP1 phosphorylation in response to PDGF-BB and induced phosphorylation of ERK, but this latter event was not affected by LRP1 knockdown. siRNA-mediated knockdown of the imatinib target c-Abl resulted in an increased ERK phosphorylation at basal conditions, with no further increase in response to imatinib. Imatinib-induced cell survival of tunicamycin-treated cells was partially mediated by ERK activation. We have concluded that imatinib promotes LRP1-dependent ERK activation, possibly via inhibition of c-Abl, and that this could contribute to the pro-survival effects of imatinib on β-cells. 10.1042/CS20130560
Smooth muscle LDL receptor-related protein-1 inactivation reduces vascular reactivity and promotes injury-induced neointima formation. Basford Joshua E,Moore Zachary W Q,Zhou Li,Herz Joachim,Hui David Y Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:Defective smooth muscle expression of LDL receptor-related protein-1 (Lrp1) increases atherosclerosis in hypercholesterolemic mice. This study explored the importance of smooth muscle Lrp1 expression under normolipidemic conditions. METHODS AND RESULTS:Smooth muscle cells isolated from control (smLrp1(+/+)) and smooth muscle-specific Lrp1 knockout (smLrp1(-/-)) mice were characterized based on morphology, smooth muscle marker protein expression levels, and growth rates in vitro. Vascular functions were assessed by aortic constrictive response to agonist stimulation in situ and neointimal hyperplasia to carotid arterial injury in vivo. The smLrp1(-/-) smooth muscle cells displayed reduced alpha-actin and calponin expression and an accelerated growth rate attribtuable to sustained phosphorylation of platelet-derived growth factor receptor (PRGFR) and protein kinase B/Akt. Vasoconstrictive response to agonist stimulation was impaired in aortic rings isolated from smLrp1(-/-) mice. Injury-induced neointimal hyperplasia was significantly increased in smLrp1(-/-) mice. The increase in neointima was associated with corresponding elevated activation of PDGFR signaling pathway. CONCLUSIONS:Smooth muscle expression of Lrp1 is important in maintaining normal vascular functions under normolipidemic conditions. The absence of Lrp1 expression results in greater smooth muscle cell proliferation, deficient contractile protein expression, impairment of vascular contractility, and promotion of denudation-induced neointimal hyperplasia. 10.1161/ATVBAHA.109.194357
Up-regulation of hepatic low-density lipoprotein receptor-related protein 1: a possible novel mechanism of antiatherogenic activity of hydroxymethylglutaryl-coenzyme A reductase inhibitor Atorvastatin and hepatic LRP1 expression. Moon Jae Hoon,Kang Saet Byol,Park Jong Suk,Lee Byung Wan,Kang Eun Seok,Ahn Chul Woo,Lee Hyun Chul,Cha Bong Soo Metabolism: clinical and experimental Low-density lipoprotein receptor-related protein 1 (LRP1) binds to apolipoprotein E and serves as a receptor for remnant lipoproteins in the liver, thus playing an important role in clearing these atherogenic particles. In this study, we investigated the effect of atorvastatin, a hydroxymethylglutaryl-coenzyme A reductase inhibitor, on hepatic LRP1 expression. We used HepG2 and Hep3B cells for in vitro study, and Otsuka Long-Evans Tokushima fatty and Sprague-Dawley rats for in vivo study. We used relatively high pharmacologic dose of atorvastatin in this study (in vitro, 0.5 μmol/L in culture media, for 48 hours; in vivo, 20 mg/[kg d], for 6 weeks). Atorvastatin increased LRP1 and low-density lipoprotein (LDL) receptor expression in HepG2 and Hep3B cells and induced hepatic LRP1 and LDL receptor expression in chow diet-fed Sprague-Dawley rats and high-fat diet-fed Otsuka Long-Evans Tokushima fatty rats. Atorvastatin decreased intracellular sterol level and increased the amount of the nuclear form of sterol response element-binding protein-2 (SREBP-2) in both HepG2 and Hep3B cells as well as in two animal models. Treatment of HepG2 cells with LDL increased intracellular sterol level and reduced LRP1, LDL receptor, and SREBP-2. When SREBP-2 in HepG2 cells was knocked down by small interfering RNA, the induction of LRP1 expression by atorvastatin did not take place. In conclusion, up-regulation of hepatic LRP1 might be a novel mechanism by which statin treatment decreases remnant lipoproteins. In addition, SREBP-2 acts as a mediator of atorvastatin-induced up-regulation of hepatic LRP1. Future studies using standard doses of atorvastatin in humans are needed to elucidate clinical relevance of these findings. 10.1016/j.metabol.2010.08.013
Targeting cholesteryl ester accumulation in the heart improves cardiac insulin response. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie BACKGROUND:Antibodies against the P3 sequence (Gly1127-Cys1140) of LRP1 (anti-P3 Abs) specifically block cholesteryl ester (CE) accumulation in vascular cells. LRP1 is a key regulator of insulin receptor (InsR) trafficking in different cell types. The link between CE accumulation and the insulin response are largely unknown. Here, the effects of P3 peptide immunization on the alterations induced by a high-fat diet (HFD) in cardiac insulin response were evaluated. METHODS:Irrelevant (IrP)- or P3 peptide-immunized rabbits were randomized into groups fed either HFD or normal chow. Cardiac lipid content was characterized by thin-layer chromatography, confocal microscopy, and electron microscopy. LRP1, InsR and glucose transporter type 4 (GLUT4) levels were determined in membranes and total lysates from rabbit heart. The interaction between InsR and LRP1 was analyzed by immunoprecipitation and confocal microscopy. Insulin signaling activity and glucose uptake were evaluated in HL-1 cells exposed to rabbit serum from the different groups. FINDINGS:HFD reduces cardiac InsR and GLUT4 membrane levels and the interactions between LRP1/InsR. Targeting the P3 sequence on LRP1 through anti-P3 Abs specifically reduces CE accumulation in the heart independently of changes in the circulating lipid profile. This restores InsR and GLUT4 levels in cardiac membranes as well as the LRP1/InsR interactions of HFD-fed rabbits. In addition, anti-P3 Abs restores the insulin signaling cascade and glucose uptake in HL-1 cells exposed to hypercholesterolemic rabbit serum. INTERPRETATION:LRP1-immunotargeting can block CE accumulation within the heart with specificity, selectivity, and efficacy, thereby improving the cardiac insulin response; this has important therapeutic implications for a wide range of cardiac diseases. FUNDING:Fundació MARATÓ TV3: grant 101521-10, Instiuto de Salud Carlos III (ISCIII) and ERDFPI18/01584, Fundación BBVA Ayudas a Equipos de Investigación 2019. SECyT-UNC grants PROYECTOS CONSOLIDAR 2018-2021; FONCyT, Préstamo BID PICT grant 2015-0807 and grant 2017-4497. 10.1016/j.biopha.2022.113270
Hypoxia-driven sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) downregulation depends on low-density lipoprotein receptor-related protein 1 (LRP1)-signalling in cardiomyocytes. Revuelta-López Elena,Cal Roi,Herraiz-Martínez Adela,de Gonzalo-Calvo David,Nasarre Laura,Roura Santiago,Gálvez-Montón Carolina,Bayes-Genis Antoni,Badimon Lina,Hove-Madsen Leif,Llorente-Cortés Vicenta Journal of molecular and cellular cardiology The maintenance of sarcoplasmic reticulum Ca(2+) ATPase (SERCA2) activity is crucial for cardiac function and SERCA2 is dramatically reduced in the heart exposed to hypoxic/ischemic conditions. Previous work from our group showed that hypoxia upregulates the phosphorylated form of the Ca(2+)-dependent nonreceptor protein tyrosine kinase (PTK) proline-rich tyrosine kinase 2 (pPyk2) protein levels in a low-density lipoprotein receptor-related protein (LRP1)-dependent manner. Pyk2 in turn may modulate SERCA2 in cardiomyocytes although this remains controversial. We therefore aimed to investigate the role of LRP1 on hypoxia-induced SERCA2 depletion in cardiomyocytes and to establish LRP1 signalling mechanisms involved. Western blot analysis showed that hypoxia reduced SERCA2 concomitantly with a sustained increase in LRP1 and pPyk2 protein levels in HL-1 cardiomyocytes. By impairing hypoxia-induced Pyk2 phosphorylation and HIF-1α accumulation, LRP1 deficiency prevented SERCA2 depletion and reduction of the sarcoplasmic reticulum calcium content in cardiomyocytes. Moreover, the inhibition of Pyk2 phosphorylation (with the Src-family inhibitor PP2) or the specific silencing of Pyk2 (with siRNA-anti Pyk2) preserved low HIF-1α and high SERCA2 levels in HL-1 cardiomyocytes exposed to hypoxia. We determined that the LRP1/Pyk2 axis represses SERCA2 mRNA expression via HIF-1α since HIF-1α overexpression abolished the protective effect of LRP1 deficiency on SERCA2 depletion. Our findings show a crucial role of LRP1/Pyk2/HIF-1α in hypoxia-induced cardiomyocyte SERCA2 downregulation, a pathophysiological process closely associated with heart failure. 10.1016/j.yjmcc.2015.04.028
K Domain CR9 of Low Density Lipoprotein (LDL) Receptor-related Protein 1 (LRP1) Is Critical for Aggregated LDL-induced Foam Cell Formation from Human Vascular Smooth Muscle Cells. Costales Paula,Fuentes-Prior Pablo,Castellano Jose,Revuelta-Lopez Elena,Corral-Rodríguez Maria Ángeles,Nasarre Laura,Badimon Lina,Llorente-Cortes Vicenta The Journal of biological chemistry Low density lipoprotein receptor-related protein (LRP1) mediates the internalization of aggregated LDL (AgLDL), which in turn increases the expression of LRP1 in human vascular smooth muscle cells (hVSMCs). This positive feedback mechanism is thus highly efficient to promote the formation of hVSMC foam cells, a crucial vascular component determining the susceptibility of atherosclerotic plaque to rupture. Here we have determined the LRP1 domains involved in AgLDL recognition with the aim of specifically blocking AgLDL internalization in hVSMCs. The capacity of fluorescently labeled AgLDL to bind to functional LRP1 clusters was tested in a receptor-ligand fluorometric assay made by immobilizing soluble LRP1 "minireceptors" (sLRP1-II, sLRP1-III, and sLRP1-IV) recombinantly expressed in CHO cells. This assay showed that AgLDL binds to cluster II. We predicted three well exposed and potentially immunogenic peptides in the CR7-CR9 domains of this cluster (termed P1 (Cys(1051)-Glu(1066)), P2 (Asp(1090)-Cys(1104)), and P3 (Gly(1127)-Cys(1140))). AgLDL, but not native LDL, bound specifically and tightly to P3-coated wells. Rabbit polyclonal antibodies raised against P3 prevented AgLDL uptake by hVSMCs and were almost twice as effective as anti-P1 and anti-P2 Abs in reducing intracellular cholesteryl ester accumulation. Moreover, anti-P3 Abs efficiently prevented AgLDL-induced LRP1 up-regulation and counteracted the down-regulatory effect of AgLDL on hVSMC migration. In conclusion, domain CR9 appears to be critical for LRP1-mediated AgLDL binding and internalization in hVSMCs. Our results open new avenues for an innovative anti-VSMC foam cell-based strategy for the treatment of vascular lipid deposition in atherosclerosis. 10.1074/jbc.M115.638361
Cardiomyocyte intracellular cholesteryl ester accumulation promotes tropoelastin physical alteration and degradation: Role of LRP1 and cathepsin S. Samouillan Valerie,Revuelta-López Elena,Dandurand Jany,Nasarre Laura,Badimon Lina,Lacabanne Colette,Llorente-Cortés Vicenta The international journal of biochemistry & cell biology Dyslipemia has a direct impact on cardiac remodeling by altering extracellular matrix (ECM) components. One of the main ECM components is elastin, a proteic three-dimensional network that can be efficiently degraded by cysteine proteases or cathepsins. Dyslipemic status in insulin resistance and combined hyperlipoproteinemia diseases include raised levels of very low density lipoproteins (VLDL), triglyceride (TG)-cholesteryl ester (CE)-rich lipoproteins. Enhanced VLDL concentration promotes cardiomyocyte intracellular cholesteryl ester (CE) accumulation in a LRP1-dependent manner. The aim of this work was to analyze the effect of cardiomyocyte intracellular CE accumulation on tropoelastin (TE) characteristics and to investigate the role of LRP1 and cathepsin S (CatS) on these effects. Molecular studies showed that LRP1 deficiency impaired CE selective uptake and accumulation from TG-CE-rich lipoproteins (VLDL+IDL) and CE-rich lipoproteins (aggregated LDL, agLDL). Biochemical and confocal microscopic studies showed that LRP1-mediated intracellular CE accumulation increased CatS mature protein levels and induced an altered intracellular TE globule structure. Biophysical studies evidenced that LRP1-mediated intracellular CE accumulation caused a significant drop of Tg2 glass transition temperature of cardiomyocyte secreted TE. Moreover, CatS deficiency prevented the alterations in TE intracellular globule structure and on TE glass transition temperature. These results demonstrate that LRP1-mediated cardiomyocyte intracellular CE accumulation alters the structural and physical characteristics of secreted TE through an increase in CatS mature protein levels. Therefore, the modulation of LRP1-mediated intracellular CE accumulation in cardiomyocytes could impact pathological ventricular remodeling associated with insulin-resistance and combined hyperlipoproteinemia, pathologies characterized by enhanced concentrations of TG-CE-rich lipoproteins. 10.1016/j.biocel.2014.09.005
Role of the LDL Receptor-Related Protein 1 in Regulating Protease Activity and Signaling Pathways in the Vasculature. Au Dianaly T,Arai Allison L,Fondrie William E,Muratoglu Selen C,Strickland Dudley K Current drug targets Aortic aneurysms represent a significant clinical problem as they largely go undetected until a rupture occurs. Currently, an understanding of mechanisms leading to aneurysm formation is limited. Numerous studies clearly indicate that vascular smooth muscle cells play a major role in the development and response of the vasculature to hemodynamic changes and defects in these responses can lead to aneurysm formation. The LDL receptor-related protein 1 (LRP1) is major smooth muscle cell receptor that has the capacity to mediate the endocytosis of numerous ligands and to initiate and regulate signaling pathways. Genetic evidence in humans and mouse models reveal a critical role for LRP1 in maintaining the integrity of the vasculature. Understanding the mechanisms by which this is accomplished represents an important area of research, and likely involves LRP1's ability to regulate levels of proteases known to degrade the extracellular matrix as well as its ability to modulate signaling events. 10.2174/1389450119666180511162048
Insulin induces the low density lipoprotein receptor-related protein 1 (LRP1) degradation by the proteasomal system in J774 macrophage-derived cells. Ceschin Danilo G,Sánchez María C,Chiabrando Gustavo A Journal of cellular biochemistry Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic receptor, which binds and internalizes diverse ligands such as activated alpha(2)-macroglobulin (alpha(2)M*). LRP1 promotes intracellular signaling, which downstream mediates cellular proliferation and migration of different types of cells, including macrophages. Unlike the LDL receptor, LRP1 expression is not sensitive to cellular cholesterol levels but appears to be responsive to insulin. It has been previously demonstrated that insulin increases the cell surface presentation of LRP1 in adipocytes and hepatocytes, which is mediated by the intracellular PI(3)K/Akt signaling activation. The LRP1 protein distribution is similar to other insulin-regulated cell surface proteins, including transferring receptor (Tfr). However, in macrophages, the insulin effect on the LRP1 distribution and expression is not well characterized. Considering that macrophages play a central role in the pathogenesis of atherosclerosis, herein we evaluate the effect of insulin on the cellular expression of LRP1 in J774 macrophages-derived cells using Western blot and immunofluorescence microscopy. Our data demonstrate that insulin induces a significant decrease in the LRP1 protein content, without changing the specific mRNA level of this receptor. Moreover, insulin specifically affected the protein expression of LRP1 but not Tfr. The insulin-induced protein degradation of LRP1 in J774 cells was mediated by the activation of the PI(3)K/Akt pathway and proteasomal system by an enhanced ubiquitin-receptor conjugation. The decreased content of LRP1 induced by insulin affected the cellular internalization of alpha(2)M*. Thus, we propose that the protein degradation of LRP-1 induced by insulin in macrophages could have important effects on the pathogenesis of atherosclerosis. 10.1002/jcb.22014
Genetic variations in sites of affinity between FVIII and LRP1 are not associated with high FVIII levels in venous thromboembolism. Bittar Luis F,Siqueira Lucia H,Orsi Fernanda A,De Paula Erich V,Annichino-Bizzacchi Joyce M Scientific reports Increased factor VIII (FVIII) levels are a prevalent and independent risk factor for venous thromboembolism (VTE). The low density lipoprotein receptor-related protein 1 (LRP1) has been associated with FVIII catabolism. After a median of 10 years of the first thrombotic episode, we evaluated FVIII activity levels in 75 patients with VTE and high FVIII levels and in 74 healthy controls. Subsequently, we evaluated the regions of F8 and LRP1 genes coding sites of affinity between these proteins, with the objective of determining genetic alterations associated with plasma FVIII levels. After a median time of 10 years after the VTE episode, FVIII levels were significantly higher in patients when compared to controls (158.6 IU/dL vs. 125.8 IU/dL; P ≤ 0.001]. Despite the fact that we found 14 genetic variations in F8 and LRP1 genes, no relationship was found between FVIII levels with these variations. We demonstrated a persistent increase of FVIII levels in patients with VTE, but in a much lower magnitude after 10 years when compared to 3-years after the episode. Moreover, we observed no relationship of genetic variations in the gene regions coding affinity sites between LRP1 and FVIII with FVIII levels. 10.1038/srep09246
LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Lillis Anna P,Van Duyn Lauren B,Murphy-Ullrich Joanne E,Strickland Dudley K Physiological reviews The LDL receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes, and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, macrophages, and adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: 1) its ability to recognize more than 30 distinct ligands, 2) its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner, and 3) its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases. 10.1152/physrev.00033.2007
Endocytic Protein Defects in the Neural Crest Cell Lineage and Its Pathway Are Associated with Congenital Heart Defects. Arrigo Angelo B,Lin Jiuann-Huey Ivy International journal of molecular sciences Endocytic trafficking is an under-appreciated pathway in cardiac development. Several genes related to endocytic trafficking have been uncovered in a mutagenic ENU screen, in which mutations led to congenital heart defects (CHDs). In this article, we review the relationship between these genes (including and ) and cardiac neural crest cells (CNCCs) during cardiac development. Mice with an ENU-induced mutation exhibit a spectrum of CHDs. Conditional deletion using a floxed allele with different Cre drivers showed that targeting neural crest cells with Wnt1-Cre expression replicated the full cardiac phenotypes of the ENU-induced mutation. In addition, LRP1 function in CNCCs is required for normal OFT lengthening and survival/expansion of the cushion mesenchyme, with other cell lineages along the NCC migratory path playing an additional role. Mice with an ENU-induced and targeted mutation demonstrated the cardiac phenotype of common arterial trunk (CAT). Although there is no impact on CNCCs in mutants, the loss of LRP2 results in the depletion of sonic hedgehog (SHH)-dependent cells in the second heart field. SHH is known to be crucial for CNCC survival and proliferation, which suggests LRP2 has a non-autonomous role in CNCCs. In this article, other endocytic trafficking proteins that are associated with CHDs that may play roles in the NCC pathway during development, such as AP1B1, AP2B1, FUZ, MYH10, and HECTD1, are reviewed. 10.3390/ijms22168816
