logo logo
Degradation of diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome P450. Coelho-Moreira Jaqueline da Silva,Bracht Adelar,de Souza Aline Cristine da Silva,Oliveira Roselene Ferreira,de Sá-Nakanishi Anacharis Babeto,de Souza Cristina Giatti Marques,Peralta Rosane Marina BioMed research international The white-rot fungus Phanerochaete chrysosporium was investigated for its capacity to degrade the herbicide diuron in liquid stationary cultures. The presence of diuron increased the production of lignin peroxidase in relation to control cultures but only barely affected the production of manganese peroxidase. The herbicide at the concentration of 7 μ g/mL did not cause any reduction in the biomass production and it was almost completely removed after 10 days. Concomitantly with the removal of diuron, two metabolites, DCPMU [1-(3,4-dichlorophenyl)-3-methylurea] and DCPU [(3,4-dichlorophenyl)urea], were detected in the culture medium at the concentrations of 0.74 μ g/mL and 0.06 μ g/mL, respectively. Crude extracellular ligninolytic enzymes were not efficient in the in vitro degradation of diuron. In addition, 1-aminobenzotriazole (ABT), a cytochrome P450 inhibitor, significantly inhibited both diuron degradation and metabolites production. Significant reduction in the toxicity evaluated by the Lactuca sativa L. bioassay was observed in the cultures after 10 days of cultivation. In conclusion, P. chrysosporium can efficiently metabolize diuron without the accumulation of toxic products. 10.1155/2013/251354
Chlorophenol degradation in soil columns inoculated with Anthracophyllum discolor immobilized on wheat grains. Diez M C,Gallardo F,Tortella G,Rubilar O,Navia R,Bornhardt C Journal of environmental management The white-rot fungus Anthracophyllum discolor immobilized on wheat grains was evaluated for chlorophenol (2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol) degradation in allophanic soil columns activated by acidification. Columns without inoculation were used as the control to evaluate the adsorption capacity of the soil columns. The chlorophenols were removed efficiently in soil columns by both adsorption and degradation processes. In inoculated soil columns, 2,4-dichlorophenol was highly degraded and this degradation is associated with a high production of manganese peroxidase. 2,4,6-trichlorophenol was degraded to a lesser extent compared with 2,4-dichlorophenol. Pentachlorophenol was first removed by adsorption and then through degradation by the fungus. Manganese peroxidase activity was lowest when the column was fed with pentachlorophenol and highest when the column was fed with 2,4-dichlorophenol. Laccase was also produced by the fungus but to a lesser degree. 10.1016/j.jenvman.2010.09.024
Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process. Aggelis G,Ehaliotis C,Nerud F,Stoychev I,Lyberatos G,Zervakis G I Applied microbiology and biotechnology Wastewater produced by the debittering process of green olives (GOW) is rich in polyphenolics and presents high chemical oxygen demand and alkalinity values. Eight white-rot fungi ( Abortiporus biennis, Dichomitus squalens, Inonotus hispidus, Irpex lacteus, Lentinus tigrinus, Panellus stipticus, Pleurotus ostreatus and Trametes hirsuta) were grown in GOW for 1 month and the reduction in total phenolics, the decolorization activity and the related enzyme activities were compared. Phenolics were efficiently reduced by P. ostreatus (52%) and A. biennis (55%), followed by P. stipticus (42%) and D. squalens (36%), but only P. ostreatus had high decolorization efficiency (49%). Laccase activity was the highest in all of the fungi, followed by manganese-independent peroxidase (MnIP). Substantial manganese peroxidase (MnP) activity was observed only in GOW treated with P. ostreatus and A. biennis, whereas lignin peroxidase (LiP) and veratryl alcohol oxidase (VAOx) activities were not detected. Early measurements of laccase activity were highly correlated ( r(2)=0.91) with the final reduction of total phenolics and could serve as an early indicator of the potential of white-rot fungi to efficiently reduce the amount of total phenolics in GOW. The presence of MnP was, however, required to achieve efficient decolorization. Phytotoxicity of GOW treated with a selected P. ostreatus strain did not decline despite large reductions of the phenolic content (76%). Similarly, in GOW treated with purified laccase from Polyporus pensitius, a reduction in total phenolics which exceeded 50% was achieved; however, it was not accompanied by a decline in phytotoxicity. These results are probably related to the formation of phenoxy radicals and quinonoids, which re-polymerize in the absence of VAOx but do not lead to polymer precipitation in the treated GOW. 10.1007/s00253-002-1005-9
Continuous treatment of coloured industry wastewater using immobilized Phanerochaete chrysosporium in a rotating biological contactor reactor. Pakshirajan Kannan,Kheria Sumeet Journal of environmental management Coloured industry wastewaters often contain dyes and other toxic ingredients, and, therefore, pose serious threat to the receiving environment. Among the available methods the eco-friendly biological method has gained maximum attention due to its many advantages over the traditional methods. In the present study, continuous biological treatment of coloured wastewater from a textile dyeing industry was investigated using the white rot fungus Phanerochaete chrysosporium in a rotating biological contactor (RBC) reactor. The raw wastewater was diluted with an equal volume of either distilled water or media containing glucose at varying concentrations to study its effect on the decolourization process. Results revealed that the wastewater could be decolourized to an extent of more than 64% when diluted with media containing glucose; and, a maximum decolourization efficiency of 83% was obtained with 10 g/l glucose concentration. COD removal efficiencies were also found to be consistent with the decolourization efficiencies of the wastewaters. Further, the results were correlated with the enzyme activities of manganese peroxidase (MnP) and lignin peroxidase (LiP) by the fungus, which were found to play some significant role in decolourization of the wastewater. Results of replacing the costly carbon source glucose in the decolourization media with the more cheap molasses, however, revealed very high COD removal efficiency, but low decolourization efficiency of the industry wastewater. 10.1016/j.jenvman.2012.02.008
Removal of estrogenic activities of 17beta-estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi. Suzuki Kazutaka,Hirai Hirofumi,Murata Hitoshi,Nishida Tomoaki Water research We investigated whether manganese peroxidase (MnP) and the laccase-mediator system with 1-hydroxybenzotriazole (HBT) as mediator can remove the estrogenic activities of the steroidal hormones 17beta-estradiol (E(2)) and ethinylestradiol (EE(2)). Using the yeast two-hybrid assay system, we confirmed that the estrogenic activities of E(2) and EE(2) are much higher than those of bisphenol A and nonylphenol. Greater than 80% of the estrogenic activities of E(2) and EE(2) were removed following 1-h treatment with MnP or the laccase-HBT system; extending the treatment time to 8h removed the remaining estrogenic activity of both steroidal hormones. HPLC analysis demonstrated that E(2) and EE(2) had disappeared almost completely in the reaction mixture after a 1-h treatment. These results strongly suggest that these ligninolytic enzymes are effective in removing the estrogenic activities of E(2) and EE(2). 10.1016/S0043-1354(02)00533-X
Fate of bisphenol A during treatment with the litter-decomposing fungi Stropharia rugosoannulata and Stropharia coronilla. Kabiersch Grit,Rajasärkkä Johanna,Ullrich René,Tuomela Marja,Hofrichter Martin,Virta Marko,Hatakka Annele,Steffen Kari Chemosphere Bisphenol A is an endocrine disrupting compound, which is ubiquitous in the environment due to its wide use in plastic and resin production. Seven day old cultures of the litter-decomposing fungus Stropharia coronilla removed the estrogenic activity of bisphenol A (BPA) rapidly and enduringly. Treatment of BPA with purified neutral manganese peroxidase (MnP) from this fungus also resulted in 100% reduction of estrogenic activity, as analyzed using a bioluminescent yeast assay, and in the formation of polymeric compounds. In cultures of Stropharia rugosoannulata, estrogenic activity also quickly disappeared but temporarily re-emerged in the further course of cultivation. LC-MS analysis of the extracted estrogenic culture liquid revealed [M-H](-) ions with m/z values of 219 and 235. We hypothesize that these compounds are ring fission products of BPA, which still exhibit one intact hydroxyphenyl group to interact with estrogen receptors displayed by the yeast. 10.1016/j.chemosphere.2010.12.094
Bioremediation of polycyclic aromatic hydrocarbons (PAHs) present in biomass fly ash by co-composting and co-vermicomposting. Košnář Zdeněk,Wiesnerová Lucie,Částková Tereza,Kroulíková Stanislava,Bouček Jiří,Mercl Filip,Tlustoš Pavel Journal of hazardous materials An experiment was established to compare composting and vermicomposting for decreasing the content of polycyclic aromatic hydrocarbons (PAHs) in biomass fly ash incorporated into organic waste mixtures. PAH removal from the ash-organic waste mixture was compared to the same mixture spiked with PAHs. The removal of 16 individual ash PAHs ranged between 28.7 and 98.5% during the 240 day experiment. Greater dissipation of total PAH content of ash origin was observed at the end of composting (84.5%) than after the vermicomposting (61.6%). Most ash PAHs were removed similarly to spiked PAHs through the composting and vermicomposting processes. Higher manganese peroxidase in composting treatments indicated increased activity of ligninolytic PAH-degrading microorganisms. 3D models of total PAH removal were parametrized using the polarity index and organic matter content, and paraboloid equations for each treatment were estimated (all R > 0.91). A two-phase model of pseudo-first order kinetics analysis showed faster PAH removal by higher rate constants during the first 120 days of the experiment. The compost and vermicompost produced from the bioremediation treatments are usable as soil organic amendments. 10.1016/j.jhazmat.2019.02.037