Low density lipoprotein receptor related protein 1 and abdominal aortic aneurysms. Wild J B,Stather P W,Sylvius N,Choke E,Sayers R D,Bown M J European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery OBJECTIVES:A recent GWAS demonstrated an association between low density lipoprotein receptor related protein 1 (LRP1) and abdominal aortic aneurysm (AAA). This review aims to identify how LRP1 may be involved in the pathogenesis of abdominal aortic aneurysm. DESIGN AND MATERIALS:A systematic review of the English language literature was undertaken in order to determine whether LRP1 and associated pathways were plausible candidates for contributing to the development and/or progression of AAA. METHODS AND RESULTS:A comprehensive literature search of MEDLINE (since 1948), Embase (since 1980) and Health and Psychological Instruments (since 1985) was conducted in January 2012 identified 50 relevant articles. These studies demonstrate that LRP1 has a diverse range of biological functions and is a plausible candidate for playing a central role in aneurysmogenesis. Importantly, LRP1 downregulates MMP (matrix metalloproteinase) activity in vascular smooth muscle cells and regulates other key pathways involved in extracellular matrix remodelling and vascular smooth muscle migration and proliferation. Crucially animal studies have shown that LRP1 depletion leads to progressive destruction of the vascular architecture and aneurysm formation. CONCLUSIONS:Published evidence suggests that LRP1 may play a key role in the development of AAA. 10.1016/j.ejvs.2012.05.009
Lack of association of common polymorphism of LRP1 gene with myocardial infarction in a Chinese Han population. Ren Honggang,Guo Tao,Wang Huafang,Sun Chunyan,Zhang Xiaoping,Mei Heng,Hu Yu Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban This study examined the association of a common polymorphic allele (25G) of the low-density lipoprotein receptor-related protein1 (LRP1) gene with myocardial infarction (MI). The genotypes of LRP1 25CG (rs35282763) were determined in 347 MI patients and 347 age- and sex-frequency-matched controls from an unrelated Chinese Han population. Factor VIII (FVIII) levels were measured in the MI patients and controls by chromogenic assay and enzyme-linked immunosorbent assay (ELISA). The results showed that LRP1 25CG (rs35282763) genotype distribution did not differ significantly between patients (n=206 for 25CC, n=122 for 25CG) and controls (n=191 for 25CC, n=126 for 25CG; P>0.05). The 25G allele was not associated with a reduced risk of MI (P>0.05). Further stratifications for age, sex, and other cardiovascular risk factors did not affect the negative findings. It was concluded that the presence of the G allele at the 25CG (rs35282763) polymorphism of the LRP1 is not associated with a reduced risk of MI, and genotyping for LRP1 25CG (rs35282763) polymorphism is not useful in assessing the individual risk of MI. 10.1007/s11596-011-0370-y
Angiotensin II upregulates LDL receptor-related protein (LRP1) expression in the vascular wall: a new pro-atherogenic mechanism of hypertension. Sendra Judith,Llorente-Cortés Vicenta,Costales Paula,Huesca-Gómez Claudia,Badimon Lina Cardiovascular research AIMS:Hypertension is a risk factor for atherothrombotic vascular events. Angiotensin II (Ang II), one of the main vasoactive hormones of the renin-angiotensin system, has been associated with the development and progression of atherosclerosis. However, it is not fully known how Ang II contributes to lipid-enriched atherosclerotic lesion formation. In human vascular smooth muscle cells (VSMC), low density lipoprotein (LDL) receptor-related protein (LRP1) internalizes cholesteryl esters (CE) from extracellular matrix-bound aggregated LDL (agLDL). The aim of this study was to investigate the effect of Ang II on LRP1 expression and function in VSMC. METHODS AND RESULTS:Here, we report for the first time that Ang II induces the upregulation of LRP1 expression in VSMC. Ang II (1 microM) induced maximal LRP1 mRNA expression at 12 h and maximal protein overexpression (by 4.10-fold) at 24 h in cultured human VSMC. Ang II effects were functionally translated into an increased CE accumulation from agLDL uptake (by two-fold at 50 microg/mL) that was prevented by the LRP1 ligand lactoferrin and by siRNA-LRP1 treatment. Ang II-LRP1 upregulation and excess CE accumulation from agLDL were prevented by losartan (an AT1 blocker) but not by PD123319 (a specific AT2 blocker). Additionally, in a normolipidaemic rat model, Ang II infusion produced a significant increase in aortic LRP1 expression and lipid infiltration in the arterial intima. CONCLUSION:The in vitro and in vivo data reported here indicate that Ang II upregulates LRP1 receptor expression and LRP1-mediated aggregated LDL uptake in vascular cells. 10.1093/cvr/cvn043
Insulin stimulates hepatic low density lipoprotein receptor-related protein 1 (LRP1) to increase postprandial lipoprotein clearance. Laatsch Alexander,Merkel Martin,Talmud Philippa J,Grewal Thomas,Beisiegel Ulrike,Heeren Joerg Atherosclerosis BACKGROUND:While the role of insulin in glucose uptake and its aberration in diabetes are well established, the effect of insulin on lipoprotein clearance in the postprandial phase is not yet fully understood. The dietary lipids are carried in chylomicron remnants (CR) which are taken up into the liver mainly via LDLR-related protein 1 (LRP1). In this study, the effect of insulin on LRP1-mediated hepatic CR uptake was investigated. METHODS:The study was based on determining the subcellular localisation of LRP1 by subcellular fractionation and immunofluorescence microscopy and correlating those findings with the hepatic uptake of fluorescently or radioactively labelled LRP1-specific ligands and CR in hepatoma cells, primary hepatocytes and mouse models. RESULTS AND CONCLUSION:In vitro and in vivo, insulin stimulated the translocation of hepatic LRP1 from intracellular vesicles to the plasma membrane, which correlates with an increased uptake of LRP1-specific ligands. In wild-type mice, a glucose-induced insulin response increased the hepatic uptake of LRP1 ligands while in leptin-deficient obese mice (ob/ob), which are characterised by hepatic insulin resistance, insulin-inducible LRP1 ligand uptake was abolished. Finally, upon hepatic LRP1 knockdown, insulin no longer significantly enhanced CR uptake into the liver. The insulin-induced LRP1-mediated CR uptake, as demonstrated here, suggests that impaired hepatic LRP1 translocation can contribute to the postprandial lipaemia in insulin resistance. 10.1016/j.atherosclerosis.2008.07.046
Extracellular vesicles do not contribute to higher circulating levels of soluble LRP1 in idiopathic dilated cardiomyopathy. Roura Santiago,Gálvez-Montón Carolina,de Gonzalo-Calvo David,Valero Ana Gámez,Gastelurrutia Paloma,Revuelta-López Elena,Prat-Vidal Cristina,Soler-Botija Carolina,Llucià-Valldeperas Aida,Perea-Gil Isaac,Iborra-Egea Oriol,Borràs Francesc E,Lupón Josep,Llorente-Cortés Vicenta,Bayes-Genis Antoni Journal of cellular and molecular medicine Idiopathic dilated cardiomyopathy (IDCM) is a frequent cause of heart transplantation. Potentially valuable blood markers are being sought, and low-density lipoprotein receptor-related protein 1 (LRP1) has been linked to the underlying molecular basis of the disease. This study compared circulating levels of soluble LRP1 (sLRP1) in IDCM patients and healthy controls and elucidated whether sLRP1 is exported out of the myocardium through extracellular vesicles (EVs) to gain a better understanding of the pathogenesis of the disease. LRP1 α chain expression was analysed in samples collected from the left ventricles of explanted hearts using immunohistochemistry. sLRP1 concentrations were determined in platelet-free plasma by enzyme-linked immunosorbent assay. Plasma-derived EVs were extracted by size-exclusion chromatography (SEC) and characterized by nanoparticle tracking analysis and cryo-transmission electron microscopy. The distributions of vesicular (CD9, CD81) and myocardial (caveolin-3) proteins and LRP1 α chain were assessed in SEC fractions by flow cytometry. LRP1 α chain was preferably localized to blood vessels in IDCM compared to control myocardium. Circulating sLRP1 was increased in IDCM patients. CD9- and CD81-positive fractions enriched with membrane vesicles with the expected size and morphology were isolated from both groups. The LRP1 α chain was not present in these SEC fractions, which were also positive for caveolin-3. The increase in circulating sLRP1 in IDCM patients may be clinically valuable. Although EVs do not contribute to higher sLRP1 levels in IDCM, a comprehensive analysis of EV content would provide further insights into the search for novel blood markers. 10.1111/jcmm.13211
Adipocyte differentiation-related protein is induced by LRP1-mediated aggregated LDL internalization in human vascular smooth muscle cells and macrophages. Llorente-Cortés V,Royo T,Juan-Babot O,Badimon L Journal of lipid research Aggregated LDL (agLDL) is internalized by LDL receptor-related protein (LRP1) in vascular smooth muscle cells (VSMCs) and human monocyte-derived macrophages (HMDMs). AgLDL is, therefore, a potent inducer of massive intracellular cholesteryl ester accumulation in lipid droplets. The adipocyte differentiation-related protein (ADRP) has been found on the surface of lipid droplets. The objectives of this work were to analyze whether agLDL uptake modulates ADRP expression levels and whether the effect of agLDL internalization on ADRP expression depends on LRP1 in human VSMCs and HMDMs. AgLDL strongly upregulates ADRP mRNA (real-time PCR) and protein expression (Western blot) in human VSMCs (mRNA: by 3.06-fold; protein: 8.58-fold) and HMDMs (mRNA: by 3.5-fold; protein: by 3.71-fold). Treatment of VSMCs and HMDMs with small anti-LRP1-interfering RNA (siRNA-LRP1) leads to specific inhibition of LRP1 expression. siRNA-LRP1 treatment significantly reduced agLDL-induced ADRP overexpression in HMDMs (by 69%) and in VSMCs (by 53%). Immunohystochemical studies evidence a colocolocalization between ADRP/macrophages and ADRP/VSMCs in advanced lipid-enriched atherosclerotic plaques. These results demonstrate that agLDL-LRP1 engagement induces ADRP overexpression in both HMDMs and human VSMCs and that ADRP is highly expressed in advanced lipid-enriched human atherosclerotic plaques. Therefore, LRP1-mediated agLDL uptake might play a pivotal role in vascular foam cell formation. 10.1194/jlr.M700039-JLR200
Low density receptor-related protein 1 (LRP1) promotes anti-inflammatory phenotype in murine macrophages. May Petra,Bock Hans H,Nofer Jerzy-Roch Cell and tissue research We have previously reported that apolipoprotein E (apoE), a protein component of very-low-density lipoproteins (VLDL) and high-density lipoproteins and a potent plasma-borne atheroprotective factor, exerts anti-inflammatory activity in macrophages by switching the activation profile from M1 ("classic") to M2 ("alternative") in a process involving signaling via low-density lipoprotein receptor (LDLR) family members including the VLDL receptor (VLDLR) or apoE receptor-2 (apoER2). The present study was undertaken to investigate whether LDLR-related protein 1 (LRP-1), another member of the LDLR family and a ubiquitously expressed multifunctional cell surface receptor, modulates M1→M2 conversion in murine macrophages. We investigate bone marrow or peritoneal macrophages isolated from wild-type C57/Bl6 mice or mice with conditional inactivation of the LRP-1 gene in the myeloid lineage for the expression of polarization markers. Our results suggest that the deficiency of LRP-1 down-regulates M2 marker expression in macrophages, while enhancing the macrophage response to M1 stimuli. To our knowledge, this is the first demonstration that LRP-1 affects macrophage polarization and promotes the development of an anti-inflammatory M2 functional phenotype. 10.1007/s00441-013-1699-2
Inactivation of the LRP1 intracellular NPxYxxL motif in LDLR-deficient mice enhances postprandial dyslipidemia and atherosclerosis. Gordts Philip L S M,Reekmans Sara,Lauwers Annick,Van Dongen Amber,Verbeek Leen,Roebroek Anton J M Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:The purpose of this study was to determine the significance of the intracellular NPxYxxL motif of LRP1 for the atheroprotective role of this multifunctional receptor. METHODS AND RESULTS:LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with LDLR-deficient mice, a model for atherosclerosis. In this LDLR(-/-) background the mutated mice showed a more atherogenic lipoprotein profile, which was associated with a decreased clearance of postprandial lipids because of a compromised endocytosis rate and reduced lipase activity. On an atherogenic diet LRP1 mutant mice revealed a 50% increased development of atherosclerosis. This aggravation was accompanied by an increase in smooth muscle cell (SMC) and collagen content and apoptotic cells in the lesions. The mutation showed, however, a limited impact on basal PDGFR-beta expression and signaling and the antimigratory property of apoE on PDGF-BB-stimulated SMCs. Additionally, levels of LRP1 atherogenic ligands, like MMP2, t-PA, FVIII, and the inflammatory ligand TNF-alpha showed to be significantly elevated. CONCLUSIONS:These findings demonstrate that the NPxYxxL motif is essential for the atheroprotective role of LRP1. This motif is relevant for normal control of lipid metabolism and of atherogenic and inflammatory ligands, but has no pronounced effect on regulating PDGF-BB/PDGFR-beta signaling in SMCs. 10.1161/ATVBAHA.109.192211
Shear stress-independent binding of von Willebrand factor-type 2B mutants p.R1306Q & p.V1316M to LRP1 explains their increased clearance. Journal of thrombosis and haemostasis : JTH BACKGROUND:von Willebrand factor (VWF) is cleared in a shear stress- and macrophage-dependent manner by LRP1. von Willebrand disease (VWD)-type 2B mutants are endocytosed more efficiently than wild-type (wt)-VWF by macrophages. OBJECTIVE:To investigate if VWD-type 2B mutations in the VWF A1-domain affect LRP1 binding and LRP1-dependent clearance. METHODS:Recombinant Fc-tagged A1 domain (A1-Fc, A2-Fc, A3-Fc) and full-length VWF (wt or mutants thereof) were tested for binding to LRP1 or a recombinant fragment thereof in a static immunosorbent assay. Mutant and wt-VWF were also compared for clearance in mice lacking macrophage LRP1 (macLRP1(-) ) and control mice (macLRP1(+) ). RESULTS:We found that A1-Fc but not A2-Fc or A3-Fc binds dose-dependently to LRP1. Binding of A1-Fc to LRP1 was markedly enhanced by the VWD-type 2B mutation p.V1316M. As expected, full-length wt-VWF was unable to bind LRP1 under static conditions unless ristocetin was added. In contrast, the presence of the p.V1316M or p.R1306Q mutation induced spontaneous binding to LRP1 without the need for ristocetin or shear stress. Both mutants were cleared more rapidly than wt-VWF in control macLRP1(+) mice. Surprisingly, deletion of macrophage LRP1 abrogated the increased clearance of the VWF/p.R1306Q and VWF/p.V1316M mutant. CONCLUSION:The VWF A1-domain contains a binding site for LRP1. Certain VWD-type 2B mutations relieve the need for shear stress to induce LRP1 binding. Enhanced LRP1 binding coincides with a reduced survival of VWF/p.R1306Q and VWF/p.V1316M. Our data provide a rationale for reduced VWF levels in at least some VWD-type 2B patients. 10.1111/jth.12885
MT1-MMP promotes vascular smooth muscle dedifferentiation through LRP1 processing. Lehti Kaisa,Rose Nina F,Valavaara Sara,Weiss Stephen J,Keski-Oja Jorma Journal of cell science At sites of vessel-wall injury, vascular smooth muscle cells (VSMCs) can dedifferentiate to express an invasive and proliferative phenotype, which contributes to the development of neointimal lesions and vascular disorders. Herein, we demonstrate that the loss of the VSMC differentiated phenotype, as the repression of contractile-protein expression, is correlated with a dramatic upregulation of the membrane-anchored matrix metalloproteinase MT1-MMP (also known as MMP14 and membrane-type 1 matrix metalloproteinase). Matrix metalloproteinase (MMP) inhibitors or MT1-MMP deficiency led to attenuated VSMC dedifferentiation, whereas the phenotypic switch was re-engaged following the restoration of MT1-MMP activity in MT1-MMP(-/-) cells. MT1-MMP-dependent dedifferentiation was mediated by the PDGF-BB-PDGFRbeta pathway in parallel with the proteolytic processing of the multifunctional LDL receptor-related protein LRP1 and the dynamic internalization of a PDGFRbeta-beta3-integrin-MT1-MMP-LRP1 multi-component complex. Importantly, LRP1 silencing allowed the PDGF-BB-induced dedifferentiation program to proceed in the absence of MT1-MMP activity, supporting the role of unprocessed LRP1 as a gatekeeper of VSMC differentiation. Hence, MT1-MMP and LRP1 serve as a new effector-target-molecule axis that controls the PDGF-BB-PDGFRbeta-dependent VSMC phenotype and function. 10.1242/jcs.035279
Low density lipoprotein receptor-related protein-1 (LRP1) regulates thrombospondin-2 (TSP2) enhancement of Notch3 signaling. Meng He,Zhang Xiaojie,Lee Soo Jung,Strickland Dudley K,Lawrence Daniel A,Wang Michael M The Journal of biological chemistry Intracellular trafficking of Notch and Notch ligands modulates signaling, suggesting that choreography of ligand and receptor translocation is essential for optimal Notch activity. Indeed, a major model for Notch signaling posits that Notch trans-endocytosis into the ligand-expressing (signal sending) cell is a key driving force for Notch signal transduction. The extracellular protein thrombospondin-2 (TSP2) enhances Notch signaling and binds to both Jagged1 and Notch3 ectodomains, potentially bridging two essential extracellular components of Notch signaling. We investigated the role of low density lipoprotein receptor-related protein-1 (LRP1), a TSP2 receptor, in the regulation of Notch3 signaling. TSP2 potentiation of Notch is blocked by the receptor-associated protein (an inhibitor of low density lipoprotein receptor-related protein function) and requires LRP1 expression in the signal-sending cell. TSP2 stimulates Notch3 endocytosis into wild type fibroblasts but not LRP1-deficient fibroblasts. Finally, recombinant Notch3 and Jagged1 interact with the LRP1 85-kDa B-chain, a subunit that lacks known ligand binding function. Our data suggest that LRP1 and TSP2 stimulate Notch activity by driving trans-endocytosis of the Notch ectodomain into the signal-sending cell and demonstrate a novel, non-cell autonomous function of LRP1 in cell-cell signaling. 10.1074/jbc.M110.144634
High Affinity Binding of the Receptor-associated Protein D1D2 Domains with the Low Density Lipoprotein Receptor-related Protein (LRP1) Involves Bivalent Complex Formation: CRITICAL ROLES OF LYSINES 60 AND 191. Prasad Joni M,Young Patricia A,Strickland Dudley K The Journal of biological chemistry The LDL receptor-related protein 1 (LRP1) is a large endocytic receptor that binds and mediates the endocytosis of numerous structurally diverse ligands. Currently, the basis for ligand recognition by LRP1 is not well understood. LRP1 requires a molecular chaperone, termed the receptor-associated protein (RAP), to escort the newly synthesized receptor from the endoplasmic reticulum to the Golgi. RAP is a three-domain protein that contains the following two high affinity binding sites for LRP1: one is located within domains 1 and 2, and one is located in its third domain. Studies on the interaction of the RAP third domain with LRP1 reveal critical contributions by lysine 256 and lysine 270 for this interaction. From these studies, a model for ligand recognition by this class of receptors has been proposed. Here, we employed surface plasmon resonance to investigate the binding of RAP D1D2 to LRP1. Our results reveal that the high affinity of D1D2 for LRP1 results from avidity effects mediated by the simultaneous interactions of lysine 60 in D1 and lysine 191 in D2 with sites on LRP1 to form a bivalent D1D2-LRP1 complex. When lysine 60 and 191 are both mutated to alanine, the binding of D1D2 to LRP1 is ablated. Our data also reveal that D1D2 is able to bind to a second distinct site on LRP1 to form a monovalent complex. The studies confirm the canonical model for ligand recognition by this class of receptors, which is initiated by pairs of lysine residues that dock into acidic pockets on the receptor. 10.1074/jbc.M116.744904
The LDL receptor-related protein (LRP1/A2MR) and coronary atherosclerosis--novel genomic variants and functional consequences. Schulz Susanne,Schagdarsurengin Undraga,Greiser Petra,Birkenmeier Gerd,Müller-Werdan Ursula,Hagemann Monika,Riemann Dagmar,Werdan Karl,Gläser Christiane Human mutation The LDL receptor-related protein/alpha 2-macroglobulin receptor (LRP1/A2MR) is a multifunctional cell-surface glycoprotein that endocytoses several structurally and functionally distinct ligands. In clinical studies different genomic variants of the LRP1/A2MR and its role in the development of degenerative diseases like atherosclerosis or Alzheimer's disease were studied. We screened for novel genomic variants of LRP1/A2MR and investigated the importance of these variants in 214 coronary patients suffering from myocardial infarction as well as in 224 healthy controls. We detected a novel C>G polymorphism at position -25 in the functionally important promoter region of LRP1/A2MR. This polymorphism (c.1-25C>G) leads to the creation of a new GC-box, recognized by the constitutively expressed SP 1 transcription factor. Investigating the LRP1/A2MR gene expression with respect to this polymorphism, carriers of the mutant G-allele were found to have a higher mRNA expression level. A novel polymorphism in exon 22 (c.4012C>T), and two novel polymorphisms in intron 24 (IVS24+123C>A and IVS24+690G>A) associated with a previously described polymorphism in exon 61 (c.10249G>A), were related to the development of myocardial infarction. Two novel rare genetic variants of exon 88 (c.13933C>T) and intron 88 (IVS88+15G>A) were identified in four patients with severe coronary symptoms. However, the LRP1/A2MR gene expression was found to be independent of all identified novel genomic variants as well as other previously described changes (A217V, A775P, D2080N, D2632E, G4379S) except the promoter polymorphism. 10.1002/humu.9070
Low-density-lipoprotein-receptor-related protein 1 mediates Notch pathway activation. Bian Weixiang,Tang Mengfan,Jiang Hua,Xu Wenyan,Hao Wanyu,Sui Yue,Hou Yingnan,Nie Litong,Zhang Huimin,Wang Chao,Li Nan,Wang Jiadong,Qin Jun,Wu Lianfeng,Ma Xianjue,Chen Junjie,Wang Wenqi,Li Xu Developmental cell The Notch signaling pathway controls cell growth, differentiation, and fate decisions, and its dysregulation has been linked to various human genetic disorders and cancers. To comprehensively understand the global organization of the Notch pathway and identify potential drug targets for Notch-related diseases, we established a protein interaction landscape for the human Notch pathway. By combining and analyzing genetic and phenotypic data with bioinformatics analysis, we greatly expanded this pathway and identified many key regulators, including low-density-lipoprotein-receptor-related protein 1 (LRP1). We demonstrated that LRP1 mediates the ubiquitination chain linkage switching of Delta ligands, which further affects ligand recycling, membrane localization, and stability. LRP1 inhibition led to Notch signaling inhibition and decreased tumorigenesis in leukemia models. Our study provides a glimpse into the Notch pathway interaction network and uncovers LRP1 as one critical regulator of the Notch pathway, as well as a possible therapeutic target for Notch-related cancers. 10.1016/j.devcel.2021.09.015
The LDL receptor-related protein 1 (LRP1) regulates the PDGF signaling pathway by binding the protein phosphatase SHP-2 and modulating SHP-2- mediated PDGF signaling events. PloS one BACKGROUND:The PDGF signaling pathway plays a major role in several biological systems, including vascular remodeling that occurs following percutaneous transluminal coronary angioplasty. Recent studies have shown that the LDL receptor-related protein 1 (LRP1) is a physiological regulator of the PDGF signaling pathway. The underlying mechanistic details of how this regulation occurs have yet to be resolved. Activation of the PDGF receptor β (PDGFRβ) leads to tyrosine phosphorylation of the LRP1 cytoplasmic domain within endosomes and generates an LRP1 molecule with increased affinity for adaptor proteins such as SHP-2 that are involved in signaling pathways. SHP-2 is a protein tyrosine phosphatase that positively regulates the PDGFRβ pathway, and is required for PDGF-mediated chemotaxis. We investigated the possibility that LRP1 may regulate the PDGFRβ signaling pathway by binding SHP-2 and competing with the PDGFRβ for this molecule. METHODOLOGY/PRINCIPAL FINDINGS:To quantify the interaction between SHP-2 and phosphorylated forms of the LRP1 intracellular domain, we utilized an ELISA with purified recombinant proteins. These studies revealed high affinity binding of SHP-2 to phosphorylated forms of both LRP1 intracellular domain and the PDGFRβ kinase domain. By employing the well characterized dynamin inhibitor, dynasore, we established that PDGF-induced SHP-2 phosphorylation primarily occurs within endosomal compartments, the same compartments in which LRP1 is tyrosine phosphorylated by activated PDGFRβ. Immunofluorescence studies revealed colocalization of LRP1 and phospho-SHP-2 following PDGF stimulation of fibroblasts. To define the contribution of LRP1 to SHP-2-mediated PDGF chemotaxis, we employed fibroblasts expressing LRP1 and deficient in LRP1 and a specific SHP-2 inhibitor, NSC-87877. Our results reveal that LRP1 modulates SHP-2-mediated PDGF-mediated chemotaxis. CONCLUSIONS/SIGNIFICANCE:Our data demonstrate that phosphorylated forms of LRP1 and PDGFRβ compete for SHP-2 binding, and that expression of LRP1 attenuates SHP-2-mediated PDGF signaling events. 10.1371/journal.pone.0070432
Inverse relationship between raft LRP1 localization and non-raft ERK1,2/MMP9 activation in idiopathic dilated cardiomyopathy: potential impact in ventricular remodeling. Roura Santiago,Cal Roi,Gálvez-Montón Carolina,Revuelta-Lopez Elena,Nasarre Laura,Badimon Lina,Bayes-Genis Antoni,Llorente-Cortés Vicenta International journal of cardiology BACKGROUND:Idiopathic dilated cardiomyopathy (IDCM) is characterized by adverse ventricular remodeling attributed to altered activity of extracellular matrix metalloproteinase (MMP). MMP overactivation is linked to changes in extracellular signal-regulated kinases (ERK), reportedly modulated by the low-density lipoprotein receptor-related protein 1 (LRP1) receptor. The aim of this work was to compare the levels, membrane distribution and interactions of LRP1, ERK1,2 and MMP2/9 in control and IDCM myocardium. METHODS:Left ventricle samples from IDCM patients and control subjects were collected to analyze gene and protein expression by Real-time PCR and Western blot, respectively. Fractions enriched in cholesterol, Flotillin-1 and Caveolin-3 (rafts) were isolated from the remaining membrane (non-rafts) by sucrose gradient ultracentrifugation. We assessed the formation of LRP1-ERK1,2 complexes and MMP activity by immunoprecipitation and zymography, respectively. RESULTS:In control myocardium, LRP1 was exclusively found in non-rafts while activation of ERK1,2 was preferentially detected in rafts. LRP1/p-ERK1,2 complexes were almost undetectable in rafts and non-rafts. In contrast, in IDCM myocardium, LRP1 moved to rafts and ERK1,2 activation was found in raft and non-raft fractions. Moreover, LRP1/p-ERK1,2 complexes were also found in both membrane fractions, although the amount was higher in non-rafts where MMP9 overactivation was exclusively detected. CONCLUSIONS:The presented findings demonstrate a differential membrane compartmentalisation of ERK signaling in IDCM myocardium. The movement of LRP1 to rafts and the concomitant increase in non-raft-related ERK1,2/MMP9 activation may have crucial clinical implications in the progression of disease. 10.1016/j.ijcard.2014.07.270
Low-density lipoprotein receptor-related protein 1: a physiological Aβ homeostatic mechanism with multiple therapeutic opportunities. Pharmacology & therapeutics Low-density lipoprotein receptor-related protein-1 (LRP1) is the main cell surface receptor involved in brain and systemic clearance of the Alzheimer's disease (AD) toxin amyloid-beta (Aβ). In plasma, a soluble form of LRP1 (sLRP1) is the major transport protein for peripheral Aβ. LRP1 in brain endothelium and mural cells mediates Aβ efflux from brain by providing a transport mechanism for Aβ across the blood-brain barrier (BBB). sLRP1 maintains a plasma 'sink' activity for Aβ through binding of peripheral Aβ which in turn inhibits re-entry of free plasma Aβ into the brain. LRP1 in the liver mediates systemic clearance of Aβ. In AD, LRP1 expression at the BBB is reduced and Aβ binding to circulating sLRP1 is compromised by oxidation. Cell surface LRP1 and circulating sLRP1 represent druggable targets which can be therapeutically modified to restore the physiological mechanisms of brain Aβ homeostasis. In this review, we discuss how increasing LRP1 expression at the BBB and liver with lifestyle changes, statins, plant-based active principles and/or gene therapy on one hand, and how replacing dysfunctional plasma sLRP1 on the other regulate Aβ clearance from brain ultimately controlling the onset and/or progression of AD. 10.1016/j.pharmthera.2012.07.008
LDL receptor-related protein and the vascular wall: implications for atherothrombosis. Llorente-Cortés Vicenta,Badimon Lina Arteriosclerosis, thrombosis, and vascular biology LDL receptor-related protein 1 (LRP1) is highly expressed in the vascular wall and is mainly associated with macrophages and vascular smooth muscle cells (VSMCs). Overexpression of LRP1 in atherosclerotic lesions has been demonstrated in several animal models and human lesions. Clinical studies have suggested a relation between alterations in LRP1 expression and coronary heart disease. Indeed, it has been demonstrated that LRP1 gene expression is increased in blood mononuclear cells from patients with coronary obstruction and that the LRP1 mRNA-protein expression ratio is altered in coronary patients. Taken together, these results seem to suggest that LRP1 may be a pivotal receptor in the etiology of atherosclerosis. Our group has contributed to the elucidation of the physiopathologic role of LRP1 in the vascular wall by demonstrating that LRP1-mediated, matrix-retained LDL internalization could be crucial for VSMC-foam cell formation, that LRP1 is upregulated by lipid during human atherosclerotic lesion progression, and that LRP1-mediated aggregated LDL uptake causes the prothrombotic transformation of the vascular wall. Therefore, LRP1 seems to play a pathologic function during atherosclerotic lesion progression; however, LRP1 also seems to be essential for embryonic development and for the maintenance of vascular integrity. The protective effect of LRP1 in the vessel wall seems to be mainly due to its role in controlling certain signaling pathways. In this review, we will focus on the description of the main physiopathologic functions of LRP1 in the vascular wall. 10.1161/01.ATV.0000154280.62072.fd
LDL receptor-related protein-1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. Gonias Steven L,Campana W Marie The American journal of pathology Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic receptor for numerous proteins that are both structurally and functionally diverse. In some cell types, LRP1-mediated endocytosis is coupled to activation of cell signaling. LRP1 also regulates the composition of the plasma membrane and may, thereby, indirectly regulate the activity of other cell-signaling receptors. Given the scope of LRP1 ligands and its multifunctional nature, it is not surprising that numerous biological activities have been attributed to this receptor. LRP1 gene deletion is embryonic-lethal in mice. However, elegant studies using Cre-LoxP recombination have helped elucidate the function of LRP1 in mature normal and pathological tissues. One major theme that has emerged is the role of LRP1 as a regulator of inflammation. In this review, we will describe evidence for LRP1 as a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. 10.1016/j.ajpath.2013.08.029
The low-density lipoprotein receptor-related protein 1 in inflammation. May Petra Current opinion in lipidology PURPOSE OF REVIEW:The lipoprotein receptor low-density lipoprotein receptor-related protein 1 (LRP1) functions both in endocytosis and in signal transduction. Recently, it has become clear that LRP1 modulates the inflammatory response to various noxious stimuli. This review is to summarize our current knowledge about the role of LRP1 in inflammation. RECENT FINDINGS:LRP1 modulates the inflammatory response in different organs and under various pathophysiological conditions. Both direct regulation of inflammatory signaling through the binding of extracellular messengers or intracellular signaling molecules and indirect modulation through the interaction with other transmembrane receptors or the endocytosis of extracellular factors have been described. Regulation by LRP1 effects cytokine secretion, phagocytosis and migration of cells of the immune system. SUMMARY:In recent years, LRP1 emerged as an important regulator of the inflammatory response. Owing to the ubiquitous expression of this receptor, this function is of importance in different organs and under various pathophysiological conditions in which inflammation contributes to disease, that is atherosclerosis, neurodegeneration and organ fibrosis, for example of the lung or liver. 10.1097/MOL.0b013e32835e809c
Low density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor in heart. Huang WeiLu,Gui DanTing International journal of cardiology 10.1016/j.ijcard.2020.06.046
Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Potere Nicola,Del Buono Marco Giuseppe,Mauro Adolfo Gabriele,Abbate Antonio,Toldo Stefano Frontiers in cardiovascular medicine Acute myocardial infarction (AMI) leads to myocardial cell death and ensuing sterile inflammatory response, which represents an attempt to clear cellular debris and promote cardiac repair. However, an overwhelming, unopposed or unresolved inflammatory response following AMI leads to further injury, worse remodeling and heart failure (HF). Additional therapies are therefore warranted to blunt the inflammatory response associated with ischemia and reperfusion and prevent long-term adverse events. Low-density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitous endocytic cell surface receptor with the ability to recognize a wide range of structurally and functionally diverse ligands. LRP1 transduces multiple intracellular signal pathways regulating the inflammatory reaction, tissue remodeling and cell survival after organ injury. In preclinical studies, activation of LRP1-mediated signaling in the heart with non-selective and selective LRP1 agonists is linked with a powerful cardioprotective effect, reducing infarct size and cardiac dysfunction after AMI. The data from early phase clinical studies with plasma-derived α1-antitrypsin (AAT), an endogenous LRP1 agonist, and SP16 peptide, a synthetic LRP1 agonist, support the translational value of LRP1 as a novel therapeutic target in AMI. In this review, we will summarize the cellular and molecular bases of LRP1 functions in modulating the inflammatory reaction and the reparative process after injury in various peripheral tissues, and discuss recent evidences implicating LRP1 in myocardial inflammation and infarct healing. 10.3389/fcvm.2019.00051
Low-density lipoprotein receptor-related protein-1: role in the regulation of vascular integrity. Strickland Dudley K,Au Dianaly T,Cunfer Patricia,Muratoglu Selen C Arteriosclerosis, thrombosis, and vascular biology Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling receptor that is widely expressed. In the liver, LRP1 plays an important role in regulating the plasma levels of blood coagulation factor VIII (fVIII) by mediating its uptake and subsequent degradation. fVIII is a key plasma protein that is deficient in hemophilia A and circulates in complex with von Willebrand factor. Because von Willebrand factor blocks binding of fVIII to LRP1, questions remain on the molecular mechanisms by which LRP1 removes fVIII from the circulation. LRP1 also regulates cell surface levels of tissue factor, a component of the extrinsic blood coagulation pathway. This occurs when tissue factor pathway inhibitor bridges the fVII/tissue factor complex to LRP1, resulting in rapid LRP1-mediated internalization and downregulation of coagulant activity. In the vasculature LRP1 also plays protective role from the development of aneurysms. Mice in which the lrp1 gene is selectively deleted in vascular smooth muscle cells develop a phenotype similar to the progression of aneurysm formation in human patient, revealing that these mice are ideal for investigating molecular mechanisms associated with aneurysm formation. Studies suggest that LRP1 protects against elastin fiber fragmentation by reducing excess protease activity in the vessel wall. These proteases include high-temperature requirement factor A1, matrix metalloproteinase 2, matrix metalloproteinase-9, and membrane associated type 1-matrix metalloproteinase. In addition, LRP1 regulates matrix deposition, in part, by modulating levels of connective tissue growth factor. Defining pathways modulated by LRP1 that lead to aneurysm formation and defining its role in thrombosis may allow for more effective intervention in patients. 10.1161/ATVBAHA.113.301924
PAI-1 modulates cell migration in a LRP1-dependent manner via β-catenin and ERK1/2. Kozlova Nina,Jensen Jan K,Chi Tabughang Franklin,Samoylenko Anatoly,Kietzmann Thomas Thrombosis and haemostasis Plasminogen activator inhibitor-1 (PAI-1) is the major and most specific acting urokinase (uPA) and tissue plasminogen activator (tPA) inhibitor. Apart from its function in the fibrinolytic system, PAI-1 was also found to contribute to processes like tissue remodelling, angiogenesis, and tumour progression. However, the role of PAI-1 in those processes remains largely controversial with respect to the influence of PAI-1 on cell signalling pathways. Although PAI-1 does not possess its own cellular receptor, it can be bound to low-density lipoprotein receptor-related protein 1 (LRP1) which was proposed to modulate the β-catenin pathway. Therefore, we used wild-type mouse embryonic fibroblasts (MEFs), and MEFs deficient of LRP1 to study PAI-1 as modulator of the β-catenin pathway. We found that PAI-1 influences MEF proliferation and motility in a LRP1-dependent manner and that β-catenin is important for that response. In addition, expression of β-catenin and β-catenin-dependent transcriptional activity were induced by PAI-1 in wild type MEFs, but not in LRP1-deficient cells. Moreover, PAI-1-induced ERK1/2 activation was more prominent in the LRP1-deficient cells and interestingly knockdown of β-catenin abolished this effect. Together, the data of the current study show that PAI-1 can promote cell migration via LRP1-dependent activation of the β-catenin and ERK1/2 MAPK pathway which may be important in stage-specific treatment of human diseases associated with high PAI-1 levels. 10.1160/TH14-08-0678
The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Frontiers in cardiovascular medicine Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells. 10.3389/fcvm.2021.682389
Naturally Occurring Variants in LRP1 (Low-Density Lipoprotein Receptor-Related Protein 1) Affect HDL (High-Density Lipoprotein) Metabolism Through ABCA1 (ATP-Binding Cassette A1) and SR-B1 (Scavenger Receptor Class B Type 1) in Humans. Oldoni Federico,van Capelleveen Julian C,Dalila Nawar,Wolters Justina C,Heeren Joerg,Sinke Richard J,Hui David Y,Dallinga-Thie Geesje M,Frikke-Schmidt Ruth,Hovingh Kees G,van de Sluis Bart,Tybjærg-Hansen Anne,Kuivenhoven Jan Albert Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:Studies into the role of LRP1 (low-density lipoprotein receptor-related protein 1) in human lipid metabolism are scarce. Although it is known that a common variant in (rs116133520) is significantly associated with HDL-C (high-density lipoprotein cholesterol), the mechanism underlying this observation is unclear. In this study, we set out to study the functional effects of 2 rare variants identified in subjects with extremely low HDL-C levels. APPROACH AND RESULTS:In 2 subjects with HDL-C below the first percentile for age and sex and moderately elevated triglycerides, we identified 2 rare variants in : p.Val3244Ile and p.Glu3983Asp. Both variants decrease LRP1 expression and stability. We show in a series of translational experiments that these variants culminate in reduced trafficking of ABCA1 (ATP-binding cassette A1) to the cell membrane. This is accompanied by an increase in cell surface expression of SR-B1 (scavenger receptor class B type 1). Combined these effects may contribute to low HDL-C levels in our study subjects. Supporting these findings, we provide epidemiological evidence that rs116133520 is associated with apo (apolipoprotein) A1 but not with apoB levels. CONCLUSIONS:This study provides the first evidence that rare variants in are associated with changes in human lipid metabolism. Specifically, this study shows that LRP1 may affect HDL metabolism by virtue of its effect on both ABCA1 and SR-B1. 10.1161/ATVBAHA.117.310309