Oxidative dechlorination of methoxychlor by ligninolytic enzymes from white-rot fungi. Hirai Hirofumi,Nakanishi Sawako,Nishida Tomoaki Chemosphere Ligninolytic enzymes, manganese peroxidase (MnP), laccase, and lignin peroxidase (LiP), from white-rot fungi were used in an attempt to treat methoxychlor (MC), a chemical widely used as a pesticide. MnP and laccase in the presence of Tween 80 and 1-hydroxybenzotriazole (HBT), respectively, and LiP were found to degrade MC, and MnP-Tween 80 decreased MC levels by about 65% after a 24-h treatment. MC was converted into methoxychlor olefin (MCO) and 4,4'-dimethoxybenzophenone by MnP-Tween 80 or laccase-HBT treatment. These results indicate that ligninolytic enzymes from white-rot fungi can catalyze the oxidative dechlorination of MC. Moreover, a metabolite MCO was also degraded by MnP-Tween 80 or laccase-HBT treatment. 10.1016/j.chemosphere.2003.11.035
Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation The ability of pure manganese peroxidase (MnP), laccase, lignin peroxidase (LiP) and horseradish peroxidase (HRP) to degrade the widely used herbicide glyphosate and other pesticides was studied in separate in vitro assays with addition of different mediators. Complete degradation of glyphosate was obtained with MnP, MnSO4 and Tween 80, with or without H2O2. In the presence of MnSO4, with or without H(2)O(2), MnP also transformed the herbicide, but to a lower rate. Laccase degraded glyphosate in the presence of (a) 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), (b) MnSO(4) and Tween 80 and (c) ABTS, MnSO4 and Tween 80. The metabolite AMPA was detected in all cases where degradation of glyphosate occurred and was not degraded. The LiP was tested alone or with MnSO4, Tween 80, veratryl alcohol or H2O2 and in the HRP assay the enzyme was added alone or with H2O2 in the reaction mixture. However, these enzymes did not degrade glyphosate. Further experiments using MnP together with MnSO4 and Tween 80 showed that the enzyme was also able to degrade glyphosate in its commercial formulation Roundup Bio. The same enzyme mixture was tested for degradation of 22 other pesticides and degradation products present in a mixture and all the compounds were transformed, with degradation percentages ranging between 20 and 100%. Our results highlight the potential of ligninolytic enzymes to degrade pesticides. Moreover, they suggest that the formation of AMPA, the main metabolite of glyphosate degradation found in soils, can be a result of the activity of lignin-degrading enzymes. 10.1007/s10532-009-9263-1
Biodecolorization and biodegradation of reactive Levafix Blue E-RA granulate dye by the white rot fungus Irpex lacteus. Kalpana Duraisamy,Velmurugan Natarajan,Shim Jae Hong,Oh Byung-Taek,Senthil Kalaiselvi,Lee Yang Soo Journal of environmental management The treatment of effluents from textile industry with microorganisms, especially bacteria and fungi, has recently gained attention. The present study was conducted using white rot fungi Irpex lacteus, Trametes hirsuta, Trametes sp., and Lentinula edodes for the decolorization of reactive textile Levafix Blue E-RA granulate dye. I. lacteus resulted in the best decolorization and degradation of the dye within four days. Therefore, more detailed studies were carried out using I. lacteus. The decolorization was evaluated at various concentration, pH values, and temperatures. The activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were estimated to reveal the roles of enzymes in decolorization. The colorless nature of the fungal cells revealed that decolorization occurred through degradation, and confirmed by analysis of the metabolites by UV-visible spectroscopy and High Performance Liquid Chromatography after decolorization. The metabolites were identified by Gas Chromatography-Mass Spectrometry, and functional group analysis was performed by Fourier Transform Infrared Spectroscopy. The degraded dye metabolites were assessed for phytotoxicity using Vigna radiata and Brassica juncea, which demonstrated nontoxic nature of the metabolites formed after degradation of dye. 10.1016/j.jenvman.2012.06.041
Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Kaur Harsimran,Kapoor Shammi,Kaur Gaganjyot Environmental monitoring and assessment Lindane, a broad-spectrum organochlorine pesticide, has caused a widespread environmental contamination along with other pesticides due to wrong agricultural practices. The high efficiency, sustainability and eco-friendly nature of the bioremediation process provide an edge over traditional physico-chemical remediation for managing pesticide pollution. In the present study, lindane degradation was studied by using a white-rot fungus, Ganoderma lucidum GL-2 strain, grown on rice bran substrate for ligninolytic enzyme induction at 30 °C and pH 5.6 after incorporation of 4 and 40 ppm lindane in liquid as well as solid-state fermentation. The estimation of lindane residue was carried out by gas chromatography coupled to mass spectrometry (GC-MS) in the selected ion monitoring mode. In liquid-state fermentation, 100.13 U/ml laccase, 50.96 U/ml manganese peroxidase and 17.43 U/ml lignin peroxidase enzymes were obtained with a maximum of 75.50 % lindane degradation on the 28th day of incubation period, whereas under the solid-state fermentation system, 156.82 U/g laccase, 80.11 U/g manganese peroxidase and 18.61 U/g lignin peroxidase enzyme activities with 37.50 % lindane degradation were obtained. The lindane incorporation was inhibitory to the production of ligninolytic enzymes and its own degradation but was stimulatory for extracellular protein production. The dialysed crude enzyme extracts of ligninolytic enzymes were though efficient in lindane degradation during in vitro studies, but their efficiencies tend to decrease with an increase in the incubation period. Hence, lindane-degrading capabilities of G. lucidum GL-2 strain make it a potential candidate for managing lindane bioremediation at contaminated sites. 10.1007/s10661-016-5606-7
Biodegradation of fluorene by the newly isolated marine-derived fungus, Mucor irregularis strain bpo1 using response surface methodology. Bankole Paul Olusegun,Semple Kirk Taylor,Jeon Byong-Hun,Govindwar Sanjay Prabhu Ecotoxicology and environmental safety Fluorene, a low molecular weight polycyclic aromatic hydrocarbon (PAH), is of immense environmental interest because of its carcinogenicity, teratogenicity, mutagenicity, toxicity and persistence to microbial degradation. Existentially, there is paucity of information on PAH degradation by fungi isolated from marine environment. Therefore, this study investigated fluorene degradation efficiency of marine derived filamentous fungus, Mucor irregularis strain bpo1 (GenBank Accession Number: MK373020). Response Surface Methodology (RSM) using Box-Behnken Design (BBD) was successfully deployed in the optimization of process parameters (pH-7, temperature-32.5 °C, substrate concentration-100 mg L and dry weight-2 g) resulting in 81.50% fluorene degradation on 5th day. The design and regression model were found to be statistically significant, adequate and appropriate with p < 0.0001, F value= 202.39, and predicted coefficient of determination (R =0.9991). Optimization of the vital constituents of the mineral salt medium (MSM) used for the study using RSM-Central Composite Design (CCD) resulted in 79.80% fluorene degradation rate. Enhanced fluorene degradation efficiency (82.50%) was recorded when the optimized process variables were subjected to growth-linked validation experiments. The enzyme activities revealed 87%, 59% and 31% induction of laccase, manganese peroxidase and lignin peroxidase respectively. Four metabolites; 9H-fluoren-9-one, benzene-1,2-dicarboxylic acid, 2-hydroxybenzoic acid and phenol obtained after the experiment were characterized and confirmed with GC-MS analysis. The findings revealed the promising potentials of M. irregularis in PAH degradation and by extension green remediation technology. 10.1016/j.ecoenv.2020.111619
Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi--Metabolites, enzymes and residual antibacterial activity. Čvančarová Monika,Moeder Monika,Filipová Alena,Cajthaml Tomáš Chemosphere A group of white rot fungi (Irpex lacteus, Panus tigrinus, Dichomitus squalens, Trametes versicolor and Pleurotus ostreatus) was investigated for the biodegradation of norfloxacin (NOR), ofloxacin (OF) and ciprofloxacin (CIP). The selected fluoroquinolones were readily degraded almost completely by I. lacteus and T. versicolor within 10 and 14 d of incubation in liquid medium, respectively. The biodegradation products were identified by liquid chromatography-mass spectrometry. The analyses indicated that the fungi use similar mechanisms to degrade structurally related antibiotics. The piperazine ring of the molecules is preferably attacked via either substitution or/and decomposition. In addition to the degradation efficiency, attention was devoted to the residual antibiotic activities estimated using Gram-positive and Gram-negative bacteria. Only I. lacteus was able to remove the antibiotic activity during the course of the degradation of NOR and OF. The product-effect correlations evaluated by Principal Component Analysis (PCA) enabled elucidation of the participation of the individual metabolites in the residual antibacterial activity. Most of the metabolites correlated with the antibacterial activity, explaining the rather high residual activity remaining after the biodegradation. PCA of ligninolytic enzyme activities indicated that manganese peroxidase might participate in the degradation. 10.1016/j.chemosphere.2014.12.012
Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Bilal Muhammad,Asgher Muhammad,Iqbal Hafiz M N,Hu Hongbo,Zhang Xuehong Environmental science and pollution research international In this study, manganese peroxidase (MnP) from an indigenous white-rot fungus Ganoderma lucidum IBL-05 was insolubilized in the form of cross-linked enzyme aggregates (CLEAs) using various aggregating agents, i.e., acetone, ammonium sulfate, ethanol, 2-propanol, and tert-butanol, followed by glutaraldehyde (GA) cross-linking. The precipitant type, MnP, and GA concentrations affected the CLEAs activity recovery and aggregation yield. Among precipitants used, acetone appeared to be the most efficient aggregation agent, providing the highest activity recovery and aggregation yield of 31.26 and 73.46%, respectively. Optimal cross-linking was noticed using 2.0% (v/v) GA and 8:1 (v/v) MnP to GA ratio at 3.0 h cross-linking time under continuous agitation at 4 °C. The highest recovered activity and aggregation yield were determined to be 47.57 and 81.26%, respectively. The MnP-CLEAs, thus synthesized, were tested to investigate their bio-catalytic capacity for removing two known endocrine-disrupting chemicals (EDCs), e.g., nonylphenol and triclosan in a packed bed reactor system. The insolubilized MnP efficiently catalyzed the biodegradation of both EDCs, transforming over 80% in the presence of MnP-based system. A maximal of 100% decolorization was recorded for Sitara textile (SIT-based) effluent, followed by 95.5% for Crescent textile (CRT-based) effluent, 88.0% for K&N textile (KIT-based) effluent, and 84.2% for Nishat textile (NIT-based) effluent. 10.1007/s11356-017-8369-y
Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametes polyzona RYNF13. Teerapatsakul Churapa,Pothiratana Chetsada,Chitradon Lerluck,Thachepan Surachai The Journal of general and applied microbiology The biodegradation of three polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, and pyrene, by a newly isolated thermotolerant white rot fungal strain RYNF13 from Thailand, was investigated. The strain RYNF13 was identified as Trametes polyzona, based on an analysis of its internal transcribed spacer sequence. The strain RYNF13 was superior to most white rot fungi. The fungus showed excellent removal of PAHs at a high concentration of 100 mg·L. Complete degradation of phenanthrene in a mineral salt glucose medium culture was observed within 18 days of incubation at 30°C, whereas 90% of fluorene and 52% of pyrene were degraded under the same conditions. At a high temperature of 42°C, the strain RYNF13 was still able to grow, and degraded approximately 68% of phenanthrene, whereas 48% of fluorene and 30% of pyrene were degraded within 32 days. Thus, the strain RYNF13 is a potential fungus for PAH bioremediation, especially in a tropical environment where the temperature can be higher than 40°C. The strain RYNF13 secreted three different ligninolytic enzymes, manganese peroxidase, laccase, and lignin peroxidase, during PAH biodegradation at 30°C. When the incubation temperature was increased from 30°C to 37°C and 42°C, only two ligninolytic enzymes, manganese peroxidase and laccase, were detectable during the biodegradation. Manganese peroxidase was the major enzyme produced by the fungus. In the culture containing phenanthrene, manganese peroxidase showed the highest enzymatic activity at 179 U·mL. T. polyzona RYNF13 was determined as a potential thermotolerant white rot fungus, and suitable for application in the treatment of PAH-containing contaminants. 10.2323/jgam.2016.06.001
Decolorization pathways of anthraquinone dye Disperse Blue 2BLN by Aspergillus sp. XJ-2 CGMCC12963. Pan Huiran,Xu Xiaolin,Wen Zhu,Kang Yanshun,Wang Xinhao,Ren Youshan,Huang Danqi Bioengineered Anthraquinone dye represents an important group of recalcitrant pollutants in dye wastewater. Aspergillus sp XJ-2 CGMCC12963 showed broad-spectrum decolorization ability, which could efficiently decolorize and degrade various anthraquinone dyes (50 mg L) under microaerophilic condition. And the decolorization rate of 93.3% was achieved at 120 h with Disperse Blue 2BLN (the target dye). Intermediates of degradation were detected by FTIR and GC-MS, which revealed the cleavage of anthraquinone chromophoric group and partial mineralization of target dye. In addition, extracellular manganese peroxidase showed the most closely related to the increasing of decolorization rate and biomass among intracellular and extracellular ligninolytic enzymes. Given these results, 2 possible degraded pathways of target dye by Aspergillus sp XJ-2 CGMCC12963 were proposed first in this work. The degradation of Disperse Blue 2BLN and broad spectrum decolorization ability provided the potential for Aspergillus sp XJ-2 CGMCC12963 in the treatment of wastewater containing anthraquinone dyes. 10.1080/21655979.2017.1300728
Evaluation of bioremediation strategies for treating recalcitrant halo-organic pollutants in soil environments. Sadañoski Marcela Alejandra,Tatarin Ana Silvia,Barchuk Mónica Lucrecia,Gonzalez Mariana,Pegoraro César Nicolás,Fonseca María Isabel,Levin Laura Noemí,Villalba Laura Lidia Ecotoxicology and environmental safety The aim of this study was to investigate the bioremediation potential of polychlorinated biphenyls (PCBs) in soil, mimicking three strategies: (a) mycoaugmentation: by the addition of Trametes sanguinea and Pleurotus sajor-caju co-cultures immobilized on sugarcane bagasse; (b) biostimulation: by supplementation of sugarcane bagasse; and (c) natural attenuation: no amendments. The experiments were done in microcosms using Ultisol soil. Remediation effectiveness was assessed based on pollutants content, soil characteristics, and ecotoxicological tests. Biostimulation and mycoaugmentation demonstrated the highest PCBs-removal (approx. 90%) with a significant toxicity reduction at 90 d. The studied strains were able to survive during the incubation period in non-sterilized soil. Laccase, manganese-peroxidase and endoxylanase activities increased significantly in co-cultures after 60 d. Sugarcane bagasse demonstrated to be not only a suitable support for fungal immobilization but also an efficient substrate for fungal colonization of PCBs-contaminated soils. Mycoaugmentation and biostimulation with sugarcane bagasse improved oxidable organic matter and phosphorous contents as well as dehydrogenase activity in soil. Therefore, biostimulation with sugarcane bagasse and mycoaugmentation applying dual white-rot fungal cultures constitute two efficient bioremediation alternatives to restore PCBs-contaminated soils. 10.1016/j.ecoenv.2020.110929
Degradation of humic acids by manganese peroxidase from the white-rot fungus Clitocybula dusenii. Ziegenhagen D,Hofrichter M Journal of basic microbiology The depolymerization of humic acids (HAs) obtained from low-rank coal (lignite) to fulvic acids (FAs) was investigated in a cell-free system (in vitro) using manganese peroxidase (MnP) from the white-rot fungus Clitocybula dusenii b11. MnP was produced in surface cultures of C. dusenii which were induced with manganese (II) ions (Mn2+, 300 microM). The optimum conditions for the action of MnP were determined by varying following parameters of the enzyme assay: i) concentration of Mn2+, ii) concentration of hydrogen peroxide (H2O2), iii) pH value and iv) temperature. Optimum parameters determined were used in subsequent in vitro depolymerization studies of humic acids. For that purpose, following parameters of the reaction mixture were additionally varied: concentration of HAs, concentration of the thiol mediator glutathione (GSH), presence and concentration of organic solvents. As the result, following parameters were found to be optimal for the MnP-catalyzed in vitro depolymerization of HAs into low-molecular weight FAs (MnP activity 0.12 U/ml): 250 micrograms/ml HAs, 1 mM MnCl2, 46 microM/min H2O2 (continuously supplied by glucose oxidase), 600 microM GSH, 4% (v/v) N,N-dimethylformamide (DMF), pH 4.0, and 37 degrees C.
Bisphenol A degradation in water by ligninolytic enzymes. Gassara Fatma,Brar Satinder K,Verma M,Tyagi R D Chemosphere Many endocrine disruptor compounds, such as bisphenol A (BPA) are used today and released into the environment at low doses but they are barely degraded in wastewater treatment plants. One of the potential alternatives to effectively degrade endocrine disruptor compounds is based on the use of the oxidative action of extracellular fungal enzymes. The aim of this work is to study the ability of free and encapsulated enzymes (manganese peroxidase, lignin peroxidase and laccase) to degrade BPA. Higher degradation of BPA (90%) by ligninolytic enzymes encapsulated on polyacrylamide hydrogel and pectin after 8h was obtained. The degradation of BPA while using the free enzyme (26%) was lower than the value obtained with encapsulated enzymes. The presence of pectin in the formulation significantly (p>0.05) enhanced the activity of enzymes. Kinetics of BPA degradation showed an increase in Vm, while Km remained constant when enzymes were encapsulated. Hence, encapsulation protected the enzymes from non-competitive inhibition. 10.1016/j.chemosphere.2013.02.071
Detection of persistent organic compounds from biomethanated distillery spent wash (BMDS) and their degradation by manganese peroxidase and laccase producing bacterial strains. Yadav Sangeeta,Chandra Ram Journal of environmental biology Biomethanated distillery spent wash (BMDS) retains dark black colour with complex persistent organic pollutants even after anaerobic treatment. The specific ratio (4:3:1:1) of Proteus mirabilis (FJ581028), Bacillus sp. (FJ581030), Raoultella planticola (GU329705) and Enterobacter sakazakii (FJ581031) decolourised BMDS up to 76% within 192 hr along with degradation of persistent organic compounds in presence of glucose (1%) and peptone (0.1%). The colour removal ability was noted due to ligninolytic enzyme activity. Where the maximum manganese peroxidase was 1.93 U ml(-1) and laccase activity equalled 0.84 U ml(-1). The gas chromatography-mass spectrophotometry (GC-MS) analysis confirmed the direct correlation between colourant and persistent organic pollutants due to simultaneous reduction of colour and pollutants present in BMDS. The seed germination test showed reduction of 75% toxicity after bacterial treatment process.