Convergent Signaling Pathways Controlled by LRP1 (Receptor-related Protein 1) Cytoplasmic and Extracellular Domains Limit Cellular Cholesterol Accumulation. El Asmar Zeina,Terrand Jérome,Jenty Marion,Host Lionel,Mlih Mohamed,Zerr Aurélie,Justiniano Hélène,Matz Rachel L,Boudier Christian,Scholler Estelle,Garnier Jean-Marie,Bertaccini Diego,Thiersé Danièle,Schaeffer Christine,Van Dorsselaer Alain,Herz Joachim,Bruban Véronique,Boucher Philippe The Journal of biological chemistry The low density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitously expressed cell surface receptor that protects from intracellular cholesterol accumulation. However, the underlying mechanisms are unknown. Here we show that the extracellular (α) chain of LRP1 mediates TGFβ-induced enhancement of Wnt5a, which limits intracellular cholesterol accumulation by inhibiting cholesterol biosynthesis and by promoting cholesterol export. Moreover, we demonstrate that the cytoplasmic (β) chain of LRP1 suffices to limit cholesterol accumulation in LRP1(-/-) cells. Through binding of Erk2 to the second of its carboxyl-terminal NPXY motifs, LRP1 β-chain positively regulates the expression of ATP binding cassette transporter A1 (ABCA1) and of neutral cholesterol ester hydrolase (NCEH1). These results highlight the unexpected functions of LRP1 and the canonical Wnt5a pathway and new therapeutic potential in cholesterol-associated disorders including cardiovascular diseases. 10.1074/jbc.M116.714485
LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages. Lillis Anna P,Muratoglu Selen Catania,Au Dianaly T,Migliorini Mary,Lee Mi-Jeong,Fried Susan K,Mikhailenko Irina,Strickland Dudley K PloS one Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1) to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR)-deficient background (macLRP1-/-). After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis. 10.1371/journal.pone.0128903
Cholesterol-lowering strategies reduce vascular LRP1 overexpression induced by hypercholesterolaemia. Llorente-Cortes Vicenta,Casani Laura,Cal Roi,Llenas Albert,Juan-Babot Oriol,Camino-López Sandra,Sendra Judith,Badimon Lina European journal of clinical investigation BACKGROUND:Low density lipoprotein receptor-related protein (LRP1) plays a key role on vascular functionality and is upregulated by hypercholesterolemia and hypertension. To investigate the effect of cholesterol-lowering interventions on vascular LRP1 over expression and whether simvastatin influences LRP1 expression. MATERIAL AND METHODS:Male New Zealand rabbits were recruited into various groups, one group was fed a normal chow diet for 28 days (control group, n = 6), other group (n = 24) was fed a hypercholesterolemic diet (HC), six rabbits were euthanized at day 28 to test the capacity of HC diet to induce early atherosclerosis and the rest at day 60 (n = 18) after receiving either HC diet (HC group, n = 6), HC diet with simvastatin (2·5 mg/kg.day) (HC+simv group, n = 6), or a normal chow diet (NC group, n = 6) for the last 32 days. RESULTS:High-cholesterol diet raised vascular LRP1 concomitantly with increased lipid, VSMC and macrophage content in the arterial intima. Simvastatin and return to normocholesterolemic diet significantly reduced systemic cholesterol levels and vascular lipid content. Interestingly, these interventions also downregulate LRP1 overexpression in the vascular wall although to a different extent (HC+simv: 75 ± 3·6%vs NC: 50 ± 3·5% versus, P = 0·002). Immunohistochemistry studies showed that LRP1 diminushion was associated to a reduction in the number of intimal VSMC in HC+simv.group. Simvastatin per se did not exert any significant effect on LRP1 expression in rabbit aortic smooth muscle cells (rSMC). CONCLUSIONS:Our results demonstrate that cholesterol-lowering interventions exerted down regulatory effects on vascular LRP1 over expression induced by hypercholesterolemia and that simvastatin did not influence LRP1 expression beyond its cholesterol-lowering effects. 10.1111/j.1365-2362.2011.02513.x
Low Density Lipoprotein Receptor-Related Protein-1 (LRP1) Is Involved in the Uptake of Toxin A and Serves as an Internalizing Receptor. Schöttelndreier Dennis,Langejürgen Anna,Lindner Robert,Genth Harald Frontiers in cellular and infection microbiology Toxin producing strains cause gastrointestinal infections with the large glucosylating protein toxins A (TcdA) and B (TcdB) being major virulence factors responsible for the onset of symptoms. TcdA and TcdB enter their target cells receptor-mediated endocytosis. Inside the cell, the toxins glucosylate and thereby inactivate small GTPases of the Rho-/Ras subfamilies resulting in actin reorganization and cell death. The receptors of TcdA are still elusive, glycoprotein 96 (gp96), the low density lipoprotein receptor family (LDLR) and sulfated glycosaminoglycans (sGAGs) have most recently been suggested as receptors for TcdA. In this study, we provide evidence on rapid endocytosis of Low density lipoprotein Receptor-related Protein-1 (LRP1) into fibroblasts and Caco-2 cells by exploiting biotinylation of cell surface proteins. In contrast, gp96 was not endocytosed either in the presence or absence of TcdA. The kinetics of internalization of TfR and LRP1 were comparable in the presence and the absence of TcdA, excluding that TcdA facilitates its internalization by triggering internalization of its receptors. Exploiting fibroblasts with a genetic deletion of LRP1, TcdA was about one order of magnitude less potent in LRP1-deficient cells as compared to the corresponding control cells. In contrast, TcdB exhibited a comparable potency in LRP1-proficient and -deficient fibroblasts. These findings suggested a role of LRP1 in the cellular uptake of TcdA but not of TcdB. Correspondingly, binding of TcdA to the cell surface of LRP1-deficient fibroblasts was reduced as compared with LRP1-proficient fibroblasts. Finally, TcdA bound to LRP1 ligand binding type repeat cluster II (amino acid 786-1,165) and cluster IV (amino acid 3332-3779). In conclusion, LRP1 appears to serve as an endocytic receptor and gp96 as a non-endocytic receptor for TcdA. 10.3389/fcimb.2020.565465
Relationship among LRP1 expression, Pyk2 phosphorylation and MMP-9 activation in left ventricular remodelling after myocardial infarction. Revuelta-López Elena,Soler-Botija Carol,Nasarre Laura,Benitez-Amaro Aleyda,de Gonzalo-Calvo David,Bayes-Genis Antoni,Llorente-Cortés Vicenta Journal of cellular and molecular medicine Left ventricular (LV) remodelling after myocardial infarction (MI) is a crucial determinant of the clinical course of heart failure. Matrix metalloproteinase (MMP) activation is strongly associated with LV remodelling after MI. Elucidation of plasma membrane receptors related to the activation of specific MMPs is fundamental for treating adverse cardiac remodelling after MI. The aim of current investigation was to explore the potential association between the low-density lipoprotein receptor-related protein 1 (LRP1) and MMP-9 and MMP-2 spatiotemporal expression after MI. Real-time PCR and Western blot analyses showed that LRP1 mRNA and protein expression levels, respectively, were significantly increased in peri-infarct and infarct zones at 10 and 21 days after MI. Confocal microscopy demonstrated high colocalization between LRP1 and the fibroblast marker vimentin, indicating that LRP1 is mostly expressed by cardiac fibroblasts in peri-infarct and infarct areas. LRP1 also colocalized with proline-rich tyrosine kinase 2 (pPyk2) and MMP-9 in cardiac fibroblasts in ischaemic areas at 10 and 21 days after MI. Cell culture experiments revealed that hypoxia increases LRP1, pPyk2 protein levels and MMP-9 activity in fibroblasts, without significant changes in MMP-2 activity. MMP-9 activation by hypoxia requires LRP1 and Pyk2 phosphorylation in fibroblasts. Collectively, our in vivo and in vitro data support a major role of cardiac fibroblast LRP1 levels on MMP-9 up-regulation associated with ventricular remodelling after MI. 10.1111/jcmm.13113
The lipoprotein receptor LRP1 modulates sphingosine-1-phosphate signaling and is essential for vascular development. Nakajima Chikako,Haffner Philipp,Goerke Sebastian M,Zurhove Kai,Adelmann Giselind,Frotscher Michael,Herz Joachim,Bock Hans H,May Petra Development (Cambridge, England) Low density lipoprotein receptor-related protein 1 (LRP1) is indispensable for embryonic development. Comparing different genetically engineered mouse models, we found that expression of Lrp1 is essential in the embryo proper. Loss of LRP1 leads to lethal vascular defects with lack of proper investment with mural cells of both large and small vessels. We further demonstrate that LRP1 modulates Gi-dependent sphingosine-1-phosphate (S1P) signaling and integrates S1P and PDGF-BB signaling pathways, which are both crucial for mural cell recruitment, via its intracellular domain. Loss of LRP1 leads to a lack of S1P-dependent inhibition of RAC1 and loss of constraint of PDGF-BB-induced cell migration. Our studies thus identify LRP1 as a novel player in angiogenesis and in the recruitment and maintenance of mural cells. Moreover, they reveal an unexpected link between lipoprotein receptor and sphingolipid signaling that, in addition to angiogenesis during embryonic development, is of potential importance for other targets of these pathways, such as tumor angiogenesis and inflammatory processes. 10.1242/dev.109124
Molecular and functional characterization of LRP1 promoter polymorphism c.1-25 C>G (rs138854007). Aledo R,Costales P,Ciudad C,Noé V,Llorente-Cortes V,Badimon L Atherosclerosis The transcription of the Low-density lipoprotein receptor-related protein (LRP1) is upregulated by aggregated LDL (agLDL) and angiotensin II (AngII) in human vascular smooth muscle cells (hVSMC). The polymorphism c.1-25C>G creates a new GC-box in the LRP1 promoter recognized by Sp1/Sp3 transcription factors. The aims of this study were 1) to evaluate the impact of c.1-25C>G polymorphism on LRP1 transcriptional activity and expression, and 2) to examine the response of c.1-25C>G LRP1 promoter to LDL and AngII. EMSA and Luciferase assays in HeLa cells showed that -25G promoter has enhanced basal transcriptional activity and specific Sp1/Sp3 binding. hVSMC with GG genotype (GG-hVSMC) had higher LRP1 mRNA and protein levels, respectively than CC genotype (CC-hVSMC). EMSA assays showed that the polymorphism determines scarce amount of SRE-B/SREBP-2 complex formation and the failure of agLDL to further reduce these SRE-B/SREBP-2 complexes. Taken together, these results suggest that c.1-25C>G, by difficulting SREBP-2 binding, prevents SREBP-2 displacement required for LRP1 promoter response to LDL. In contrast, c.1-25C>G strongly favours Sp1/Sp3 binding and AngII-induced activity in Sp1/Sp3 dependent manner in GG-hVSMC. This increase is functionally translated into a higher capacity of GG-hVSMC to become foam cells from agLDL in presence of AngII. These results suggest that c.1-25C>G determines a lack of response to agLDL and an exacerbated response to AngII. It is thus conceivable that the presence of the polymorphism would be easily translated to vascular alterations in the presence of the pro-hypertensive autacoid, AngII. 10.1016/j.atherosclerosis.2013.12.014
Binding of alpha2ML1 to the low density lipoprotein receptor-related protein 1 (LRP1) reveals a new role for LRP1 in the human epidermis. Galliano Marie-Florence,Toulza Eve,Jonca Nathalie,Gonias Steven L,Serre Guy,Guerrin Marina PloS one BACKGROUND:The multifunctional receptor LRP1 has been shown to bind and internalize a large number of protein ligands with biological importance such as the pan-protease inhibitor alpha2-macroglobulin (alpha2M). We recently identified Alpha2ML1, a new member of the alpha2M gene family, expressed in epidermis. alpha2ML1 might contribute to the regulation of desquamation through its inhibitory activity towards proteases of the chymotrypsin family, notably KLK7. The expression of LRP1 in epidermis as well as its ability to internalize alpha2ML1 was investigated. METHODS AND PRINCIPAL FINDINGS:In human epidermis, LRP1 is mainly expressed within the granular layer of the epidermis, which gathers the most differentiated keratinocytes, as shown by immunohistochemistry and immunofluorescence using two different antibodies. By using various experimental approaches, we show that the receptor binding domain of alpha2ML1 (RBDl) is specifically internalized into the macrophage-like cell line RAW and colocalizes with LRP1 upon internalization. Coimmunoprecipitation assays demonstrate that RBDl binds LRP1 at the cell surface. Addition of RAP, a universal inhibitor of ligand binding to LRP1, prevents RBDl binding at the cell surface as well as internalization into RAW cells. Silencing Lrp1 expression with specific siRNA strongly reduces RBDl internalization. CONCLUSIONS AND SIGNIFICANCE:Keratinocytes of the upper differentiated layers of epidermis express LRP1 as well as alpha2ML1. Our study also reveals that alpha2ML1 is a new ligand for LRP1. Our findings are consistent with endocytosis by LRP1 of complexes formed between alpha2ML1 and proteases. LRP1 may thus control desquamation by regulating the biodisponibility of extracellular proteases. 10.1371/journal.pone.0002729
LRP1-dependent endocytic mechanism governs the signaling output of the bmp system in endothelial cells and in angiogenesis. Pi Xinchun,Schmitt Christopher E,Xie Liang,Portbury Andrea L,Wu Yaxu,Lockyer Pamela,Dyer Laura A,Moser Martin,Bu Guojun,Flynn Edward J,Jin Suk-Won,Patterson Cam Circulation research RATIONALE:Among the extracellular modulators of Bmp (bone morphogenetic protein) signaling, Bmper (Bmp endothelial cell precursor-derived regulator) both enhances and inhibits Bmp signaling. Recently we found that Bmper modulates Bmp4 activity via a concentration-dependent, endocytic trap-and-sink mechanism. OBJECTIVE:To investigate the molecular mechanisms required for endocytosis of the Bmper/Bmp4 and signaling complex and determine the mechanism of Bmper's differential effects on Bmp4 signaling. METHODS AND RESULTS:Using an array of biochemical and cell biology techniques, we report that LRP1 (LDL receptor-related protein 1), a member of the LDL receptor family, acts as an endocytic receptor for Bmper and a coreceptor of Bmp4 to mediate the endocytosis of the Bmper/Bmp4 signaling complex. Furthermore, we demonstrate that LRP1-dependent Bmper/Bmp4 endocytosis is essential for Bmp4 signaling, as evidenced by the phenotype of lrp1-deficient zebrafish, which have abnormal cardiovascular development and decreased Smad1/5/8 activity in key vasculogenic structures. CONCLUSIONS:Together, these data reveal a novel role for LRP1 in the regulation of Bmp4 signaling by regulating receptor complex endocytosis. In addition, these data introduce LRP1 as a critical regulator of vascular development. These observations demonstrate Bmper's ability to fine-tune Bmp4 signaling at the single-cell level, unlike the spatial regulatory mechanisms applied by other Bmp modulators. 10.1161/CIRCRESAHA.112.274597
LRP1 functions as an atheroprotective integrator of TGFbeta and PDFG signals in the vascular wall: implications for Marfan syndrome. Boucher Philippe,Li Wei-Ping,Matz Rachel L,Takayama Yoshiharu,Auwerx Johan,Anderson Richard G W,Herz Joachim PloS one BACKGROUND:The multifunctional receptor LRP1 controls expression, activity and trafficking of the PDGF receptor-beta in vascular smooth muscle cells (VSMC). LRP1 is also a receptor for TGFbeta1 and is required for TGFbeta mediated inhibition of cell proliferation. METHODS AND PRINCIPAL FINDINGS:We show that loss of LRP1 in VSMC (smLRP(-)) in vivo results in a Marfan-like syndrome with nuclear accumulation of phosphorylated Smad2/3, disruption of elastic layers, tortuous aorta, and increased expression of the TGFbeta target genes thrombospondin-1 (TSP1) and PDGFRbeta in the vascular wall. Treatment of smLRP1(-) animals with the PPARgamma agonist rosiglitazone abolished nuclear pSmad accumulation, reversed the Marfan-like phenotype, and markedly reduced smooth muscle proliferation, fibrosis and atherosclerosis independent of plasma cholesterol levels. CONCLUSIONS AND SIGNIFICANCE:Our findings are consistent with an activation of TGFbeta signals in the LRP1-deficient vascular wall. LRP1 may function as an integrator of proliferative and anti-proliferative signals that control physiological mechanisms common to the pathogenesis of Marfan syndrome and atherosclerosis, and this is essential for maintaining vascular wall integrity. 10.1371/journal.pone.0000448
Signaling through LRP1: Protection from atherosclerosis and beyond. Boucher Philippe,Herz Joachim Biochemical pharmacology The low-density lipoprotein receptor-related protein (LRP1) is a multifunctional cell surface receptor that belongs to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 consists of an 85-kDa membrane-bound carboxyl fragment (β chain) and a non-covalently attached 515-kDa (α chain) amino-terminal fragment. Through its extracellular domain, LRP1 binds at least 40 different ligands ranging from lipoprotein and protease inhibitor complex to growth factors and extracellular matrix proteins. LRP-1 has also been shown to interact with scaffolding and signaling proteins via its intracellular domain in a phosphorylation-dependent manner and to function as a co-receptor partnering with other cell surface or integral membrane proteins. LRP-1 is thus implicated in two major physiological processes: endocytosis and regulation of signaling pathways, which are both involved in diverse biological roles including lipid metabolism, cell growth/differentiation processes, degradation of proteases, and tissue invasion. The embryonic lethal phenotype obtained after target disruption of the LRP-1 gene in the mouse highlights the biological importance of this receptor and revealed a critical, but yet undefined role in development. Tissue-specific gene deletion studies also reveal an important contribution of LRP1 in vascular remodeling, foam cell biology, the central nervous system, and in the molecular mechanisms of atherosclerosis. 10.1016/j.bcp.2010.09.018
p53 Regulates the Expression of LRP1 and Apoptosis through a Stress Intensity-Dependent MicroRNA Feedback Loop. Cell reports Understanding how p53 activates certain gene programs and not others is critical. Here, we identify low-density lipoprotein receptor-related protein 1 (LRP1), a transmembrane endocytic receptor, as a p53 target gene. We show that, although LRP1 transcript expression is upregulated in response to both sub-lethal and lethal doses of p53-activating stress, LRP1 protein is only upregulated in response to sub-lethal stress. Interestingly, lethal doses of p53-activating stress inhibit LRP1 de novo translation through an miRNA-based translational repression mechanism. We show that the p53-regulated miRNAs miR-103 and miR-107 are significantly upregulated by lethal doses of stress, resulting in suppression of LRP1 translation and cell death. Our results define a negative feedback loop involving the p53-regulated coding gene LRP1 and p53-regulated miRNA genes. These findings provide mechanistic insight into the selective expression of p53 target genes in response to different stress intensities to elicit either cell survival or cell death. 10.1016/j.celrep.2018.07.010
Genome wide CRISPR screen for Pasteurella multocida toxin (PMT) binding proteins reveals LDL Receptor Related Protein 1 (LRP1) as crucial cellular receptor. PLoS pathogens PMT is a protein toxin produced by Pasteurella multocida serotypes A and D. As causative agent of atrophic rhinitis in swine, it leads to rapid degradation of the nasal turbinate bone. The toxin acts as a deamidase to modify a crucial glutamine in heterotrimeric G proteins, which results in constitutive activation of the G proteins and permanent stimulation of numerous downstream signaling pathways. Using a lentiviral based genome wide CRISPR knockout screen in combination with a lethal toxin chimera, consisting of full length inactive PMT and the catalytic domain of diphtheria toxin, we identified the LRP1 gene encoding the Low-Density Lipoprotein Receptor-related protein 1 as a critical host factor for PMT function. Loss of LRP1 reduced PMT binding and abolished the cellular response and deamidation of heterotrimeric G proteins, confirming LRP1 to be crucial for PMT uptake. Expression of LRP1 or cluster 4 of LRP1 restored intoxication of the knockout cells. In summary our data demonstrate LRP1 as crucial host entry factor for PMT intoxication by acting as its primary cell surface receptor. 10.1371/journal.ppat.1010781
Myeloid cell receptor LRP1/CD91 regulates monocyte recruitment and angiogenesis in tumors. Staudt Nicole D,Jo Minji,Hu Jingjing,Bristow Jeanne M,Pizzo Donald P,Gaultier Alban,VandenBerg Scott R,Gonias Steven L Cancer research Recruitment of monocytes into sites of inflammation is essential in the immune response. In cancer, recruited monocytes promote invasion, metastasis, and possibly angiogenesis. LDL receptor-related protein (LRP1) is an endocytic and cell-signaling receptor that regulates cell migration. In this study, we isografted PanO2 pancreatic carcinoma cells into mice in which LRP1 was deleted in myeloid lineage cells. Recruitment of monocytes into orthotopic and subcutaneous tumors was significantly increased in these mice, compared with control mice. LRP1-deficient bone marrow-derived macrophages (BMDM) expressed higher levels of multiple chemokines, including, most prominently, macrophage inflammatory protein-1α/CCL3, which is known to amplify inflammation. Increased levels of CCL3 were detected in LRP1-deficient tumor-associated macrophages (TAM), isolated from PanO2 tumors, and in RAW 264.7 macrophage-like cells in which LRP1 was silenced. LRP1-deficient BMDMs migrated more rapidly than LRP1-expressing cells in vitro. The difference in migration was reversed by CCL3-neutralizing antibody, by CCR5-neutralizing antibody, and by inhibiting NF-κB with JSH-23. Inhibiting NF-κB reversed the increase in CCL3 expression associated with LRP1 gene silencing in RAW 264.7 cells. Tumors formed in mice with LRP1-deficient myeloid cells showed increased angiogenesis. Although VEGF mRNA expression was not increased in LRP1-deficient TAMs, at the single-cell level, the increase in TAM density in tumors with LRP1-deficient myeloid cells may have allowed these TAMs to contribute an increased amount of VEGF to the tumor microenvironment. Our results show that macrophage density in tumors is correlated with cancer angiogenesis in a novel model system. Myeloid cell LRP1 may be an important regulator of cancer progression. 10.1158/0008-5472.CAN-12-4233
Macrophage LRP1 suppresses neo-intima formation during vascular remodeling by modulating the TGF-β signaling pathway. Muratoglu Selen Catania,Belgrave Shani,Lillis Anna P,Migliorini Mary,Robinson Susan,Smith Elizabeth,Zhang Li,Strickland Dudley K PloS one BACKGROUND:Vascular remodeling in response to alterations in blood flow has been shown to modulate the formation of neo-intima. This process results from a proliferative response of vascular smooth muscle cells and is influenced by macrophages, which potentiate the development of the intima. The LDL receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that recognizes a number of ligands including apoE-containing lipoproteins, proteases and protease-inhibitor complexes. Macrophage LRP1 is known to influence the development of atherosclerosis, but its role in vascular remodeling has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS:To define the contribution of macrophage LRP1 to vascular remodeling, we generated macrophage specific LRP1-deficient mice (macLRP1-/-) on an LDL receptor (LDLr) knock-out background. Using a carotid ligation model, we detected a 2-fold increase in neointimal thickening and a 2-fold increase in the intima/media ratio in macLRP1-/- mice. Quantitative RT-PCR arrays of the remodeled vessel wall identified increases in mRNA levels of the TGF-β2 gene as well as the Pdgfa gene in macLRP1-/- mice which could account for the alterations in vascular remodeling. Immunohistochemistry analysis revealed increased activation of the TGF-β signaling pathway in macLRP1-/- mice. Further, we observed that LRP1 binds TGF-β2 and macrophages lacking LRP1 accumulate twice as much TGF-β2 in conditioned media. Finally, TNF-α modulation of the TGF-β2 gene in macrophages is attenuated when LRP1 is expressed. Together, the data reveal that LRP1 modulates both the expression and protein levels of TGF-β2 in macrophages. CONCLUSIONS/SIGNIFICANCE:Our data demonstrate that macrophage LRP1 protects the vasculature by limiting remodeling events associated with flow. This appears to occur by the ability of macrophage LRP1 to reduce TGF-β2 protein levels and to attenuate expression of the TGF-β2 gene resulting in suppression of the TGF-β signaling pathway. 10.1371/journal.pone.0028846
Involvement of the lipoprotein receptor LRP1 in AMP-IBP5-mediated migration and proliferation of human keratinocytes and fibroblasts. Chieosilapatham Panjit,Yue Hainan,Ikeda Shigaku,Ogawa Hideoki,Niyonsaba François Journal of dermatological science BACKGROUND:Antimicrobial peptide derived from insulin-like growth factor binding protein-5 (AMP-IBP5) is a potent antimicrobial agent that possesses various immunomodulatory activities. The parent protein of AMP-IBP5, IGFBP-5, has been shown to exert its effects via an insulin-like growth factor-1 receptor-independent mechanism, including binding to multifunctional low-density lipoprotein receptor-related protein 1 (LRP1), which contributes to several biological processes involved in skin wound healing. OBJECTIVES:To investigate whether LRP1 is involved in AMP-IBP5-induced migration and proliferation of human epidermal keratinocytes and dermal fibroblasts. METHODS:The mRNA expression of LRP1 and IGFBP-5 was assessed by quantitative real-time PCR, whereas Western blotting was used to evaluate the protein expression. Production of cytokines was determined by ELISA. Cell migration was measured by the scratch wound assay, whereas cell proliferation was analyzed using the BrdU labeling assay. MAPK activation was determined by Western blotting. RESULTS:We found that AMP-IBP5 markedly induced the migration and proliferation of keratinocytes and fibroblasts, and this effect was reversed by specific siRNA and neutralizing antibody targeting the LRP1 receptor. In addition, LRP1 was upregulated by lipopolysaccharide, flagellin and AMP-IBP5 in keratinocytes and fibroblasts. LRP1 knockdown also inhibited MAPK pathway activation, which was required for AMP-IBP5-mediated cell migration and proliferation, as evidenced by the specific inhibitors for extracellular signal-regulated kinase, c-Jun N-terminal kinase and p38. CONCLUSIONS:Our results suggest that LRP1 expressed in human epidermal keratinocytes and dermal fibroblasts contributes to AMP-IBP5-mediated cell migration and proliferation, supporting its crucial role in cutaneous wound healing process. 10.1016/j.jdermsci.2020.07.003
LRP1 expression in cerebral cortex, choroid plexus and meningeal blood vessels: relationship to cerebral amyloid angiopathy and APOE status. Ruzali Wan Adriyani W,Kehoe Patrick G,Love Seth Neuroscience letters APOE genotype is a risk factor for Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). The risk and severity of CAA increase with possession of APOE ε4, whereas APOE ε2 increases the risk of vessel rupture. Uptake of Aβ by cerebrovascular smooth muscle cells (CVSMCs) is mediated by low-density lipoprotein receptor-related protein-1 (LRP1). To determine whether APOE influences CAA by altering LRP1 expression, particularly by CVSMCs, we analysed APOE genotype, CAA severity, and LRP1 levels in post-mortem cerebral cortex, choroid plexus and meningeal vessels. LRP1 mRNA and protein were not related to CAA severity and presence. LRP1 mRNA was increased in meningeal vessels, but not cortex or choroid plexus, in AD and in association with APOE ε4, and was decreased in association with APOE ε3. In brains with CAA, APOE ε2 was associated with decreased LRP1 protein in meningeal vessels, and ε3 with increased LRP1 in choroid plexus. These findings suggest that APOE may influence the severity of CAA through altered expression of LRP1. 10.1016/j.neulet.2012.07.065
Mutation in the distal NPxY motif of LRP1 alleviates dietary cholesterol-induced dyslipidemia and tissue inflammation. Journal of lipid research The impairment of LDL receptor-related protein-1 (LRP1) in numerous cell types is associated with obesity, diabetes, and fatty liver disease. Here, we compared the metabolic phenotype of C57BL/6J wild-type and LRP1 knock-in mice carrying an inactivating mutation in the distal NPxY motif after feeding a low-fat diet or high-fat (HF) diet with cholesterol supplementation (HFHC) or HF diet without cholesterol supplementation. In response to HF feeding, both groups developed hyperglycemia, hyperinsulinemia, hyperlipidemia, increased adiposity, and adipose tissue inflammation and liver steatosis. However, LRP1 NPxY mutation prevents HFHC diet-induced hypercholesterolemia, reduces adipose tissue and brain inflammation, and limits liver progression to steatohepatitis. Nevertheless, this mutation does not protect against HFHC diet-induced insulin resistance. The selective metabolic improvement observed in HFHC diet-fed LRP1 NPxY mutant mice is due to an apparent increase of hepatic LDL receptor levels, leading to an elevated rate of plasma lipoprotein clearance and lower hepatic cholesterol levels. The unique metabolic phenotypes displayed by LRP1 NPxY mutant mice indicate an LRP1-cholesterol axis in modulating tissue inflammation. The LRP1 NPxY mutant mouse phenotype differs from phenotypes observed in mice with tissue-specific LRP1 inactivation, thus highlighting the importance of an integrative approach to evaluate how global LRP1 dysfunction contributes to metabolic disease development. 10.1194/jlr.RA120001141
LRP1 regulates architecture of the vascular wall by controlling PDGFRbeta-dependent phosphatidylinositol 3-kinase activation. Zhou Li,Takayama Yoshiharu,Boucher Philippe,Tallquist Michelle D,Herz Joachim PloS one BACKGROUND:Low density lipoprotein receptor-related protein 1 (LRP1) protects against atherosclerosis by regulating the activation of platelet-derived growth factor receptor beta (PDGFRbeta) in vascular smooth muscle cells (SMCs). Activated PDGFRbeta undergoes tyrosine phosphorylation and subsequently interacts with various signaling molecules, including phosphatidylinositol 3-kinase (PI3K), which binds to the phosphorylated tyrosine 739/750 residues in mice, and thus regulates actin polymerization and cell movement. METHODS AND PRINCIPAL FINDINGS:In this study, we found disorganized actin in the form of membrane ruffling and enhanced cell migration in LRP1-deficient (LRP1-/-) SMCs. Marfan syndrome-like phenotypes such as tortuous aortas, disrupted elastic layers and abnormally activated transforming growth factor beta (TGFbeta) signaling are present in smooth muscle-specific LRP1 knockout (smLRP1-/-) mice. To investigate the role of LRP1-regulated PI3K activation by PDGFRbeta in atherogenesis, we generated a strain of smLRP1-/- mice in which tyrosine 739/750 of the PDGFRbeta had been mutated to phenylalanines (PDGFRbeta F2/F2). Spontaneous atherosclerosis was significantly reduced in the absence of hypercholesterolemia in these mice compared to smLRP1-/- animals that express wild type PDGFR. Normal actin organization was restored and spontaneous SMC migration as well as PDGF-BB-induced chemotaxis was dramatically reduced, despite continued overactivation of TGFbeta signaling, as indicated by high levels of nuclear phospho-Smad2. CONCLUSIONS AND SIGNIFICANCE:Our data suggest that LRP1 regulates actin organization and cell migration by controlling PDGFRbeta-dependent activation of PI3K. TGFbeta activation alone is not sufficient for the expression of the Marfan-like vascular phenotype. Thus, regulation of PI3 Kinase by PDGFRbeta is essential for maintaining vascular integrity, and for the prevention of atherosclerosis as well as Marfan syndrome. 10.1371/journal.pone.0006922
LRP1 controls cPLA2 phosphorylation, ABCA1 expression and cellular cholesterol export. Zhou Li,Choi Hong Y,Li Wei-Ping,Xu Fang,Herz Joachim PloS one BACKGROUND:ATP-binding cassette transporter A1 mediates apolipoprotein AI-dependent efflux of cholesterol and thereby removes cholesterol from peripheral tissues. ABCA1 expression is tightly regulated and deficiency of this cholesterol transporter results in cholesterol accumulation within cells. Low-density lipoprotein receptor-related protein 1 (LRP1) participates in lipid metabolism and energy homeostasis by endocytosis of apolipoprotein E-containing lipoproteins and modulation of cellular proliferation signals. METHODS AND PRINCIPAL FINDINGS:In the present study, we demonstrate a new role for LRP1 in reverse cholesterol transport. Absence of LRP1 expression results in increased PDGFRbeta signaling and sequential activation of the mitogen-activated protein kinase signaling pathway, which increases phosphorylation of cytosolic phospholipase A(2) (cPLA(2)). Phosphorylated and activated cPLA(2) releases arachidonic acid from the phospholipid pool. Overproduction of arachidonic acid suppresses the activation of LXR/RXR heterodimers bound to the promoter of LXR regulated genes such as ABCA1, resulting in greatly reduced ABCA1 expression. CONCLUSIONS AND SIGNIFICANCE:LRP1 regulates LXR-mediated gene transcription and participates in reverse cholesterol transport by controlling cPLA(2) activation and ABCA1 expression. LRP1 thus functions as a physiological integrator of cellular lipid homeostasis with signals that regulate cellular proliferation and vascular wall integrity. 10.1371/journal.pone.0006853
Activated Alpha-2 Macroglobulin Improves Insulin Response via LRP1 in Lipid-Loaded HL-1 Cardiomyocytes. Actis Dato Virginia,Chiabrando Gustavo Alberto International journal of molecular sciences Activated alpha-2 Macroglobulin (αM*) is specifically recognized by the cluster I/II of LRP1 (Low-density lipoprotein Receptor-related Protein-1). LRP1 is a scaffold protein for insulin receptor involved in the insulin-induced glucose transporter type 4 (GLUT4) translocation to plasma membrane and glucose uptake in different types of cells. Moreover, the cluster II of LRP1 plays a critical role in the internalization of atherogenic lipoproteins, such as aggregated Low-density Lipoproteins (aggLDL), promoting intracellular cholesteryl ester (CE) accumulation mainly in arterial intima and myocardium. The aggLDL uptake by LRP1 impairs GLUT4 traffic and the insulin response in cardiomyocytes. However, the link between CE accumulation, insulin action, and cardiac dysfunction are largely unknown. Here, we found that αM* increased GLUT4 expression on cell surface by Rab4, Rab8A, and Rab10-mediated recycling through PIK/Akt and MAPK/ERK signaling activation. Moreover, αM* enhanced the insulin response increasing insulin-induced glucose uptake rate in the myocardium under normal conditions. On the other hand, αM* blocked the intracellular CE accumulation, improved the insulin response and reduced cardiac damage in HL-1 cardiomyocytes exposed to aggLDL. In conclusion, αM* by its agonist action on LRP1, counteracts the deleterious effects of aggLDL in cardiomyocytes, which may have therapeutic implications in cardiovascular diseases associated with hypercholesterolemia. 10.3390/ijms22136915
Deficiency of LRP1 in Mature Adipocytes Promotes Diet-Induced Inflammation and Atherosclerosis-Brief Report. Konaniah Eddy S,Kuhel David G,Basford Joshua E,Weintraub Neal L,Hui David Y Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:Mice with adipocyte-specific inactivation of low-density lipoprotein receptor-related protein-1 (LRP1) are resistant to diet-induced obesity and hyperglycemia because of compensatory thermogenic response by muscle. However, the physiological function of LRP1 in mature adipocytes and its role in cardiovascular disease modulation are unknown. This study compared perivascular adipose tissues (PVAT) from wild-type () and adipocyte-specific LRP1 knockout () mice in modulation of atherosclerosis progression. APPROACH AND RESULTS:Analysis of adipose tissues from and mice after Western diet feeding for 16 weeks revealed that, in comparison to mice, the adipocytes in mice were smaller, but their adipose tissues were more inflamed with increased monocyte-macrophage infiltration and inflammatory gene expression. The transplantation of PVAT from chow-fed and mice into the area surrounding the carotid arteries of mice before feeding the Western diet revealed a contributory role of PVAT toward hypercholesterolemia-induced atherosclerosis. Importantly, recipients of PVAT displayed a 3-fold increase in atherosclerosis compared with PVAT recipients. The increased atherosclerosis invoked by LRP1-deficient PVAT was associated with elevated monocyte-macrophage infiltration and inflammatory cytokine expression in the transplanted fat. CONCLUSIONS:PVAT provide outside-in signals through the adventitia to modulate atherosclerotic lesion progression in response to hypercholesterolemia. Moreover, adipocytes with LRP1 deficiency are dysfunctional and more inflamed. This latter observation adds the adipose tissue to the list of anatomic sites where LRP1 expression is important to protect against diet-induced atherosclerosis. 10.1161/ATVBAHA.117.309414
Low-Density Lipoprotein Receptor-Related Protein-1 Signaling in Angiogenesis. Mao Hua,Xie Liang,Pi Xinchun Frontiers in cardiovascular medicine Low-density lipoprotein receptor-related protein-1 (LRP1) plays multifunctional roles in lipid homeostasis, signaling transduction, and endocytosis. It has been recognized as an endocytic receptor for many ligands and is involved in the signaling pathways of many growth factors or cytokines. Dysregulation of LRP1-dependent signaling events contributes to the development of pathophysiologic processes such as Alzheimer's disease, atherosclerosis, inflammation, and coagulation. Interestingly, recent studies have linked LRP1 with endothelial function and angiogenesis, which has been underappreciated for a long time. During zebrafish embryonic development, LRP1 is required for the formation of vascular network, especially for the venous development. LRP1 depletion in the mouse embryo proper leads to angiogenic defects and disruption of endothelial integrity. Moreover, in a mouse oxygen-induced retinopathy model, specific depletion of LRP1 in endothelial cells results in abnormal development of neovessels. These loss-of-function studies suggest that LRP1 plays a pivotal role in angiogenesis. The review addresses the recent advances in the roles of LRP1-dependent signaling during angiogenesis. 10.3389/fcvm.2017.00034
Thymosin β4 preserves vascular smooth muscle phenotype in atherosclerosis via regulation of low density lipoprotein related protein 1 (LRP1). International immunopharmacology Atherosclerosis is a progressive, degenerative vascular disease and a leading cause of morbidity and mortality. In response to endothelial damage, platelet derived growth factor (PDGF)-BB induced phenotypic modulation of medial smooth muscle cells (VSMCs) promotes atherosclerotic lesion formation and destabilisation of the vessel wall. VSMC sensitivity to PDGF-BB is determined by endocytosis of Low density lipoprotein receptor related protein 1 (LRP1)-PDGFR β complexes to balance receptor recycling with lysosomal degradation. Consequently, LRP1 is implicated in various arterial diseases. Having identified Tβ4 as a regulator of LRP1-mediated endocytosis to protect against aortic aneurysm, we sought to determine whether Tβ4 may additionally function to protect against atherosclerosis, by regulating LRP1-mediated growth factor signalling. By single cell transcriptomic analysis, Tmsb4x, encoding Tβ4, strongly correlated with contractile gene expression and was significantly down-regulated in cells that adopted a modulated phenotype in atherosclerosis. We assessed susceptibility to atherosclerosis of global Tβ4 knockout mice using the ApoE hypercholesterolaemia model. Inflammation, elastin integrity, VSMC phenotype and signalling were analysed in the aortic root and descending aorta. Tβ4KO; ApoE mice develop larger atherosclerotic plaques than control mice, with medial layer degeneration characterised by accelerated VSMC phenotypic modulation. Defects in Tβ4KO; ApoE mice phenocopied those in VSMC-specific LRP1 nulls and, moreover, were underpinned by hyperactivated LRP1-PDGFRβ signalling. We identify an atheroprotective role for endogenous Tβ4 in maintaining differentiated VSMC phenotype via LRP1-mediated PDGFRβ signalling. 10.1016/j.intimp.2023.109702