The Potential of Peroxidases Extracted from the Spent Mushroom ( Substrate Significantly Degrade Mycotoxin Deoxynivalenol. Tso Ko-Hua,Lumsangkul Chompunut,Ju Jyh-Cherng,Fan Yang-Kwang,Chiang Hsin-I Toxins Little is known about the degradability of mycotoxin deoxynivalenol (DON) by the spent mushroom substrate (SMS)-derived manganese peroxidase (MnP) and lignin peroxidase (LiP) and its potential. The present study investigated the growth inhibition of KR1 and the degradation of DON by MnP and LiP extracted from SMS. The results from the 7-day treatment period showed that mycelium inhibition of KR1 by MnP and LiP were 23.7% and 74.7%, respectively. Deoxynivalenol production in the mycelium of KR1 was undetectable after treatment with 50 U/mL of MnP or LiP for 7 days. -acetyl-D-glucosamine (GlcNAc) content and chitinase activity both increased in the hyphae of KR1 after treatment with MnP and LiP for 1, 3, and 6 h, respectively. At 12 h, only the LiP-treated group had higher chitinase activity and GlcNAc content than those of the control group ( < 0.05). However, more than 60% of DON degradabilities (0.5 mg/kg, 1 h) were observed under various pH values (2.5, 4.5, and 6.5) in both MnP (50 U/g) and LiP (50 U/g) groups, while DON degradability at 1 mg/kg was 85.5% after 50 U/g of LiP treatment for 7 h in simulated pig gastrointestinal tracts. Similarly, DON degradability at 5 mg/kg was 67.1% after LiP treatment for 4.5 h in simulated poultry gastrointestinal tracts. The present study demonstrated that SMS-extracted peroxidases, particularly LiP, could effectively degrade DON and inhibit the mycelium growth of KR1. 10.3390/toxins13010072
Studies on the characteristics and mechanism of aerobic biodegradation of tetrabromobisphenol A by Irpex lacteus F17. Chen Jie,Wu Juan,Fan Luosheng,Jia Rong Journal of basic microbiology The study investigated the characteristics of aerobic degradation of tetrabromobisphenol A (TBBPA) by Irpex lacteus F17 (I. lacteus F17) under four different cometabolic substrates (phenol, glucose, sodium pyruvate, and sodium citrate). The biodegradation of TBBPA by I. lacteus F17 could be enhanced via cometabolism, and glucose (8 g/L) was confirmed to be the optimum carbon source. For different initial solution pH ranging from 3.0 to 8.0, the results showed that I. lacteus F17 could be applied to biodegrade TBBPA in a wide pH range of 4.0-8.0, and the degradation rate could reach the maximum 75.31%, while the debromination rate reached the maximum 12.40% under pH 5.0. In addition, it has been confirmed that Mn (50 μmol/L) could promote the secretion of manganese peroxidase and TBBPA biodegradation efficiency. Seven intermediates were identified by gas chromatography-mass spectrometry analysis, and the possible degradation pathways were proposed, which indicated the biodegradation of TBBPA might be subjected to debromination, β-scission, hydroxylation, deprotonation, and oxidation reactions. 10.1002/jobm.202000732
Trapping of 2,7-dichlorodibenzo-p-dioxin in aqueous solution by enzymatic reaction of fungal manganese peroxidase in the presence of polyunsaturated fatty acids. Harazono Koichi,Watanabe Yoshio,Fukatsu Takema,Kurane Ryuichiro Current microbiology In the presence of polyunsaturated fatty acids, including cis-4,7,10,13,16,19-docosahexaenoic acid (DHA), 2,7-dichlorodibenzo-p-dioxin (DCDD) was treated with manganese peroxidase (MnP) from white rot basidiomycete Phanerochaete sordida YK-624. After incubation with MnP, DCDD could not be extracted from the reaction mixture with n-hexane and was trapped in the water layer. DCDD was released by alkalification of the water layer. DCDD was also trapped after treatment with lipoxidase, which produces hydroperoxides from unsaturated lipids. The amounts of thiobarbituric acid-reactive substances produced in the MnP reactions with three highly unsaturated fatty acids were higher than the amounts produced with three fatty acids with a lower degree of unsaturation. These results suggest that a DCDD-trapping compound may be produced by peroxidation of the polyunsaturated fatty acids. 10.1007/s00284-002-4001-5
Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white-rot basidiomycete Phlebia radiata. Van Aken B,Hofrichter M,Scheibner K,Hatakka A I,Naveau H,Agathos S N Biodegradation The degradation of the nitroaromatic pollutant 2,4,6-trinitrotoluene (TNT) by the manganese-dependent peroxidase (MnP) of the white-rot fungus Phlebia radiata and the main reduction products formed were investigated. In the presence of small amounts of reduced glutathione (10 mM), a concentrated cell-free preparation of MnP from P. radiata exhibiting an activity of 36 nkat/ml (36 nmol Mn(II) oxidized per sec and per ml) transformed 10 mg/l of TNT within three days. The same preparation was capable of completely transforming the reduced derivatives of TNT. When present at 10 mg/l, the aminodinitrotoluenes were transformed in less than two days and the diaminonitrotoluenes in less than three hours. Experiments with 14C-U-ring labeled TNT and 2-amino-4,6-dinitrotoluene showed that these compounds were mineralized by 22% and 76%, respectively, within 5 days. Higher concentrations of reduced glutathione (50 mM) led to a severe inhibition of the degradation process. It is concluded that Phlebia radiata is a good candidate for the biodegradation of TNT as well as its reduction metabolites. 10.1023/a:1008371209913
Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus. Hirano T,Honda Y,Watanabe T,Kuwahara M Bioscience, biotechnology, and biochemistry Degradation of 2,2-Bis(4-hydroxyphenyl)propane (bisphenol A, BPA), an endocrine-disturbing chemical, by the growing mycelia of the white-rot basidiomycete, Pleurotus ostreatus, was examined. About 80% of BPA initially present decreased in 12 days of culture with this fungus. By in vitro experiments using the lignin-degrading enzyme manganese peroxidase (MnP), BPA was metabolized to phenol, 4-isopropenylphenol, 4-isopropylphenol, and hexestrol. The degradation products of BPA were assumed to be formed by the one-electron oxidation of the substrate. 10.1271/bbb.64.1958
In vitro degradation of a polymeric dye (Poly R-478) by manganese peroxidase. Moreira M T,Palma C,Mielgo I,Feijoo G,Lema J M Biotechnology and bioengineering The aim of this study is the evaluation of the enzymatic action of the ligninolytic enzyme manganese peroxidase (MnP), through a suitable addition of H(2)O(2), as a feasible system for the in vitro degradation of complex structures. For this purpose, a highly recalcitrant polymeric dye (Poly R-478) was selected as a model compound. An amperometric technique was used to determine the H(2)O(2) requirement in the decolorization by nonpurified MnP. Two H(2)O(2) supply strategies-fed-batch (every hour) or semicontinuous (every 5 min)-were applied. The addition of H(2)O(2) in pulses led to a limited decolorization after the pulses and the instantaneous consumption or decomposition of H(2)O(2). Therefore, this way of addition may limit the actual H(2)O(2) concentration in the reaction mixture. In contrast, the semicontinuous strategy maintained lower and prolonged concentrations of H(2)O(2), which allowed a clearly greater decolorization (48% after 2 h). In addition, the effect of Mn(+2) concentration on the decolorization efficiency was investigated to establish the optimal application of the MnP-oxidative system. The enzymatic treatment provoked not only the destruction of the chromophoric groups but also a noticeable breakdown of the chemical structure of the dye. In experiments with pure enzyme, MnP proved to be the main factor responsible for the dye decolorization.
Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: role of manganese peroxidase. Steffen Kari T,Hatakka Annele,Hofrichter Martin Applied and environmental microbiology The litter-decomposing basidiomycete Stropharia coronilla, which preferably colonizes grasslands, was found to be capable of metabolizing and mineralizing benzo[a]pyrene (BaP) in liquid culture. Manganese(II) ions (Mn(2+)) supplied at a concentration of 200 micro M stimulated considerably both the conversion and the mineralization of BaP; the fungus metabolized and mineralized about four and twelve times, respectively, more of the BaP in the presence of supplemental Mn(2+) than in the basal medium. This stimulating effect could be attributed to the ligninolytic enzyme manganese peroxidase (MnP), whose activity increased after the addition of Mn(2+). Crude and purified MnP from S. coronilla oxidized BaP efficiently in a cell-free reaction mixture (in vitro), a process which was enhanced by the surfactant Tween 80. Thus, 100 mg of BaP liter(-1) was converted in an in vitro reaction solution containing 1 U of MnP ml(-1) within 24 h. A clear indication was found that BaP-1,6-quinone was formed as a transient metabolite, which disappeared over the further course of the reaction. The treatment of a mixture of 16 different polycyclic aromatic hydrocarbons (PAHs) selected by the U.S. Environmental Protection Agency as model standards for PAH analysis (total concentration, 320 mg liter(-1)) with MnP resulted in concentration decreases of 10 to 100% for the individual compounds, and again the stimulating effect of Tween 80 was observed. Probably due to their lower ionization potentials, poorly bioavailable, high-molecular-mass PAHs such as BaP, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene were converted to larger extents than low-molecular-mass ones (e.g., phenanthrene and fluoranthene). 10.1128/AEM.69.7.3957-3964.2003
Purification and characterization of a nylon-degrading enzyme. Deguchi T,Kitaoka Y,Kakezawa M,Nishida T Applied and environmental microbiology A nylon-degrading enzyme found in the extracellular medium of a ligninolytic culture of the white rot fungus strain IZU-154 was purified by ion-exchange chromatography, gel filtration chromatography, and hydrophobic chromatography. The characteristics of the purified protein (i.e., molecular weight, absorption spectrum, and requirements for 2,6-dimethoxyphenol oxidation) were identical to those of manganese peroxidase, which was previously characterized as a key enzyme in the ligninolytic systems of many white rot fungi, and this result led us to conclude that nylon degradation is catalyzed by manganese peroxidase. However, the reaction mechanism for nylon degradation differed significantly from the reaction mechanism reported for manganese peroxidase. The nylon-degrading activity did not depend on exogenous H2O2 but nevertheless was inhibited by catalase, and superoxide dismutase inhibited the nylon-degrading activity strongly. These features are identical to those of the peroxidase-oxidase reaction catalyzed by horseradish peroxidase. In addition, alpha-hydroxy acids which are known to accelerate the manganese peroxidase reaction inhibited the nylon-degrading activity strongly. Degradation of nylon-6 fiber was also investigated. Drastic and regular erosion in the nylon surface was observed, suggesting that nylon is degraded to soluble oligomers and that nylon is degraded selectively. 10.1128/AEM.64.4.1366-1371.1998
Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Eibes Gemma,Cajthaml Tomas,Moreira Maria Teresa,Feijoo Gumersindo,Lema Juan M Chemosphere The high hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) greatly hamper their degradation in liquid media. The use of an organic solvent can assist the degradative action of ligninolytic enzymes from white rot fungi. The enzymatic action of the enzyme manganese peroxidase (MnP) in media containing a miscible organic solvent, acetone (36% v/v), was evaluated as a feasible system for the in vitro degradation of three PAHs: anthracene, dibenzothiophene and pyrene. These compounds were degraded to a large extent after a short period of time (7, 24 and 24h, respectively), at conditions maximizing the MnP-oxidative system. The initial amount of enzyme present in the reaction medium was determinant for the kinetics of the process. The order of degradability, in terms of degradation rates was as follows: anthracene>dibenzothiophene>pyrene. The intermediate compounds were determined using gas chromatography-mass spectrometry and the degradation mechanisms were proposed. Anthracene was degraded to phthalic acid. A ring cleavage product of the oxidation of dibenzothiophene, 4-methoxybenzoic acid, was also observed. 10.1016/j.chemosphere.2005.11.075
Enzymatic membrane reactors for biodegradation of recalcitrant compounds. Application to dye decolourisation. López C,Mielgo I,Moreira M T,Feijoo G,Lema J M Journal of biotechnology Membrane bioreactors are being increasingly used in enzymatic catalysed transformations. However, the application of enzymatic-based treatment systems in the environmental field is rather unusual. The aim of this paper is to overview the application of enzymatic membrane reactors to wastewater treatment, more specifically to dye decolourisation. Firstly, the basic aspects such as different configurations of enzymatic reactors, advantages and disadvantages associated to their utilisation are revised as well as the application of this technology to wastewater treatment. Secondly, dye decolourisation by white-rot fungi and their oxidative enzymes are discussed, presenting an overall view from for in vivo and in vitro systems. Finally, dye decolourisation by manganese peroxidase in an enzymatic membrane reactor in continuous operation is presented.
Detoxification of azo dyes mediated by cell-free supernatant culture with manganese-dependent peroxidase activity: effect of Mn2+ concentration and H2O2 dose. Contreras Elsa,Urra Johana,Vásquez Carlos,Palma Carolyn Biotechnology progress White-rot fungi (WRF) are capable of degrading complex organic compounds such as lignin, and the enzymes that enable these processes can be used for the detoxification of recalcitrant organopollutants. The aim of this study is to evaluate a system based on the use of an in vitro ligninolytic enzyme for the detoxification of recalcitrant dye pollutants. The dyes selected for investigation were the anionic and cationic commercial azo dyes, basic blue 41 (BB41), acid black 1 (AB1), and reactive black 5 (RB5). A supernatant, cell-free culture of WRF with manganese peroxidase activity was used to investigate its degradative capacity under various conditions, and concentrations of cofactors, H(2)O(2) and Mn(2+). The assays were carried out using a 2(2) experimental designs whose variables were concentration of Mn(2+) (33 and 1,000 μM) and semicontinuous dosage of the H(2)O(2) (0.02 and 0.10 μmol) added at a frequency of 0.2 min(-1). The response variables analyzed were the efficiency and the initial rate of the decolorization process. The dye concentrations considered ranged from 10 to 200 mg L(-1). AB1 and RB5 were decolorized over the entire interval of concentrations studied; reaching efficiencies between 15 and 95%. Decolorization of up to 100 mg L(-1), BB41 had less than 30% efficiency. The decay of the concentration of AB1 was interpreted by two-stage kinetics model, with the exception of the condition of 33 μM Mn(2+)-0.02 μmol of H(2)O(2) in which only one stage was observed. For all assays performed with 33 μM Mn(2+), the initial rate of the decolorization process was found to be dependent on the dosage of H(2)O(2). The results of this study can be applied to the development bioreactors for the degradation of recalcitrant pollutants from the textile industry and may be used as a model for expanding the use of extracellular enzyme supernatants in bioremediation. 10.1002/btpr.722
Transformation of the recalcitrant pharmaceutical compound carbamazepine by Pleurotus ostreatus: role of cytochrome P450 monooxygenase and manganese peroxidase. Golan-Rozen Naama,Chefetz Benny,Ben-Ari Julius,Geva Joseph,Hadar Yitzhak Environmental science & technology Carbamazepine (CBZ) is an environmentally recalcitrant compound highly stable in soil and during wastewater treatment. In this study, we examined the mechanisms by which the white-rot fungus Pleurotus ostreatus metabolizes CBZ in liquid culture using a physiological approach. P. ostreatus PC9 was grown in media known to support different levels of a multiplicity of enzyme systems such as cytochrome P450 (CYP450) and manganese peroxidase (MnP). When both CYP450 and MnP systems were active, 99% of the added CBZ was eliminated from the solution and transformed to 10,11-epoxycarbamazepine. High removal of CBZ was also obtained when either MnP or CYP450 was active. When both CYP450 and MnP were inactivated, only 10 to 30% of the added CBZ was removed. In this latter system, removal of CBZ might be partially attributed to the activity of versatile peroxidase. P. ostreatus was able to eliminate CBZ in liquid culture even when CBZ was added at an environmentally relevant concentration (1 μg L(-1)). On the basis of our study, we suggest that two families of enzymes are involved in the oxidation of CBZ in liquid culture: MnP in a Mn(2+)-dependent or independent manner and CYP450. Our study also highlights the potential of using P. ostreatus for bioremediation systems. 10.1021/es200298t
Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Acevedo F,Pizzul L,Castillo M Dp,González M E,Cea M,Gianfreda L,Diez M C Chemosphere Manganese peroxidase (MnP) produced by Anthracophyllum discolor, a Chilean white rot fungus, was immobilized on nanoclay obtained from volcanic soil and its ability to degrade polycyclic aromatic hydrocarbons (PAHs) compared with the free enzyme was evaluated. At the same time, nanoclay characterization was performed. Nanoclay characterization by transmission electronic microscopy showed a particle average size smaller than 100 nm. The isoelectric points (IEP) of nanoclay and MnP from A. discolor were 7.0 and 3.7, respectively, as determined by micro electrophoresis migration and preparative isoelectric focusing. Results indicated that 75% of the enzyme was immobilized on the nanoclay through physical adsorption. As compared to the free enzyme, immobilized MnP from A. discolor achieved an improved stability to temperature and pH. The activation energy (Ea) value for immobilized MnP (51.9 kJ mol(-1)) was higher than that of the free MnP (34.4 kJ mol(-1)). The immobilized enzyme was able to degrade pyrene (>86%), anthracene (>65%), alone or in mixture, and to a less extent fluoranthene (<15.2%) and phenanthrene (<8.6%). Compared to free MnP from A. discolor, the enzyme immobilized on nanoclay enhanced the enzymatic transformation of anthracene in soil. Overall results indicate that nanoclay, a carrier of natural origin, is a suitable support material for MnP immobilization. In addition, immobilized MnP shows an increased stability to high temperature, pH and time storage, as well as an enhanced PAHs degradation efficiency in soil. All these characteristics may suggest the possible use of nanoclay-immobilized MnP from A. discolor as a valuable option for in situ bioremediation purposes. 10.1016/j.chemosphere.2010.04.022
Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium. Wen Xianghua,Jia Yannan,Li Jiaxi Journal of hazardous materials Pharmaceuticals have been attracting increasing attention in recent years as emerging contaminants, of which the most frequently detected kind in various environments are antibiotics. In this study, crude manganese peroxidase (MnP) prepared from the Phanerochaete chrysosporium, a white rot fungi, was taken as a highly efficient biocatalyst to degrade tetracycline (TC) and oxytetracycline (OTC) which are widely used antibiotics. The results show that 72.5% of 50mg/L of TC was degraded when added 40 U/L of MnP, while 84.3% of 50mg/L of OTC was degraded with the same amount of the catalyst added, both within 4h. The degradation rate was dependant on the pH and the temperature of the reaction system, and was likely sensitive to the concentration of H(2)O(2). With the pH at 2.96-4.80, the temperature at 37-40 degrees C, the Mn(2+) concentration higher than 0.1mM and up to 0.4mM, the H(2)O(2) concentration of 0.2mM, and the enzyme-substrate ratio above 2.0 U/mg, the degradation rate reached the highest. In addition, a separate series of experiments also show that the compensation of H(2)O(2) during the reaction process could improve the degradation of TC by MnP. 10.1016/j.jhazmat.2010.01.005
Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Baborová Petra,Möder Monika,Baldrian Petr,Cajthamlová Kamila,Cajthaml Tomás Research in microbiology The white-rot fungus Irpex lacteus has been reported to be an efficient degrader of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and pentachlorophenol. The fungus produces ligninolytic enzymes laccase, lignin peroxidase and manganese peroxidase (MnP), the latter being the major one produced. MnP was purified using anion exchange and size exclusion chromatography. SDS-PAGE showed the purified MnP to be a monomeric protein of 37 kDa (37.5 kDa using MALDI-TOF) with an isoelectric point at 3.55. The pH optimum was relatively broad, from 4.0 to 7.0 with a peak at pH 5.5. Kinetic constants K(m) were 8 microM for H(2)O(2) and 12 or 31 microM for Mn(2+) depending on the substrate. The enzyme did not perform oxidation in the absence of H(2)O(2) or Mn(2+). MnP was active at 5-70 degrees C with an optimum between 50-60 degrees C. At temperatures above 65 degrees C the enzyme rapidly lost activity. Degradation of four representatives of PAHs (phenanthrene, anthracene, fluoranthene, and pyrene) was tested and the enzyme showed the ability to degrade them in vitro. Major degradation products of anthracene were identified. The results confirm the role of MnP in PAH degradation by I. lacteus, including cleavage of the aromatic ring. 10.1016/j.resmic.2005.09.001
Phanerochaete chrysosporium IBL-03 secretes high titers of manganese peroxidase during decolorization of Drimarine Blue K2RL textile dye. Noreen Razia,Asgher Muhammad,Bhatti Haq Nawaz,Batool Shaheera,Asad Muhammad Javaid Environmental technology A novel indigenous strain, Phanerochaete chrysosporium IBL-03, with high manganese peroxidase (MnP) activities was used for decolorization of a reactive textile dye, Drimarine Blue K2R, which is used extensively in textile units of Pakistan. The initial experiment was run for seven days with 0.01% (w/v) dye solution prepared in Kirk's basal nutrient medium. Samples were removed after every 24 h and the extent of dye decolorization was determined at lambda(max) of the dye. The study revealed that P. chrysosporium caused 65% decolorization of Drimarine Blue K2RL in seven days. By process optimization, 97% colour removal could be achieved in three days using 0.005% (w/v) Drimarine Blue K2RL solution at pH 4.0 and 30 degrees C in defined Kirk's medium with 0.9% (w/v) molasses and 0.2% (w/v) ammonium dihydrogen phosphate added as carbon and nitrogen sources, respectively. Manganese peroxidase was found to be the major enzyme (560 IU/mL) involved in dye decolorization of Drimarine Blue K2RL by P. chrysosporium. The dye adsorption studies showed that the dye initially adsorbed on fungal mats disappeared later on, possibly by the action of MnP secreted by the fungus in secondary metabolism. 10.1080/09593330.2010.534820
Vault packaged enzyme mediated degradation of amino-aromatic energetic compounds. Lothe Anjali G,Kalra Shashank Singh,Wang Meng,Mack Elizabeth Erin,Walecka-Hutchison Claudia,Kickhoefer Valerie A,Rome Leonard H,Mahendra Shaily Chemosphere Amino-aromatic compounds, 2-amino-4-nitrotoluene (ANT), and 2,4-diaminotoluene (DAT) are carcinogens and environmentally persistent pollutants. In this study, we investigated their degradation by natural manganese peroxidase (nMnP) derived from Phanerochaete chrysosporium and recombinant manganese peroxidase packaged in vaults (vMnP). Encapsulation of manganese peroxidase (MnP) in ribonucleoprotein nanoparticle cages, called vaults, was achieved by creating recombinant vaults in yeast Pichia pastoris. Vault packaging increased the stability of MnP by locally sequestering multiple copies of the enzyme. Within 96  h, both vMnP and nMnP catalyzed over 72% removal of ANT in-vitro, which indicates that vault packaging did not limit substrate diffusion. It was observed that vMnP was more efficient than nMnP and P. chrysosporium for the catalysis of target contaminants. Only 57% of ANT was degraded by P. chrysosporium even when MnP activity reached about 480 U L in cultures. At 1.5 U L initial activity, vMnP achieved 38% of ANT and 51% of DAT degradation, whereas even 2.7 times higher activity of nMnP showed insignificant biodegradation of both compounds. These results imply that due to protection by vault cages, vMnP has lower inactivation rates. Thus, it works effectively at lower dosage for a longer duration compared to nMnP without requiring frequent replenishment. Collectively, these results indicate that fungal enzymes packaged in vault nanoparticles are more stable and active, and they would be effective in biodegradation of energetic compounds in industrial processes, waste treatment, and contaminated environments. 10.1016/j.chemosphere.2019.125117
Oxidative degradation of azo dyes by manganese peroxidase under optimized conditions. Mielgo I,López C,Moreira M T,Feijoo G,Lema J M Biotechnology progress The application of enzyme-based systems in waste treatment is unusual, given that many drawbacks are derived from their use, including low efficiency, high costs and easy deactivation of the enzyme. The goal of this study is the development of a degradation system based on the use of the ligninolytic enzyme manganese peroxidase (MnP) for the degradation of azo dyes. The experimental work also includes the optimization of the process, with the objective of determining the influence of specific physicochemical factors, such as organic acids, H(2)O(2) addition, Mn(2+) concentration, pH, temperature, enzyme activity and dye concentration. A nearly total decolorization was possible at very low reaction times (10 min) and at high dye concentration (up to 1500 mg L(-)(1)). A specific oxidation capacity as high as 10 mg dye degraded per unit of MnP consumed was attained for a decolorization higher than 90%. Among all, the main factor affecting process efficiency was the strategy of H(2)O(2) addition. The continuous addition at a controlled flow permitted the progressive participation of H(2)O(2) in the catalytic cycle through a suitable regeneration of the oxidized form of the enzyme, which enhanced both the extent and the rate of decolorization. It was also found that, in this particular case, the presence of a chelating organic acid (e.g., malonic) was not required for an effective operation. Probably, Mn(3+) was chelated by the dye itself. The simplicity and high efficiency of the process open an interesting possibility of using of MnP for solving other environmental problems. 10.1021/bp020136w
Studies on mediators of manganese peroxidase for bleaching of wood pulps. Bermek Hakan,Li Kaichang,Eriksson Karl-Erik L Bioresource technology In order to enhance the bleaching effect of manganese peroxidase (MnP), unsaturated fatty acids, thiol-containing compounds and various other organic compounds were applied in pulp bleaching experiments with MnP. Thiol-containing compounds did not improve the pulp bleaching effect by MnP. Some unsaturated fatty acids, linoleic acid and linolenic acid provided a better pulp bleaching effect than Tween 80. The correlation between the number of C=C bonds in a fatty acid and its pulp bleaching effect was also investigated. The MnP pulp bleaching capability was shown to depend on the carboxylic acid used. A combination of Tween 80 and a carboxylic acid resulted in higher pulp brightness than that obtained with Tween 80 alone. A laccase mediator, 3-hydroxy-1,2,3-benzotriazin-4(3H)-one, could also enhance the MnP pulp bleaching effect. 10.1016/s0960-8524(02)00132-3
Degradation of Four Major Mycotoxins by Eight Manganese Peroxidases in Presence of a Dicarboxylic Acid. Toxins Enzymatic treatment is an attractive method for mycotoxin detoxification, which ideally prefers the use of one or a few enzymes. However, this is challenged by the diverse structures and co-contamination of multiple mycotoxins in food and feed. Lignin-degrading fungi have been discovered to detoxify organics including mycotoxins. Manganese peroxidase (MnP) is a major enzyme responsible for lignin oxidative depolymerization in such fungi. Here, we demonstrate that eight MnPs from different lignocellulose-degrading fungi (five from , one from , one from , and another from ) could all degrade four major mycotoxins (aflatoxin B, AFB; zearalenone, ZEN; deoxynivalenol, DON; fumonisin B, FB) only in the presence of a dicarboxylic acid malonate, in which free radicals play an important role. The and MnPs behaved similarly in mycotoxins transformation, outperforming the and MnPs. The large evolutionary diversity of these MnPs suggests that mycotoxin degradation tends to be a common feature shared by MnPs. MnP can, therefore, serve as a candidate enzyme for the degradation of multiple mycotoxins in food and feed if careful surveillance of the residual toxicity of degradation products is properly carried out. 10.3390/toxins11100566
Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme. Boer Cinthia Gandolfi,Obici Larissa,de Souza Cristina Giatti Marques,Peralta Rosane M Bioresource technology The ability of the white-rot fungus Lentinula (Lentinus) edodes to decolorize several synthetic dyes was investigated using solid state cultures with corn cob as substrate. Cultures, containing amido black, congo red, trypan blue, methyl green, remazol brilliant blue R, methyl violet, ethyl violet and Poly R478 at 200 ppm, were completely decolorized after 18 days of incubation. Partial decolorization was observed in the cultures containing 200 ppm of brilliant cresyl blue and methylene blue. High manganese peroxidase activity (2600 U/g substrate), but very low lignin peroxidase (<10 U/g substrate) and laccase (<16 U/g substrate) activities were detected in the cultures. In vitro, the dye decolorization was markedly decreased by the absence of manganic ions and H2O2. These data suggest that manganese peroxidase appear to be the main responsible for the capability of L. edodes to decolorize synthetic dyes. 10.1016/j.biortech.2003.12.015
Characterization of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba. de la Rubia Teresa,Linares Araceli,Pérez Juana,Muñoz-Dorado José,Romera José,Martínez José Research in microbiology Phanerochaete flavido-alba is able to decolorize and detoxify olive oil wastewater (OMW) in a process in which simple and polymeric phenols are removed. An unusual acidic MnP is accumulated during the degradation course. This microorganism produces two families of MnPs. MnP1 has an apparent molecular weight of 45 kDa and is secreted as a mixture of isoenzymes with pI ranging from 5.6 to 4.75. MnP2, which is produced as an unique isoenzyme, has an apparent molecular weight of 55.6 Mr and an unusual acidic pI lower than 2.8. The higher specific peroxidase activity for purified MnP2 was for Mn2+ oxidation. Hydroquinone and methylhydroquinone oxidation by MnP2 was Mn2+ dependent, in reaction mixtures without exogenous H2O2. Conversely, ABTS oxidation was Mn2+ independent. Two different DNA fragments (mnpA and mnpB), amplified by PCR, using MnP2 N-terminal sequence and oligonucleotides deduced from two conserved sequences of other MnPs, code for MnPs that belong to the P. chrysosporium mnp2 subfamily on the basis of intron position. The structure of mnpA and mnpB seems to be related to known manganese peroxidase genes, but mnpA encodes an Alanine instead of a Serine (Ser168) regarded as invariant within typical MnPs.