Molecular chaperone RAP interacts with LRP1 in a dynamic bivalent mode and enhances folding of ligand-binding regions of other LDLR family receptors. Marakasova Ekaterina,Olivares Philip,Karnaukhova Elena,Chun Haarin,Hernandez Nancy E,Kurasawa James H,Hassink Gabriela U,Shestopal Svetlana A,Strickland Dudley K,Sarafanov Andrey G The Journal of biological chemistry The low-density lipoprotein receptor (LDLR) family of receptors are cell-surface receptors that internalize numerous ligands and play crucial role in various processes, such as lipoprotein metabolism, hemostasis, fetal development, etc. Previously, receptor-associated protein (RAP) was described as a molecular chaperone for LDLR-related protein 1 (LRP1), a prominent member of the LDLR family. We aimed to verify this role of RAP for LRP1 and two other LDLR family receptors, LDLR and vLDLR, and to investigate the mechanisms of respective interactions using a cell culture model system, purified system, and in silico modelling. Upon coexpression of RAP with clusters of the ligand-binding complement repeats (CRs) of the receptors in secreted form in insect cells culture, the isolated proteins had increased yield, enhanced folding, and improved binding properties compared with proteins expressed without RAP, as determined by circular dichroism and surface plasmon resonance. Within LRP1 CR-clusters II and IV, we identified multiple sites comprised of adjacent CR doublets, which provide alternative bivalent binding combinations with specific pairs of lysines on RAP. Mutational analysis of these lysines within each of isolated RAP D1/D2 and D3 domains having high affinity to LRP1 and of conserved tryptophans on selected CR-doublets of LRP1, as well as in silico docking of a model LRP1 CR-triplet with RAP, indicated a universal role for these residues in interaction of RAP and LRP1. Consequently, we propose a new model of RAP interaction with LDLR family receptors based on switching of the bivalent contacts between molecules over time in a dynamic mode. 10.1016/j.jbc.2021.100842
Monocyte Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Expression Correlates with cIMT in Mexican Hypertensive Patients. Gamboa Ricardo,Jaramillo-Estrella María José,Martínez-Alvarado María Del Rocio,Soto Maria Elena,Torres-Paz Yazmin Estela,Gonzalo-Calvo David de,Del Valle-Mondragón Leonardo,López-Marure Rebeca,Llorente-Cortés Vicenta C,Huesca-Gómez Claudia Arquivos brasileiros de cardiologia BACKGROUND:Arterial hypertension (HTA) represents a major risk factor for cardiovascular morbidity and mortality. It is not yet known which specific molecular mechanisms are associated with the development of essential hypertension. OBJECTIVE:In this study, we analyzed the association between LRP1 monocyte mRNA expression, LRP1 protein expression, and carotid intima media thickness (cIMT) of patients with essential hypertension. METHODS:The LRP1 monocyte mRNA expression and protein levels and cIMT were quantified in 200 Mexican subjects, 91 normotensive (NT) and 109 hypertensive (HT). Statistical significance was defined as p < 0.05. RESULTS:HT patients group had highly significant greater cIMT as compared to NT patients (p=0.002) and this correlated with an increase in the expression of LRP1 mRNA expression (6.54 vs. 2.87) (p = 0.002) and LRP1 protein expression (17.83 vs. 6.25), respectively (p = 0.001). These differences were maintained even when we divided our study groups, taking into account only those who presented dyslipidemia in both, mRNA (p = 0.041) and proteins expression (p < 0.001). It was also found that Ang II mediated LRP1 induction on monocytes in a dose and time dependent manner with significant difference in NT vs. HT (0.195 ± 0.09 vs. 0.226 ± 0.12, p = 0.046). CONCLUSION:An increase in cIMT was found in subjects with hypertension, associated with higher mRNA and LRP1 protein expressions in monocytes, irrespective of the presence of dyslipidemias in HT patients. These results suggest that LRP1 upregulation in monocytes from Mexican hypertensive patients could be involved in the increased cIMT. (Arq Bras Cardiol. 2021; 116(1):56-65). 10.36660/abc.20190535
LRP1 protects the vasculature by regulating levels of connective tissue growth factor and HtrA1. Muratoglu Selen C,Belgrave Shani,Hampton Brian,Migliorini Mary,Coksaygan Turhan,Chen Ling,Mikhailenko Irina,Strickland Dudley K Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:Low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is abundant in vascular smooth muscle cells. Mice in which the lrp1 gene is deleted in smooth muscle cells (smLRP1(-/-)) on a low-density lipoprotein receptor-deficient background display excessive platelet derived growth factor-signaling, smooth muscle cell proliferation, aneurysm formation, and increased susceptibility to atherosclerosis. The objectives of the current study were to examine the potential of LRP1 to modulate vascular physiology under nonatherogenic conditions. APPROACH AND RESULTS:We found smLRP1(-/-) mice to have extensive in vivo aortic dilatation accompanied by disorganized and degraded elastic lamina along with medial thickening of the arterial vessels resulting from excess matrix deposition. Surprisingly, this was not attributable to excessive platelet derived growth factor-signaling. Rather, quantitative differential proteomic analysis revealed that smLRP1(-/-) vessels contain a 4-fold increase in protein levels of high-temperature requirement factor A1 (HtrA1), which is a secreted serine protease that is known to degrade matrix components and to impair elastogenesis, resulting in fragmentation of elastic fibers. Importantly, our study discovered that HtrA1 is a novel LRP1 ligand. Proteomics analysis also identified excessive accumulation of connective tissue growth factor, an LRP1 ligand and a key mediator of fibrosis. CONCLUSIONS:Our findings suggest a critical role for LRP1 in maintaining the integrity of vessels by regulating protease activity as well as matrix deposition by modulating HtrA1 and connective tissue growth factor protein levels. This study highlights 2 new molecules, connective tissue growth factor and HtrA1, which contribute to detrimental changes in the vasculature and, therefore, represent new target molecules for potential therapeutic intervention to maintain vessel wall homeostasis. 10.1161/ATVBAHA.113.301893
LRP1 (Low-Density Lipoprotein Receptor-Related Protein 1) Regulates Smooth Muscle Contractility by Modulating Ca Signaling and Expression of Cytoskeleton-Related Proteins. Arteriosclerosis, thrombosis, and vascular biology Objective- Mutations affecting contractile-related proteins in the ECM (extracellular matrix), microfibrils, or vascular smooth muscle cells can predispose the aorta to aneurysms. We reported previously that the LRP1 (low-density lipoprotein receptor-related protein 1) maintains vessel wall integrity, and smLRP1 mice exhibited aortic dilatation. The current study focused on defining the mechanisms by which LRP1 regulates vessel wall function and integrity. Approach and Results- Isometric contraction assays demonstrated that vasoreactivity of LRP1-deficient aortic rings was significantly attenuated when stimulated with vasoconstrictors, including phenylephrine, thromboxane receptor agonist U-46619, increased potassium, and L-type Ca channel ligand FPL-64176. Quantitative proteomics revealed proteins involved in actin polymerization and contraction were significantly downregulated in aortas of smLRP1 mice. However, studies with calyculin A indicated that although aortic muscle from smLRP1 mice can contract in response to calyculin A, a role for LRP1 in regulating the contractile machinery is not revealed. Furthermore, intracellular calcium imaging experiments identified defects in calcium release in response to a RyR (ryanodine receptor) agonist in smLRP1 aortic rings and cultured vascular smooth muscle cells. Conclusions- These results identify a critical role for LRP1 in modulating vascular smooth muscle cell contraction by regulating calcium signaling events that potentially protect against aneurysm development. 10.1161/ATVBAHA.118.311197
Macrophage LRP1 Promotes Diet-Induced Hepatic Inflammation and Metabolic Dysfunction by Modulating Wnt Signaling. Mediators of inflammation Hepatic inflammation is associated with the development of insulin resistance, which can perpetuate the disease state and may increase the risk of metabolic syndrome and diabetes. Despite recent advances, mechanisms linking hepatic inflammation and insulin resistance are still unclear. The low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is highly expressed in macrophages, adipocytes, hepatocytes, and vascular smooth muscle cells. To investigate the potential role of macrophage LRP1 in hepatic inflammation and insulin resistance, we conducted experiments using macrophage-specific LRP1-deficient mice ( ) generated on a low-density lipoprotein receptor knockout ( ) background and fed a Western diet. mice gained less body weight and had improved glucose tolerance compared to mice. Livers from mice displayed lower levels of gene expression for several inflammatory cytokines, including and , and reduced phosphorylation of GSK3 and p38 MAPK proteins. Furthermore, LRP1-deficient peritoneal macrophages displayed altered cholesterol metabolism. Finally, circulating levels of sFRP-5, a potent anti-inflammatory adipokine that functions as a decoy receptor for Wnt5a, were elevated in mice. Surface plasmon resonance experiments revealed that sFRP-5 is a novel high affinity ligand for LRP1, revealing that LRP1 regulates levels of this inhibitor of Wnt5a-mediated signaling. Collectively, our results suggest that LRP1 expression in macrophages promotes hepatic inflammation and the development of glucose intolerance and insulin resistance by modulating Wnt signaling. 10.1155/2018/7902841
TLR Crosstalk Activates LRP1 to Recruit Rab8a and PI3Kγ for Suppression of Inflammatory Responses. Luo Lin,Wall Adam A,Tong Samuel J,Hung Yu,Xiao Zhijian,Tarique Abdullah A,Sly Peter D,Fantino Emmanuelle,Marzolo María-Paz,Stow Jennifer L Cell reports The multi-ligand endocytic receptor, low-density lipoprotein-receptor-related protein 1 (LRP1), has anti-inflammatory roles in disease. Here, we reveal that pathogen-activated Toll-like receptors (TLRs) activate LRP1 in human and mouse primary macrophages, resulting in phosphorylation of LRP1 at Y4507. In turn, this allows LRP1 to activate and recruit the guanosine triphosphatase (GTPase), Rab8a, with p110γ/p101 as its phosphatidylinositol 3-kinase (PI3K) effector complex. PI3Kγ is a known regulator of TLR signaling and macrophage reprogramming. LRP1 coincides with Rab8a at signaling sites on macropinosomal membranes. In LRP1-deficient cells, TLR-induced Rab8 activation is abolished. CRISPR-mediated knockout of LRP1 in macrophages alters Akt/mTOR signaling and produces a pro-inflammatory bias in cytokine outputs, mimicking the Rab8a knockout and PI3Kγ-null phenotype. Thus, TLR-LRP1 crosstalk activates the Rab8a/PI3Kγ complex for reprogramming macrophages, revealing this as a key mechanism through which LRP1 helps to suppress inflammation. 10.1016/j.celrep.2018.08.028
LRP1 receptor controls adipogenesis and is up-regulated in human and mouse obese adipose tissue. Masson Olivier,Chavey Carine,Dray Cédric,Meulle Aline,Daviaud Danielle,Quilliot Didier,Muller Catherine,Valet Philippe,Liaudet-Coopman Emmanuelle PloS one The cell surface low-density lipoprotein receptor-related protein 1, LRP1, plays a major role in lipid metabolism. The question that remains open concerns the function of LRP1 in adipogenesis. Here, we show that LRP1 is highly expressed in murine preadipocytes as well as in primary culture of human adipocytes. Moreover, LRP1 remains abundantly synthesised during mouse and human adipocyte differentiation. We demonstrate that LRP1 silencing in 3T3F442A murine preadipocytes significantly inhibits the expression of PPARgamma, HSL and aP2 adipocyte differentiation markers after adipogenesis induction, and leads to lipid-depleted cells. We further show that the absence of lipids in LRP1-silenced preadipocytes is not caused by lipolysis induction. In addition, we provide the first evidences that LRP1 is significantly up-regulated in obese C57BI6/J mouse adipocytes and obese human adipose tissues. Interestingly, silencing of LRP1 in fully-differentiated adipocytes also reduces cellular lipid level and is associated with an increase of basal lipolysis. However, the ability of mature adipocytes to induce lipolysis is independent of LRP1 expression. Altogether, our findings highlight the dual role of LRP1 in the control of adipogenesis and lipid homeostasis, and suggest that LRP1 may be an important therapeutic target in obesity. 10.1371/journal.pone.0007422
Contribution of LRP1 in Human Congenital Heart Disease Correlates with Its Roles in the Outflow Tract and Atrioventricular Cushion Development. Genes Due to the prevalence of congenital heart disease in the human population, determining the role of variants in congenital heart disease (CHD) can give a better understanding of the cause of the disorder. A homozygous missense mutation in the LDL receptor-related protein 1 () in mice was shown to cause congenital heart defects, including atrioventricular septal defect (AVSD) and double outlet right ventricle (DORV). Integrative analysis of publicly available single-cell RNA sequencing (scRNA-seq) datasets and spatial transcriptomics of human and mouse hearts indicated that is predominantly expressed in mesenchymal cells and mainly located in the developing outflow tract and atrioventricular cushion. Gene burden analysis of 1922 CHD individuals versus 2602 controls with whole-exome sequencing showed a significant excess of rare damaging mutations in CHD (odds ratio (OR) = 2.22, = 1.92 × 10), especially in conotruncal defect with OR of 2.37 ( = 1.77 × 10) and atrioventricular septal defect with OR of 3.14 ( = 0.0194). Interestingly, there is a significant relationship between those variants that have an allele frequency below 0.01% and atrioventricular septal defect, which is the phenotype observed previously in a homozygous N-ethyl-N-nitrosourea (ENU)-induced mutant mouse line. 10.3390/genes14040947
LRP1 is critical for the surface distribution and internalization of the NR2B NMDA receptor subtype. Maier Wladislaw,Bednorz Mariola,Meister Sabrina,Roebroek Anton,Weggen Sascha,Schmitt Ulrich,Pietrzik Claus U Molecular neurodegeneration BACKGROUND:The N-methyl-D-aspartate receptors are key mediators of excitatory transmission and are implicated in many forms of synaptic plasticity. These receptors are heterotetrameres consisting of two obligatory NR1 and two regulatory subunits, usually NR2A or NR2B. The NR2B subunits are abundant in the early postnatal brain, while the NR2A/NR2B ratio increases during early postnatal development. This shift is driven by NMDA receptor activity. A functional interplay of the Low Density Lipoprotein Receptor Related Protein 1 (LRP1) NMDA receptor has already been reported. Such abilities as interaction of LRP1 with NMDA receptor subunits or its important role in tPa-mediated NMDA receptor signaling were already demonstrated. Moreover, mice harboring a conditional neuronal knock-out mutation of the entire Lrp1 gene display NMDA-associated behavioral changes. However, the exact role of LRP1 on NMDA receptor function remains still elusive. RESULTS:To provide a mechanistic explanation for such effects we investigated whether an inactivating knock-in mutation into the NPxY2 motif of LRP1 might influence the cell surface expression of LRP1 and NMDA receptors in primary cortical neurons. Here we demonstrate that a knock-in into the NPxY2 motif of LRP1 results in an increased surface expression of LRP1 and NR2B NMDA receptor subunit due to reduced endocytosis rates of LRP1 and the NR2B subunit in primary neurons derived from LRP1ΔNPxY2 animals. Furthermore, we demonstrate an altered phosphorylation pattern of S1480 and Y1472 in the NR2B subunit at the surface of LRP1ΔNPxY2 neurons, while the respective kinases Fyn and casein kinase II are not differently regulated compared with wild type controls. Performing co-immunoprecipitation experiments we demonstrate that binding of LRP1 to NR2B might be linked by PSD95, is phosphorylation dependent and this regulation mechanism is impaired in LRP1ΔNPxY2 neurons. Finally, we demonstrate hyperactivity and changes in spatial and reversal learning in LRP1ΔNPxY2 mice, confirming the mechanistic interaction in a physiological readout. CONCLUSIONS:In summary, our data demonstrate that LRP1 plays a critical role in the regulation of NR2B expression at the cell surface and may provide a mechanistic explanation for the behavioral abnormalities detected in neuronal LRP1 knock-out animals reported earlier. 10.1186/1750-1326-8-25
LRP1 influences trafficking of N-type calcium channels via interaction with the auxiliary αδ-1 subunit. Scientific reports Voltage-gated Ca (Ca) channels consist of a pore-forming α1 subunit, which determines the main functional and pharmacological attributes of the channel. The Ca1 and Ca2 channels are associated with auxiliary β- and αδ-subunits. The molecular mechanisms involved in αδ subunit trafficking, and the effect of αδ subunits on trafficking calcium channel complexes remain poorly understood. Here we show that αδ-1 is a ligand for the Low Density Lipoprotein (LDL) Receptor-related Protein-1 (LRP1), a multifunctional receptor which mediates trafficking of cargoes. This interaction with LRP1 is direct, and is modulated by the LRP chaperone, Receptor-Associated Protein (RAP). LRP1 regulates αδ binding to gabapentin, and influences calcium channel trafficking and function. Whereas LRP1 alone reduces αδ-1 trafficking to the cell-surface, the LRP1/RAP combination enhances mature glycosylation, proteolytic processing and cell-surface expression of αδ-1, and also increase plasma-membrane expression and function of Ca2.2 when co-expressed with αδ-1. Furthermore RAP alone produced a small increase in cell-surface expression of Ca2.2, αδ-1 and the associated calcium currents. It is likely to be interacting with an endogenous member of the LDL receptor family to have these effects. Our findings now provide a key insight and new tools to investigate the trafficking of calcium channel αδ subunits. 10.1038/srep43802
Complement C1q Interacts With LRP1 Clusters II and IV Through a Site Close but Different From the Binding Site of Its C1r and C1s-Associated Proteases. Fouët Guillaume,Gout Evelyne,Wicker-Planquart Catherine,Bally Isabelle,De Nardis Camilla,Dedieu Stéphane,Chouquet Anne,Gaboriaud Christine,Thielens Nicole M,Kleman Jean-Philippe,Rossi Véronique Frontiers in immunology LRP1 is a large endocytic modular receptor that plays a crucial role in the scavenging of apoptotic material through binding to pattern-recognition molecules. It is a membrane anchored receptor of the LDL receptor family with 4 extracellular clusters of ligand binding modules called cysteine rich complement-type repeats that are involved in the interaction of LRP1 with its numerous ligands. Complement C1q was shown to interact with LRP1 and to be implicated in the phagocytosis of apoptotic cells. The present work aimed at exploring how these two large molecules interact at the molecular level using a dissection strategy. For that purpose, recombinant LRP1 clusters II, III and IV were produced in mammalian HEK293F cells and their binding properties were investigated. Clusters II and IV were found to interact specifically and efficiently with C1q with K in the nanomolar range. The use of truncated C1q fragments and recombinant mutated C1q allowed to localize more precisely the binding site for LRP1 on the collagen-like regions of C1q (CLRs), nearby the site that is implicated in the interaction with the cognate protease tetramer C1r2s2. This site could be a common anchorage for other ligands of C1q CLRs such as sulfated proteoglycans and Complement receptor type 1. The use of a cellular model, consisting in CHO LRP1-null cells transfected with full-length LRP1 or a cluster IV minireceptor (mini IV) confirmed that mini IV interacts with C1q at the cell membrane as well as full-length LRP1. Further cellular interaction studies finally highlighted that mini IV can endorse the full-length LRP1 binding efficiency for apoptotic cells and that C1q has no impact on this interaction. 10.3389/fimmu.2020.583754
The LRP1-independent mechanism of PAI-1-induced migration in CpG-ODN activated macrophages. Thapa Bikash,Kim Yeon Hyang,Kwon Hyung-Joo,Kim Doo-Sik The international journal of biochemistry & cell biology CpG-oligodeoxynucleotides (CpG-ODNs) induces plasminogen activator inhibitor type-1 (PAI-1) expression in macrophages, leading to enhanced migration through vitronectin. However, the precise role of low-density lipoprotein receptor-related protein 1 (LRP1) in PAI-1 induced migration of macrophages in the inflammatory environment is not known. In this study, we elucidated a novel mechanism describing the altered role of LRP1 in macrophage migration depending on the activation state of the cells. Experimental evidence clearly shows that the blocking of LRP1 function inhibited the PAI-induced migration of resting RAW 264.7 cells through vitronectin but exerted a pro-migratory effect on CpG-ODN-activated cells. We also demonstrate that CpG-ODN downregulates the protein and mRNA levels of LRP1 both in vivo and in vitro, a function that depends on the NF-κB signaling pathway, resulting in reduced internalization of PAI-1. This work illustrates the distinct mechanism that PAI-1-induced migration of CpG-ODN-activated cells through vitronectin depends on the interaction of PAI-1 with vitronectin but not LRP1 unlike in the resting cells, where the migration is LRP1 dependent and vitronectin independent. In conclusion, our experimental results demonstrate the altered function of LRP1 in the migration of resting and activated macrophages in the context of microenvironmental extracellular matrix components. 10.1016/j.biocel.2014.01.008
Endothelial LRP1 regulates metabolic responses by acting as a co-activator of PPARγ. Mao Hua,Lockyer Pamela,Li Luge,Ballantyne Christie M,Patterson Cam,Xie Liang,Pi Xinchun Nature communications Low-density lipoprotein receptor-related protein 1 (LRP1) regulates lipid and glucose metabolism in liver and adipose tissue. It is also involved in central nervous system regulation of food intake and leptin signalling. Here we demonstrate that endothelial Lrp1 regulates systemic energy homeostasis. Mice with endothelial-specific Lrp1 deletion display improved glucose sensitivity and lipid profiles combined with increased oxygen consumption during high-fat-diet-induced obesity. We show that the intracellular domain of Lrp1 interacts with the nuclear receptor Pparγ, a central regulator of lipid and glucose metabolism, acting as its transcriptional co-activator in endothelial cells. Therefore, Lrp1 not only acts as an endocytic receptor but also directly participates in gene transcription. Our findings indicate an underappreciated functional role of endothelium in maintaining systemic energy homeostasis. 10.1038/ncomms14960
LRP1 regulates remodeling of the extracellular matrix by fibroblasts. Gaultier Alban,Hollister Margaret,Reynolds Irene,Hsieh En-hui,Gonias Steven L Matrix biology : journal of the International Society for Matrix Biology Low density lipoprotein receptor-related protein (LRP1) is an endocytic receptor for diverse proteases, protease inhibitors, and other plasma membrane proteins, including the urokinase receptor (uPAR). LRP1 also functions in cell-signaling and regulates gene expression. The goal of this study was to determine whether LRP1 regulates remodeling of provisional extracellular matrix (ECM) by fibroblasts. To address this problem, we utilized an in vitro model in which type I collagen was reconstituted and overlaid with fibronectin. Either the collagen or fibronectin was fluorescently-labeled. ECM remodeling by fibroblasts deficient in LRP1, uPAR, or MT1-MMP was studied. MT1-MMP was required for efficient remodeling of the deep collagen layer but not involved in fibronectin remodeling. Instead, fibronectin was remodeled by a system that required urokinase-type plasminogen activator (uPA), uPAR, and exogenously-added plasminogen. LRP1 markedly inhibited fibronectin remodeling by regulating cell-surface uPAR and plasminogen activation. LRP1 also regulated remodeling of the deep collagen layer but not by controlling MT1-MMP. Instead, LRP1 deficiency or inhibition de-repressed a secondary pathway for collagen remodeling, which was active in MT1-MMP-deficient cells but not in uPAR-deficient cells. These results demonstrate that LRP1 regulates ECM remodeling principally by repressing pathways that require plasminogen activation by uPA in association with uPAR. 10.1016/j.matbio.2009.08.003
LRP1 regulates peroxisome biogenesis and cholesterol homeostasis in oligodendrocytes and is required for proper CNS myelin development and repair. Lin Jing-Ping,Mironova Yevgeniya A,Shrager Peter,Giger Roman J eLife Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling molecule broadly expressed by neurons and glia. In adult mice, global inducible () or oligodendrocyte (OL)-lineage specific ablation () of attenuates repair of damaged white matter. In oligodendrocyte progenitor cells (OPCs), is required for cholesterol homeostasis and differentiation into mature OLs. deficient OPC/OLs show a strong increase in the sterol-regulatory element-binding protein-2 yet are unable to maintain normal cholesterol levels, suggesting more global metabolic deficits. Mechanistic studies revealed a decrease in peroxisomal biogenesis factor-2 and fewer peroxisomes in OL processes. Treatment of OPCs with cholesterol or activation of peroxisome proliferator-activated receptor-γ with pioglitazone alone is not sufficient to promote differentiation; however, when combined, cholesterol and pioglitazone enhance OPC differentiation into mature OLs. Collectively, our studies reveal a novel role for in peroxisome biogenesis, lipid homeostasis, and OPC differentiation during white matter development and repair. 10.7554/eLife.30498
Genetic Variation in Associates with Stanford Type B Aortic Dissection Risk and Clinical Outcome. Erhart Philipp,Körfer Daniel,Grond-Ginsbach Caspar,Qiao Jia-Lu,Bischoff Moritz S,Hempel Maja,Schaaf Christian P,Grau Armin,Böckler Dittmar Journal of cardiovascular development and disease Genetic variation in (low-density lipoprotein receptor-related protein 1) was reported to be associated with thoracic aortic dissections and aneurysms. The aims of this study were to confirm this association in a prospective single-center patient cohort of patients with acute Stanford type B aortic dissections (STBAD) and to assess the impact of variation on clinical outcome. The single nucleotide variation (SNV) rs11172113 within the gene was genotyped in 113 STBAD patients and 768 healthy control subjects from the same population. The T-allele of rs11172113 was more common in STBAD patients as compared to the reference group (72.6% vs. 59.6%) and confirmed to be an independent risk factor for STBAD ( = 0.002) after sex and age adjustment in a logistic regression model analyzing diabetes, smoking and hypertension as additional risk factors. Analysis of clinical follow-up (median follow-up 2.0 years) revealed that patients with the T-allele were more likely to suffer aorta-related complications (T-allele 75.6% vs. 63.8%; = 0.022). In this study sample of STBAD patients, variation in was an independent risk factor for STBAD and affected clinical outcome. 10.3390/jcdd9010014
Mutation of LRP1 in cardiac neural crest cells causes congenital heart defects by perturbing outflow lengthening. Lin Jiuann-Huey I,Feinstein Timothy N,Jha Anupma,McCleary Jacob T,Xu Juan,Arrigo Angelo B,Rong Grace,Maclay Lindsey M,Ridge Taylor,Xu XinXiu,Lo Cecilia W Communications biology The recent recovery of mutations in vesicular trafficking genes causing congenital heart disease (CHD) revealed an unexpected role for the endocytic pathway. We now show that mice with a C4232R missense mutation in Low density lipoprotein receptor related protein 1 (LRP1) exhibit atrioventricular septal defects with double outlet right ventricle. Lrp1 mice exhibit shortened outflow tracts (OFT) and dysmorphic hypocellular cushions with reduced proliferation and increased apoptosis. Lrp1 embryonic fibroblasts show decreased cell motility and focal adhesion turnover associated with retention of mutant LRP1 in endoplasmic reticulum and reduced LRP1 expression. Conditional deletion of Lrp1 in cardiac neural crest cells (CNC) replicates the full CHD phenotype. Cushion explants showed defective cell migration, with gene expression analysis indicating perturbation of Wnt and other signaling pathways. Thus, LRP1 function in CNCs is required for normal OFT development with other cell lineages along the CNC migratory path playing a supporting role. 10.1038/s42003-020-1035-9
LRP1 facilitates hepatic glycogenesis by improving the insulin signaling pathway in HFD-fed mice. Animal models and experimental medicine BACKGROUND:LDL receptor-related protein-1 (LRP1) is a cell-surface receptor that functions in diverse physiological pathways. We previously demonstrated that hepatocyte-specific LRP1 deficiency (hLRP1KO) promotes diet-induced insulin resistance and increases hepatic gluconeogenesis in mice. However, it remains unclear whether LRP1 regulates hepatic glycogenesis. METHODS:Insulin signaling, glycogenic gene expression, and glycogen content were assessed in mice and HepG2 cells. The pcDNA 3.1 plasmid and adeno-associated virus serotype 8 vector (AAV8) were used to overexpress the truncated β-chain (β∆) of LRP1 both in vitro and in vivo. RESULTS:On a normal chow diet, hLRP1KO mice exhibited impaired insulin signaling and decreased glycogen content. Moreover, LRP1 expression in HepG2 cells was significantly repressed by palmitate in a dose- and time-dependent manner. Both LRP1 knockdown and palmitate treatment led to reduced phosphorylation of Akt and GSK3β, increased levels of phosphorylated glycogen synthase (GYS), and diminished glycogen synthesis in insulin-stimulated HepG2 cells, which was restored by exogenous expression of the β∆-chain. By contrast, AAV8-mediated hepatic β∆-chain overexpression significantly improved the insulin signaling pathway, thus activating glycogenesis and enhancing glycogen storage in the livers of high-fat diet (HFD)-fed mice. CONCLUSION:Our data revealed that LRP1, especially its β-chain, facilitates hepatic glycogenesis by improving the insulin signaling pathway, suggesting a new therapeutic strategy for hepatic insulin resistance-related diseases. 10.1002/ame2.12408
Commentary: LRP1 Is a Master Regulator of Tau Uptake and Spread. Fearon Conor,Lynch Tim Frontiers in neurology 10.3389/fneur.2020.557509
LRP1 Protein Deficiency Exacerbates Palmitate-induced Steatosis and Toxicity in Hepatocytes. Hamlin Allyson N,Basford Joshua E,Jaeschke Anja,Hui David Y The Journal of biological chemistry LRP1 (LDL receptor-related protein-1) is a ubiquitous receptor with both cell signaling and ligand endocytosis properties. In the liver, LRP1 serves as a chylomicron remnant receptor and also participates in the transport of extracellular cathepsin D to the lysosome for prosaposin activation. The current study showed that in comparison with wild type mice, hepatocyte-specific LRP1 knock-out (hLrp1(-/-)) mice were more susceptible to fasting-induced lipid accumulation in the liver. Primary hepatocytes isolated from hLrp1(-/-) mice also accumulated more intracellular lipids and experienced higher levels of endoplasmic reticulum (ER) stress after palmitate treatment compared with similarly treated hLrp1(+/+) hepatocytes. Palmitate-treated hLrp1(-/-) hepatocytes displayed similar LC3-II levels, but the levels of p62 were elevated in comparison with palmitate-treated hLrp1(+/+) hepatocytes, suggesting that the elevated lipid accumulation in LRP1-defective hepatocytes was not due to defects in autophagosome formation but was due to impairment of lipophagic lipid hydrolysis in the lysosome. Additional studies showed increased palmitate-induced oxidative stress, mitochondrial and lysosomal permeability, and cell death in hLrp1(-/-) hepatocytes. Importantly, the elevated cell death and ER stress observed in hLrp1(-/-) hepatocytes were abrogated by E64D treatment, whereas inhibiting ER stress diminished cell death but not lysosomal permeabilization. Taken together, these results documented that LRP1 deficiency in hepatocytes promotes lipid accumulation and lipotoxicity through lysosomal-mitochondrial permeabilization and ER stress that ultimately result in cell death. Hence, LRP1 dysfunction may be a major risk factor in fatty liver disease progression. 10.1074/jbc.M116.717744
LRP1 controls intracellular cholesterol storage and fatty acid synthesis through modulation of Wnt signaling. Terrand Járome,Bruban Váronique,Zhou Li,Gong Wanfeng,El Asmar Zeina,May Petra,Zurhove Kai,Haffner Philipp,Philippe Claude,Woldt Estelle,Matz Rachel L,Gracia Cáline,Metzger Daniel,Auwerx Johan,Herz Joachim,Boucher Philippe The Journal of biological chemistry The low-density lipoprotein receptor-related protein LRP1 is a cell surface receptor with functions in diverse physiological pathways, including lipid metabolism. Here we show that LRP1-deficient fibroblasts accumulate high levels of intracellular cholesterol and cholesteryl-ester when stimulated for adipocyte differentiation. We demonstrate that LRP1 stimulates a canonical Wnt5a signaling pathway that prevents cholesterol accumulation. Moreover, we show that LRP1 is required for lipolysis and stimulates fatty acid synthesis independently of the noradrenergic pathway, through inhibition of GSK3beta and its previously unknown target acetyl-CoA carboxylase (ACC). As a result of ACC inhibition, mature LRP1-deficient adipocytes of adult mice are hypotrophic, and lower uptake of fatty acids into adipose tissue leads to their redistribution to the liver. These results establish LRP1 as a novel integrator of adipogenic differentiation and fat storage signals. 10.1074/jbc.M806538200
The role of LRP1 in Aβ efflux transport across the blood-brain barrier and cognitive dysfunction in diabetes mellitus. Neurochemistry international BACKGROUND:The incidence of cognitive dysfunction in diabetes is increasing yearly, which severely affects the quality of life of patients and places a heavy burden on families and society. It has been demonstrated that impaired clearance of cerebral amyloid β-protein (Aβ) is a central event in the initiation and progression of Aβ deposition and cognitive impairment in diabetic patients. However, until now, the molecular mechanism by which diabetes mellitus induces impaired clearance of Aβ has remained unclear. OBJECTIVE:To investigate the role and mechanism of lipoprotein receptor-related protein 1 (LRP1) in Aβ clearance impairment and cognitive function damage caused by diabetes. METHODS:SPF male C57BL/6 mice were bred, and streptozotocin (STZ) (60 mg/kg/d) was intraperitoneally injected for 5 days to establish a diabetes model. The novel object recognition test and fear conditioning test were used to assess the cognitive function of mice in each group. Western blotting, qRT-PCR, ELISAs, and immunofluorescence staining were used to detect the expression levels of Aβ and Aβ clearance-related proteins in mouse brains. HBMECs were cultured in vitro to establish the blood-brain barrier model. The clearance rate of Aβ and the expression levels of LRP1 were measured under different glucose concentration culture conditions. HBMECs were transfected with lentivirus to overexpress or knock down the LRP1, and then, the changes in Aβ clearance were detected again. We injected adeno-associated virus AAV9-SP-A-LRP1 shRNA into the tail vein of DM mice to selectively knock down LRP1 gene expression in cerebral vascular endothelial cells. Then, the cognitive function and the expression levels of Aβ and Aβ clearance-related proteins in the brains of normal, DM and LRP1 knockdown mice were detected. RESULTS:Compared with the controls, diabetic mice showed impaired cognitive performance, increased deposition of Aβ in the brain and decreased expression of LRP1 in the brain microvasculature. In vitro experiments showed that high glucose can downregulate the expression of LRP1 in HBMECs and damage the Aβ clearance across the blood-brain barrier (BBB). The reduction in the clearance rate of Aβ induced by high glucose was reversed by LRP1 overexpression but further substantially decreased when LRP1 was knocked down. CONCLUSION:Hyperglycemia can impair Aβ efflux in the brain by downregulating the expression of LRP1 in the brain microvasculature, eventually resulting in cognitive impairment. 10.1016/j.neuint.2022.105417
Loss of LRP1 in Adult Neural Stem Cells Impairs Migration to Ischemic Lesions. Stem cells (Dayton, Ohio) After ischemia, cells in the brain parenchyma upregulate stromal derived factor 1 (SDF1), driving chemokine receptor CXCR4-mediated migration of adult neural stem cells to the ischemic injury. We discovered a novel regulator of CXCR4 in neural stem cells, low-density lipoprotein receptor related protein 1 (LRP1). We used Nestin-driven knockout of LRP1 and induction of td-tomato in neural stem cells of adult mice. We observed reduced localization of td-tomato positive cells to the lesion, and find disrupted CXCR4-mediated neural stem cell migration in vitro, which is likely driven by LRP1-mediated loss of CXCR4 expression in vivo. Our results suggest that LRP1 is a novel regulator of CXCR4 in neural stem cells. This heretofore unknown interaction between LRP1 and CXCR4 could have significant consequences for multiple aspects of neural stem cell physiology. 10.1093/stmcls/sxad034
YO2 Induces Melanoma Cell Apoptosis through p53-Mediated LRP1 Downregulation. Cancers The multifunctional endocytic receptor low-density lipoprotein receptor-related protein 1 (LRP1) has been implicated in melanoma growth. However, the mechanism of LRP1 expression in melanoma cells remains only partially understood. In most melanomas, the TP53 tumor suppressor is retained as a non-mutated, inactive form that fails to suppress tumors. We identify TP53 as a regulator of LRP1-mediated tumor growth. TP53 enhances the expression of miRNA miR-103/107. These miRNAs target LRP1 expression on melanoma cells. TP53 overexpression in human and murine melanoma cells was achieved using lentivirus or treatment with the small molecule YO-2, a plasmin inhibitor known to induce apoptosis in various cancer cell lines. TP53 restoration enhanced the expression of the tumor suppressor miR-103/107, resulting in the downregulation of LRP1 and suppression of tumor growth in vivo and in vitro. Furthermore, LRP1 overexpression or p53 downregulation prevented YO-2-mediated melanoma growth inhibition. We identified YO-2 as a novel p53 inducer in melanoma cells. Cotreatment of YO-2 with doxorubicin blocked tumor growth in vivo and in a murine melanoma model, suggesting that YO-2 exerts anti-melanoma effects alone or in combination with conventional myelosuppressive drugs. 10.3390/cancers15010288
LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis. Xian Xunde,Ding Yinyuan,Dieckmann Marco,Zhou Li,Plattner Florian,Liu Mingxia,Parks John S,Hammer Robert E,Boucher Philippe,Tsai Shirling,Herz Joachim eLife Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional cell surface receptor with diverse physiological roles, ranging from cellular uptake of lipoproteins and other cargo by endocytosis to sensor of the extracellular environment and integrator of a wide range of signaling mechanisms. As a chylomicron remnant receptor, LRP1 controls systemic lipid metabolism in concert with the LDL receptor in the liver, whereas in smooth muscle cells (SMC) LRP1 functions as a co-receptor for TGFβ and PDGFRβ in reverse cholesterol transport and the maintenance of vascular wall integrity. Here we used a knockin mouse model to uncover a novel atheroprotective role for LRP1 in macrophages where tyrosine phosphorylation of an NPxY motif in its intracellular domain initiates a signaling cascade along an LRP1/SHC1/PI3K/AKT/PPARγ/LXR axis to regulate and integrate cellular cholesterol homeostasis through the expression of the major cholesterol exporter ABCA1 with apoptotic cell removal and inflammatory responses. 10.7554/eLife.29292
LRP1 Deficiency in Vascular SMC Leads to Pulmonary Arterial Hypertension That Is Reversed by PPARγ Activation. Calvier Laurent,Boucher Philippe,Herz Joachim,Hansmann Georg Circulation research RATIONALE:Arterial remodeling-a hallmark of many cardiovascular pathologies including pulmonary arterial hypertension (PAH)-is regulated by TGFβ1 (transforming growth factor-β1)-TGFβ receptors and the antagonistic, vasoprotective BMPR2 (bone morphogenetic protein receptor 2)-PPARγ (peroxisome proliferator-activated receptor-γ) axis. However, it is unclear which factors drive detrimental TGFβ1 pathways in the hypertensive pulmonary vasculature. OBJECTIVE:We hypothesized that LRP1 (low-density lipoprotein receptor-related protein 1) expression is decreased in PAH, leading to enhancement (disinhibition) of TGFβ1 signals and that the PPARγ agonist pioglitazone can restore vascular homeostasis and prevent PAH resulting from LRP1 deletion in vascular smooth muscle cells (SMCs). METHODS AND RESULTS:Targeted deletion of LRP1 in vascular SMC (smLRP1) in mice disinhibited TGFβ1-CTGF (connective tissue growth factor) signaling, leading to spontaneous PAH and distal pulmonary arterial muscularization as assessed by closed-chest cardiac catheterization and anti-αSMA staining. Pioglitazone inhibited the canonical TGFβ1-CTGF axis in human pulmonary artery SMC and smLRP1 main pulmonary artery (CTGF and NOX4) and reversed PAH in smLRP1 mice. TGFβ1 boosted pSmad3 in PASMC from smLRP1 mice versus controls. Pioglitazone-activated PPARγ binds to Smad3 in human pulmonary artery SMC (coimmunoprecipitation), thereby blocking its phosphorylation and overriding LRP1 deficiency. Finally, mRNA and protein expression of LRP1 was decreased in pulmonary plexiform lesions of patients with end-stage idiopathic PAH (laser capture microdissection, qPCR, and immunohistochemistry). Downregulation of LRP1 protein was also demonstrated in explanted PASMC from patients with PAH and accompanied by enhanced TGFβ1-pSmad3-CTGF signaling and increased TGFβ1-induced PASMC proliferation that was prevented by pioglitazone. CONCLUSIONS:Here, we identify LRP1 as an integrator of TGFβ1-mediated mechanisms that regulate vascular remodeling in mice and clinical PAH and PPARγ as a therapeutic target that controls canonical TGFβ1 pathways. Hence, pharmacologic PPARγ activation represents a promising new therapy for patients with PAH who lack the vasoprotective LRP1 in vascular SMC. 10.1161/CIRCRESAHA.119.315088