Production of manganese-dependent peroxidase in a new solid-state bioreactor by Phanerochaete chrysosporium grown on wood shavings. Application to the decolorization of synthetic dyes. Rodríguez Couto S,Domínguez A,Sanromán A Folia microbiologica The production of manganese-dependent peroxidase (MnP) by Phanerochaete chrysosporium in a new solid-state bioreactor, the immersion bioreactor, operating with lignocellulosic waste, such as wood shavings, was investigated. Maximum MnP and lignin peroxidase (LiP) activity of 13.4 and 8.48 mukat/L were obtained, respectively. The in vitro decolorization of several synthetic dyes by the extracellular liquid produced in the above-mentioned bioreactor (containing mainly MnP) was carried out and its degrading ability was assessed. The highest decolorization was reached with Indigo Carmine (98%) followed by Bromophenol Blue (56%) and Methyl Orange (36%), whereas Gentian Violet was hardly decolorized (6%).
Degradation of the antifouling compound Irgarol 1051 by manganese peroxidase from the white rot fungus Phanerochaete chrysosporium. Ogawa Naoto,Okamura Hideo,Hirai Hirofumi,Nishida Tomoaki Chemosphere Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine), a derivative of s-triazine herbicide, is an antifouling compound used as an alternative to organotins. The compound is highly persistent and is known to be biodegraded only by the white rot fungus, Phanerochaete chrysosporium. We used partially purified manganese peroxidase (MnP) prepared from P. chrysosporium to evaluate its capacity to degrade Irgarol 1051. MnP degraded Irgarol 1051 to two major products, one identified as M1 (identical to GS26575, 2-methylthio-4-tert-butylamino-6-amino-s-triazine) and the other not identified but with same mass spectrum as M1 and a different ultraviolet spectrum. This report clearly demonstrates that this ligninolytic enzyme is involved in the degradation of Irgarol 1051. 10.1016/j.chemosphere.2003.11.012
Degradation of sulfide linkages between isoprenes by lipid peroxidation catalyzed by manganese peroxidase. Sato Shin,Ohashi Yasunori,Kojima Masaaki,Watanabe Takahito,Honda Yoichi,Watanabe Takashi Chemosphere Scission of sulfide linkages in vulcanized rubber has been a major concern since the early 20th century, because devulcanization is a key process for recycling waste rubber products as polymer materials that pose low environmental risks. We herein demonstrate that lipid peroxidation (LPO) of linoleic acid by manganese peroxidase (MnP), a proposed lignin-degradation system in the early stage of selective white rot fungi, cleaves sulfide bond in a model rubber compound, di(2-methylpent-2-enyl) sulfide, to 2,4-dimethylthiophene and 2-methyl-2-pentenal. The major intermediate of the LPO process, 2,4-decadienal was directly oxidized by MnP to cleave the sulfur-carbon bond. We propose that electrophilic radicals from 2,4-decadienal abstract one electron from a sulfur atom of the model compound to produce the sulfur radical cation intermediate, which in turn reacts with molecular oxygen to cleave the sulfur-carbon bond. The discovery of free radical-mediated scission of sulfide bond coupled with Mn oxidation provides a novel strategy for recycling vulcanized rubber wastes. 10.1016/j.chemosphere.2009.08.014
Implication of manganese (III), oxalate, and oxygen in the degradation of nitroaromatic compounds by manganese peroxidase (MnP). Van Aken B,Agathos S N Applied microbiology and biotechnology The fungal ligninolytic enzyme manganese peroxidase (MnP) is known to function by oxidizing Mn(II) to Mn(III), a powerful oxidant. In this work, an abiotic system consisting of Mn(III) in oxalate buffer under aerobic conditions (Mn(III)/oxalate/O2 system) was shown to be capable of extensively transforming 2-amino-4,6-dinitrotoluene (2A46DNT)--one of the main reduction products of 2,4,6-trinitrotoluene (TNT). No significant transformation occurred in the presence of other organic acids or under anaerobic conditions. The Mn(III)/oxalate/O2 system was also able to transform other nitroaromatic compounds such as 2-nitrotoluene, 4-nitrotoluene, 2,4-dinitrotoluene, TNT - the latter to a lesser extent -, and their reduction derivatives. The Mn(III)/oxalate/O2 system mineralized 14C-U-ring labeled 2A46DNT slightly, while no significant mineralization of 14C-U-ring labeled TNT was observed. Unidentified 14C-transformation products were highly polar. Electron spin resonance experiments performed on the Mn(III)/oxalate/O2 system revealed the generation of formyl free radicals (*COO-). The oxygen requirement for the transformation of nitroaromatic compounds suggests the involvement of superoxide free radicals (O2-*). produced through autoxidation of *COO- by molecular oxygen. The implication of such a Mn(III)/oxalate/O2 system in the MnP-catalyzed degradation of nitroaromatic pollutants by white-rot fungi is further discussed. 10.1007/s00253-001-0888-1
Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. Sack U,Hofrichter M,Fritsche W FEMS microbiology letters The degradation of polycyclic aromatic hydrocarbons by a manganese peroxidase crude preparation of Nematoloma forwardii was demonstrated for a mixture of eight different polycyclic aromatic hydrocarbons, and the five individual polycyclic aromatic hydrocarbons phenanthrene, anthracene, pyrene, fluoranthene, and benzo[alpha]pyrene. Oxidation of polycyclic aromatic hydrocarbons was enhanced by the addition of glutathione, a mediator substance, able to form reactive thiyl radicals. Glutathione-mediated manganese peroxidase (1.96 U ml(-1)) was capable of mineralizing [14C]pyrene (7.3%),[14C]anthracene (4.7%), [14C]benzo[alpha]pyrene (4.0%), [14C]benz(alpha)anthracene 2.9%), and [14C]phenanthrene (2.5%) in a period of 168 h. This is the first description of direct enzymatic mineralization of polycyclic aromatic hydrocarbons by manganese peroxidase, and indicates their important role in the oxidation of polycyclic aromatic hydrocarbons by wood-decaying fungi. 10.1111/j.1574-6968.1997.tb10432.x
Optimization of culture medium composition for manganese peroxidase and tyrosinase production during Reactive Black 5 decolourization by the yeast Trichosporon akiyoshidainum. Martorell María M,Pajot Hipólito F,Rovati José I,Figueroa Lucía I C Yeast (Chichester, England) Decolourization and degradation of the diazo dye Reactive Black 5 was carried out by the yeast Trichosporon akiyoshidainum. A nine-factor Plackett-Burman design was employed for the study and optimization of the decolourization process and production of manganese peroxidase (MnP) and tyrosinase activities. In the present study, 26 individual experiments were conducted and three responses were evaluated. Raising yeast extract concentration significantly enhanced decolourization and MnP production. Carbon and nitrogen sources, glucose and (NH4)2 SO4, showed no significant effect on any response over the concentration range tested. Other culture medium components, such as CaCl2 or MgSO4, could be excluded from the medium formula, as they had no effect on the evaluated responses. Metal ions (Fe, Cu and Mn) showed different effects on decolourization and enzymatic activities. Addition of copper significantly enhanced MnP activity and decreased dye decolourization. On the contrary, iron had a positive effect on decolourization and no effect on enzyme production. Oddly, increasing manganese concentration had a positive effect on tyrosinase production without affecting decolourization or MnP activity. These results strongly suggest that dye decolourization should be regarded as a complex multi-enzymatic process, where optimal medium composition should arise as a compromise between those optimal for each implied enzyme production. 10.1002/yea.2896
Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17. Yang Xueting,Zheng Jinzhao,Lu Yongming,Jia Rong Environmental science and pollution research international Malachite green (MG), a recalcitrant, carcinogenic, and mutagenic triphenylmethane dye, was decolorized and detoxified using crude manganese peroxidase (MnP) prepared from the white rot fungus Irpex lacteus F17. In this study, the key factors (pH, temperature, MG, Mn(2+), H2O2, MnP) in these processes were investigated. Under optimal conditions, 96 % of 200 mg L(-1) of MG was decolorized when 66.32 U L(-1) of MnP was added for 1 h. The K m, V max, and k cat values were 109.9 μmol L(-1), 152.8 μmol L(-1) min(-1), and 44.5 s(-1), respectively. The decolorization of MG by MnP followed first-order reaction kinetics with a kinetic rate constant of 0.0129 h(-1). UV-vis and UPLC analysis revealed degradation of MG. Furthermore, seven different intermediates formed during the MnP treatment of 0.5 h were identified by LC-TOF-MS. These degradation products were generated via two different routes by either N-demethylation of MG or the oxidative cleavage of the C-C double bond in MG. Based on ecotoxicity analyses performed on bacteria and algae, it was confirmed that MG metabolites produced by the MnP-catalyzed system were appreciably less toxic than the parent compound. These studies indicate the potential use of this enzyme system in the clean-up of aquatic and terrestrial environments. 10.1007/s11356-016-6164-9