LRP1 Regulates Retinal Angiogenesis by Inhibiting PARP-1 Activity and Endothelial Cell Proliferation. Mao Hua,Lockyer Pamela,Townley-Tilson W H Davin,Xie Liang,Pi Xinchun Arteriosclerosis, thrombosis, and vascular biology OBJECTIVE:We recently demonstrated that low-density lipoprotein receptor-related protein 1 (LRP1) is required for cardiovascular development in zebrafish. However, what role LRP1 plays in angiogenesis remains to be determined. To better understand the role of LRP1 in endothelial cell function, we investigated how LRP1 regulates mouse retinal angiogenesis. APPROACH AND RESULTS:Depletion of LRP1 in endothelial cells results in increased retinal neovascularization in a mouse model of oxygen-induced retinopathy. Specifically, retinas in mice lacking endothelial LRP1 have more branching points and angiogenic sprouts at the leading edge of the newly formed vasculature. Increased endothelial proliferation as detected by Ki67 staining was observed in LRP1-deleted retinal endothelium in response to hypoxia. Using an array of biochemical and cell biology approaches, we demonstrate that poly(ADP-ribose) polymerase-1 (PARP-1) directly interacts with LRP1 in human retinal microvascular endothelial cells. This interaction between LRP1 and PARP-1 decreases under hypoxic condition. Moreover, LRP1 knockdown results in increased PARP-1 activity and subsequent phosphorylation of both retinoblastoma protein and cyclin-dependent kinase 2, which function to promote cell cycle progression and angiogenesis. CONCLUSIONS:Together, these data reveal a pivotal role for LRP1 in endothelial cell proliferation and retinal neovascularization induced by hypoxia. In addition, we demonstrate for the first time the interaction between LRP1 and PARP-1 and the LRP1-dependent regulation of PARP-1-signaling pathways. These data bring forth the possibility of novel therapeutic approaches for pathological angiogenesis. 10.1161/ATVBAHA.115.306713
LRP1 promotes synthetic phenotype of pulmonary artery smooth muscle cells in pulmonary hypertension. Zucker Marius M,Wujak Lukasz,Gungl Anna,Didiasova Miroslava,Kosanovic Djuro,Petrovic Aleksandar,Klepetko Walter,Schermuly Ralph T,Kwapiszewska Grazyna,Schaefer Liliana,Wygrecka Malgorzata Biochimica et biophysica acta. Molecular basis of disease Pulmonary hypertension (PH) is characterized by a thickening of the distal pulmonary arteries caused by medial hypertrophy, intimal proliferation and vascular fibrosis. Low density lipoprotein receptor-related protein 1 (LRP1) maintains vascular homeostasis by mediating endocytosis of numerous ligands and by initiating and regulating signaling pathways. Here, we demonstrate the increased levels of LRP1 protein in the lungs of idiopathic pulmonary arterial hypertension (IPAH) patients, hypoxia-exposed mice, and monocrotaline-treated rats. Platelet-derived growth factor (PDGF)-BB upregulated LRP1 expression in pulmonary artery smooth muscle cells (PASMC). This effect was reversed by the PDGF-BB neutralizing antibody or the PDGF receptor antagonist. Depletion of LRP1 decreased proliferation of donor and IPAH PASMC in a β1-integrin-dependent manner. Furthermore, LRP1 silencing attenuated the expression of fibronectin and collagen I and increased the levels of α-smooth muscle actin and myocardin in donor, but not in IPAH, PASMC. In addition, smooth muscle cell (SMC)-specific LRP1 knockout augmented α-SMA expression in pulmonary vessels and reduced SMC proliferation in 3D ex vivo murine lung tissue cultures. In conclusion, our results indicate that LRP1 promotes the dedifferentiation of PASMC from a contractile to a synthetic phenotype thus suggesting its contribution to vascular remodeling in PH. 10.1016/j.bbadis.2019.03.012
LRP1-Mediated AggLDL Endocytosis Promotes Cholesteryl Ester Accumulation and Impairs Insulin Response in HL-1 Cells. Actis Dato Virginia,Benitez-Amaro Aleyda,de Gonzalo-Calvo David,Vazquez Maximiliano,Bonacci Gustavo,Llorente-Cortés Vicenta,Chiabrando Gustavo Alberto Cells The cardiovascular disease (CVD) frequently developed during metabolic syndrome and type-2 diabetes mellitus is associated with increased levels of aggregation-prone small LDL particles. Aggregated LDL (aggLDL) internalization is mediated by low-density lipoprotein receptor-related protein-1 (LRP1) promoting intracellular cholesteryl ester (CE) accumulation. Additionally, LRP1 plays a key function in the regulation of insulin receptor (IR) and glucose transporter type 4 (GLUT4) activities. Nevertheless, the link between LRP1, CE accumulation, and insulin response has not been previously studied in cardiomyocytes. We aimed to identify mechanisms through which aggLDL, by its interaction with LRP1, produce CE accumulation and affects the insulin-induced intracellular signaling and GLUT4 trafficking in HL-1 cells. We demonstrated that LRP1 mediates the endocytosis of aggLDL and promotes CE accumulation in these cells. Moreover, aggLDL reduced the molecular association between IR and LRP1 and impaired insulin-induced intracellular signaling activation. Finally, aggLDL affected GLUT4 translocation to the plasma membrane and the 2-NBDG uptake in insulin-stimulated cells. We conclude that LRP1 is a key regulator of the insulin response, which can be altered by CE accumulation through LRP1-mediated aggLDL endocytosis. 10.3390/cells9010182
Phosphorylation of LRP1: regulation of transport and signal transduction. van der Geer Peter Trends in cardiovascular medicine Low-density lipoprotein receptor-related protein 1 (LRP1) is a member of the low-density lipoprotein receptor family. Members of this family were once thought to be involved exclusively in receptor-mediated uptake of extracellular molecules, including lipoproteins and proteases. This article reviews recent work that indicates that LRP1 is phosphorylated on both serine and tyrosine residues. Tyrosine-phosphorylated LRP1 is specifically associated with the cellular docking protein Shc. The results suggest that ligand internalization by LRP1 is regulated by phosphorylation. In addition, LRP1 is now, like several of its close relatives, implicated in signal transduction. 10.1016/s1050-1738(02)00154-8
LRP1 is the cell-surface endocytosis receptor for vaspin in adipocytes. The FEBS journal Vaspin is a serine protease inhibitor that protects against adipose tissue inflammation and insulin resistance, two key drivers of adipocyte dysfunction and metabolic disorders in obesity. Inhibition of target proteases such as KLK7 has been shown to reduce adipose tissue inflammation in obesity, while vaspin binding to cell surface GRP78 has been linked to reduced obesity-induced ER stress and insulin resistance in the liver. However, the molecular mechanisms by which vaspin directly affects cellular processes in adipocytes remain unknown. Using fluorescently labeled vaspin, we found that vaspin is rapidly internalized by mouse and human adipocytes, but less efficiently by endothelial, kidney, liver, and neuronal cells. Internalization occurs by active, clathrin-mediated endocytosis, which is dependent on vaspin binding to the LRP1 receptor, rather than GRP78 as previously thought. This was demonstrated by competition experiments and RNAi-mediated knock-down in adipocytes and by rescuing vaspin internalization in LRP1-deficient Pea13 cells after transfection with a functional LRP1 minireceptor. Vaspin internalization is further increased in mature adipocytes after insulin-stimulated translocation of LRP1. Although vaspin has nanomolar affinity for LRP1 clusters II-IV, binding to cell surface heparan sulfates is required for efficient LRP1-mediated internalization. Native, but not cleaved vaspin, and also vaspin polymers are efficiently endocytosed, and ultimately targeted for lysosomal degradation. Our study provides mechanistic insight into the uptake and degradation of vaspin in adipocytes, thereby broadening our understanding of its functional repertoire. We hypothesize the vaspin-LRP1 axis to be an important mediator of vaspin effects not only in adipose tissue but also in other LRP1-expressing cells. 10.1111/febs.16991
LRP1 regulates food intake and energy balance in GABAergic neurons independently of leptin action. Kang Min-Cheol,Seo Ji A,Lee Hyon,Uner Aykut,Yang Won-Mo,Cruz Rodrigues Kellen Cristina da,Kim Hyun Jeong,Li Wendy,Campbell John N,Dagon Yossi,Kim Young-Bum American journal of physiology. Endocrinology and metabolism Low-density lipoprotein receptor-related protein 1 (LRP1) is a member of LDL receptor family that plays a key role in systemic glucose and lipid homeostasis. LRP1 also regulates energy balance in the hypothalamus by mediating leptin's anorexigenic action, although the underlying neurocircuitry involved is still unclear. Because GABAergic neurons are a major mediator of hypothalamic leptin action, we studied the role of GABAergic LRP1 in energy balance and leptin action using mice lacking LRP1 in Vgat- or AgRP-expressing neurons (Vgat-Cre; LRP1 or AgRP-Cre; LRP1). Here, we show that LRP1 deficiency in GABAergic neurons results in severe obesity in male and female mice fed a normal-chow diet. This effect is most likely due to increased food intake and decreased energy expenditure and locomotor activity. Increased adiposity in GABAergic neuron-specific LRP1-deficient mice is accompanied by hyperleptinemia and hyperinsulinemia. Insulin resistance and glucose intolerance in these mice are occurred without change in body weight. Importantly, LRP1 in GABAergic neurons is not required for leptin action, as evidenced by normal leptin's anorexigenic action and leptin-induced hypothalamic Stat3 phosphorylation. In contrast, LRP1 deficiency in AgRP neurons has no effect on adiposity and caloric intake. In conclusion, our data identify GABAergic neurons as a key neurocircuitry that underpins LRP1-dependent regulation of systemic energy balance and body-weight homeostasis. We further find that the GABAergic LRP1 signaling pathway modulates food intake and energy expenditure independently of leptin signaling and AgRP neurons. 10.1152/ajpendo.00399.2020
LRP1 mediates leptin transport by coupling with the short-form leptin receptor in the choroid plexus. bioRxiv : the preprint server for biology Adipocyte-derived leptin enters the brain to exert its anorexigenic action, yet its transport mechanism is poorly understood. Here we report that LRP1 (low-density lipoprotein receptor-related protein-1) mediates the transport of leptin across the blood-CSF barrier in expressing cells highly enriched at the choroid plexus (ChP), coupled with the short-form leptin receptor, and LRP1 deletion from ependymocytes and ChP cells leads to leptin resistance and hyperphagia, causing obesity. Thus, LRP1 in epithelial cells is a principal regulator of leptin transport in the brain. 10.1101/2023.07.03.547520
LRP1 protects against excessive superior mesenteric artery remodeling by modulating angiotensin II-mediated signaling. JCI insight Vascular smooth muscle cells (vSMCs) exert a critical role in sensing and maintaining vascular integrity. These cells abundantly express the low-density lipoprotein receptor-related protein 1 (LRP1), a large endocytic signaling receptor that recognizes numerous ligands, including apolipoprotein E-rich lipoproteins, proteases, and protease-inhibitor complexes. We observed the spontaneous formation of aneurysms in the superior mesenteric artery (SMA) of both male and female mice in which LRP1 was genetically deleted in vSMCs (smLRP1-/- mice). Quantitative proteomics revealed elevated abundance of several proteins in smLRP1-/- mice that are known to be induced by angiotensin II-mediated (AngII-mediated) signaling, suggesting that this pathway was dysregulated. Administration of losartan, an AngII type I receptor antagonist, or an angiotensinogen antisense oligonucleotide to reduce plasma angiotensinogen concentrations restored the normal SMA phenotype in smLRP1-/- mice and prevented aneurysm formation. Additionally, using a vascular injury model, we noted excessive vascular remodeling and neointima formation in smLRP1-/- mice that was restored by losartan administration. Together, these findings reveal that LRP1 regulates vascular integrity and remodeling of the SMA by attenuating excessive AngII-mediated signaling. 10.1172/jci.insight.164751
The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction pathways. He Zhaohui,Wang Gang,Wu Jianbo,Tang Zonghao,Luo Mao Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie Interactions between vascular smooth muscle cells (VSMCs), endothelial cells (ECs), pericytes (PCs) and macrophages (MФ), the major components of blood vessels, play a crucial role in maintaining vascular structural and functional homeostasis. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1), a transmembrane receptor protein belonging to the LDL receptor family, plays multifunctional roles in maintaining endocytosis, homeostasis, and signal transduction. Accumulating evidence suggests that LRP1 modulates vascular homeostasis mainly by regulating vasoactive substances and specific intracellular signaling pathways, including the plasminogen activator inhibitor 1 (PAI-1) signaling pathway, platelet-derived growth factor (PDGF) signaling pathway, transforming growth factor-β (TGF-β) signaling pathway and vascular endothelial growth factor (VEGF) signaling pathway. The aim of the present review is to focus on recent advances in the discovery and mechanism of vascular homeostasis regulated by LRP1-dependent signaling pathways. These recent discoveries expand our understanding of the mechanisms controlling LRP1 as a target for studies on vascular complications. 10.1016/j.biopha.2021.111667
Low-density lipoprotein receptor-related protein-1 (LRP1) in the glial lineage modulates neuronal excitability. Frontiers in network physiology The low-density lipoprotein related protein receptor 1 (LRP1), also known as CD91 or α-Macroglobulin-receptor, is a transmembrane receptor that interacts with more than 40 known ligands. It plays an important biological role as receptor of morphogens, extracellular matrix molecules, cytokines, proteases, protease inhibitors and pathogens. In the CNS, it has primarily been studied as a receptor and clearance agent of pathogenic factors such as Aβ-peptide and, lately, Tau protein that is relevant for tissue homeostasis and protection against neurodegenerative processes. Recently, it was found that LRP1 expresses the Lewis-X (Lex) carbohydrate motif and is expressed in the neural stem cell compartment. The removal of from the cortical radial glia compartment generates a strong phenotype with severe motor deficits, seizures and a reduced life span. The present review discusses approaches that have been taken to address the neurodevelopmental significance of LRP1 by creating novel, lineage-specific constitutive or conditional knockout mouse lines. Deficits in the stem cell compartment may be at the root of severe CNS pathologies. 10.3389/fnetp.2023.1190240
LRP1 in vascular mural cells modulates cerebrovascular integrity and function in the presence of APOE4. JCI insight Cerebrovasculature is critical in maintaining brain homeostasis; its dysregulation often leads to vascular cognitive impairment and dementia (VCID) during aging. VCID is the second most prevalent cause of dementia in the elderly, after Alzheimer's disease (AD), with frequent cooccurrence of VCID and AD. While multiple factors are involved in the pathogenesis of AD and VCID, APOE4 increases the risk for both diseases. A major apolipoprotein E (apoE) receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in vascular mural cells (pericytes and smooth muscle cells). Here, we investigated how deficiency of vascular mural cell LRP1 affects the cerebrovascular system and cognitive performance using vascular mural cell-specific Lrp1-KO mice (smLrp1-/-) in a human APOE3 or APOE4 background. We found that spatial memory was impaired in the 13- to 16-month-old APOE4 smLrp1-/- mice but not in the APOE3 smLrp1-/- mice, compared with their respective littermate control mice. These disruptions in the APOE4 smLrp1-/- mice were accompanied with excess paravascular glial activation and reduced cerebrovascular collagen IV. In addition, blood-brain barrier (BBB) integrity was disrupted in the APOE4 smLrp1-/- mice. Together, our results suggest that vascular mural cell LRP1 modulates cerebrovasculature integrity and function in an APOE genotype-dependent manner. 10.1172/jci.insight.163822
Multi-faceted role of LRP1 in the immune system. Frontiers in immunology Graft versus host disease (GVHD) represents the major complication after allogeneic hematopoietic stem cell transplantation (Allo-SCT). GVHD-prone patients rely on GVHD prophylaxis (e.g. methotrexate) and generalized anti-GVHD medical regimen (glucocorticoids). New anti-GVHD therapy strategies are being constantly explored, however there is an urgent need to improve current treatment, since GVHD-related mortality reaches 22% within 5 years in patients with chronic GVHD. This review is an attempt to describe a very well-known receptor in lipoprotein studies - the low-density lipoprotein receptor related protein 1 (LRP1) - in a new light, as a potential therapeutic target for GVHD prevention and treatment. Our preliminary studies demonstrated that LRP1 deletion in donor murine T cells results in significantly lower GVHD-related mortality in recipient mice with MHC (major histocompatibility complex) -mismatched HSCT. Given the importance of T cells in the development of GVHD, there is a significant gap in scientific literature regarding LRP1's role in T cell biology. Furthermore, there is limited research interest and publications on this classical receptor molecule in other immune cell types. Herein, we endeavor to summarize existing knowledge about LRP1's role in various immune cells to demonstrate the possibility of this receptor to serve as a novel target for anti-GVHD treatment. 10.3389/fimmu.2023.1166189
LRP1: A chameleon receptor of lung inflammation and repair. Wujak Lukasz,Schnieder Jennifer,Schaefer Liliana,Wygrecka Malgorzata Matrix biology : journal of the International Society for Matrix Biology The lung displays a remarkable capability to regenerate following injury. Considerable effort has been made thus far to understand the cardinal processes underpinning inflammation and reconstruction of lung tissue. However, the factors determining the resolution or persistence of inflammation and efficient wound healing or aberrant remodeling remain largely unknown. Low density lipoprotein receptor-related protein 1 (LRP1) is an endocytic/signaling cell surface receptor which controls cellular and molecular mechanisms driving the physiological and pathological inflammatory reactions and tissue remodeling in several organs. In this review, we will discuss the impact of LRP1 on the consecutive steps of the inflammatory response and its role in the balanced tissue repair and aberrant remodeling in the lung. 10.1016/j.matbio.2017.12.007
Developing LRP1 Agonists into a Therapeutic Strategy in Acute Myocardial Infarction. Potere Nicola,Del Buono Marco Giuseppe,Niccoli Giampaolo,Crea Filippo,Toldo Stefano,Abbate Antonio International journal of molecular sciences Cardioprotection refers to a strategy aimed at enhancing survival pathways in the injured yet salvageable myocardium following ischemia-reperfusion. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor that can be targeted following reperfusion, to induce a cardioprotective signaling through the activation of the reperfusion injury salvage kinase (RISK) pathway. The data from preclinical studies with non-selective and selective LRP1 agonists are promising, showing a large therapeutic window for intervention to reduce infarct size after ischemia-reperfusion. A pilot clinical trial with plasma derived 1-antitrypsin (AAT), a naturally occurring LRP1 agonist, supports the translational value of LRP1 as a novel therapeutic target for cardioprotection. A phase I study with a selective LRP1 agonist has been completed showing no toxicity. These findings may open the way to early phase clinical studies with pharmacologic LRP1 activation in patients with acute myocardial infarction (AMI). 10.3390/ijms20030544