Interactions of carbon nanotubes and/or graphene with manganese peroxidase during biodegradation of endocrine disruptors and triclosan. Chen Ming,Zeng Guangming,Lai Cui,Zhang Chang,Xu Piao,Yan Min,Xiong Weiping Chemosphere Molecular-level biodegradation processes of bisphenol A (BPA), nonylphenol (NP) and triclosan (TCS) mediated by manganese peroxidase (MnP) were investigated with and without single-walled carbon nanotube (SWCNT) and/or graphene (GRA). Although the incorporation of SWCNT, GRA or their combination (SWCNT+GRA) did not break up the complexes composed of manganese peroxidase (MnP) and these substrates, they had different effects on the native contacts between the substrates and MnP. GRA tended to decrease the overall stability of the binding between MnP and its substrates. SWCNT or SWCNT+GRA generally had a minor impact on the mean binding energy between MnP and its substrates. We detected some sensitive residues from MnP that were dramatically disturbed by the GRA, SWCNT or SWCNT+GRA. Nanomaterials changed the number and behavior of water molecules adjacent to both MnP and its substrates, which was not due to the destruction of H-bond network formed by sensitive regions and water molecules. The present results are useful for understanding the molecular basis of pollutant biodegradation affected by the nanomaterials in the environment, and are also helpful in assessing the risks of these materials to the environment. 10.1016/j.chemosphere.2017.05.162
Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus. Inoue Yukiko,Hata Takayuki,Kawai Shingo,Okamura Hideo,Nishida Tomoaki Journal of hazardous materials The antimicrobial and preservative agent triclosan (TCS) is an emerging and persistent pollutant with a ubiquitous presence in the aquatic environment. Thus, TCS was treated with manganese peroxidase (MnP), laccase and the laccase-mediator system with 1-hydroxybenzotriazole. MnP was most effective in eliminating TCS among the three enzymatic treatments, with TCS concentration being reduced by about 94% after 30 min following treatment with 0.5 nkat mL(-1) MnP and being almost completely eliminated after 60 min. Furthermore, MnP (0.5 nkat mL(-1)) caused the complete loss of bacterial growth inhibition by TCS after 30 min and reduced the algal growth inhibition of TCS by 75% and 90% after 30 and 60 min, respectively. These results strongly suggest that MnP is effective in removing the ecotoxicity of TCS. 10.1016/j.jhazmat.2010.04.024
Kinetic characterization, thermo-stability and Reactive Red 195A dye detoxifying properties of manganese peroxidase-coupled gelatin hydrogel. Bilal Muhammad,Asgher Muhammad,Hu Hongbo,Zhang Xuehong Water science and technology : a journal of the International Association on Water Pollution Research An indigenous and industrially important manganese peroxidase (MnP) was isolated from solid-state bio-processing of wheat bran by white-rot fungal strain Ganoderma lucidum IBL-05 under pre-optimized growth conditions. Crude MnP extract was partially purified (2.34-fold) to apparent homogeneity by ammonium sulphate precipitation and dialysis. The homogeneous enzyme preparation was encapsulated on gelatin matrix using glutaraldehyde as a cross-linking agent. Optimal conditions for highest immobilization (82.5%) were: gelatin 20% (w/v), glutaraldehyde 0.25% (v/v) and 2 h activation time using 0.6 mg/mL of protein concentration. Gelatin-encapsulated MnP presented its maximum activity at pH 6.0 and 60 °C. Thermo-stability was considerably improved after immobilization. The optimally active MnP fraction was tested against MnSO as a substrate to calculate kinetic parameters. More than 90% decolorization of Sandal-fix Red CBLN (Reactive Red 195A) dye was achieved with immobilized MnP in 5 h. It also preserved more than 50% of its original activity after the sixth reusability cycle. The water quality parameters (pH, chemical oxygen demand, total organic carbon) and cytotoxicity (brine shrimp and Daphnia magna) studies revealed the non-toxic nature of the bio-treated dye sample. A lower K, higher V, greater acidic and thermal-resistant up to 60 °C were the improved catalytic features of immobilized MnP suggesting its suitability for a variety of biotechnological applications. 10.2166/wst.2016.363
Ligninolytic enzymes: Versatile biocatalysts for the elimination of endocrine-disrupting chemicals in wastewater. Falade Ayodeji O,Mabinya Leonard V,Okoh Anthony I,Nwodo Uchechukwu U MicrobiologyOpen Direct municipal wastewater effluent discharge from treatment plants has been identified as the major source of endocrine-disrupting chemicals (EDC) in freshwaters. Consequently, efficient elimination of EDC in wastewater is significant to good water quality. However, conventional wastewater treatment approaches have been deficient in the complete removal of these contaminants. Hence, the exploration of new and more efficient methods for elimination of EDC in wastewater is imperative. Enzymatic treatment approach has been suggested as a suitable option. Nonetheless, ligninolytic enzymes seem to be the most promising group of enzymes for EDC elimination, perhaps, owing to their unique catalytic properties and characteristic high redox potentials for oxidation of a wide spectrum of organic compounds. Therefore, this paper discusses the potential of some ligninolytic enzymes (laccase, manganese peroxidase, and versatile peroxidase) in the elimination of EDC in wastewater and proposes a new scheme of wastewater treatment process for EDC removal. 10.1002/mbo3.722
Laccases, Manganese Peroxidases and Xylanases Used for the Bio-bleaching of Paper Pulp: An Environmental Friendly Approach. Saleem Rabia,Khurshid Mohsin,Ahmed Safia Protein and peptide letters BACKGROUND:The paper and pulp industry is a capital and resource-intensive industry that contributes to ecosystem toxicity and affects human beings. OBJECTIVE:The study aimed to appraise the potential of xylanases, laccases and manganese peroxidase for the bio-bleaching of paper pulp and to highlight the role of these enzymes as a promising substitute for chlorine-based chemical methods in the bleaching process. METHODS:The ligninolytic enzymes including xylanase, laccase and manganese peroxidase isolated from white rot fungi were used for pre-bleaching and bleaching of oven-dried wheat straw pulp. RESULTS:During the sequential enzymatic treatment of oven-dried pulp the brightness was improved and kappa number was reduced by 3.1% and 3.1 points respectively after xylanase treatment, 0.3% and 0.4 points after laccase treatment and 3% and 0.2 points after MnP treatment. During separate treatment of pulp samples with individual enzymes, brightness and kappa number improved by 8% and 3 points respectively after xylanase treatment, by 5% and 1.7 points after laccase treatment and 5% and 1.8 points after treatment with MnP. During subsequent treatment with 4% sodium hypochlorite, the brightness was further improved by 27.9 % for xylanase treated pulp and 29% for the laccase and MnP treated pulp. The xylanase was found most efficient in comparison to laccase and MnP in reduction of kappa number and improvement of brightness. CONCLUSION:These results clearly indicate the role of laccase, MnP and xylanase from white rot fungi as effective bio-bleaching agents. Therefore, these enzymes can facilitate the bleaching process without threat to environment. 10.2174/0929866525666180122100133
[Transformation of biphenyl intermediate metabolite by manganese peroxidase from a white rot fungus SQ01]. Yang Xiuqing,Zhang Xinxian Wei sheng wu xue bao = Acta microbiologica Sinica Objective:To understand the biochemical role of white rot fungus Trametes sp. SQ01 manganese peroxidase (MnP) towards 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoates (HOPDA)/HOPDA derivatives and to reveal the new catalytic features of MnP, white rot fungus Trametes sp. SQ01 MnP was extracted, and the purified enzymes were used in the oxidation of HOPDAs. Methods:UV-vis spectrophotometry was used to study the transformation of 10 substituted HOPDAs by manganese peroxidase and measure the steady-state kinetics parameters of manganese peroxidase against parts of HOPDAs. The molecular structures of HOPDA and HOPDA oxidation product were analyzed by infrared spectroscopy. Results:Manganese peroxidase exhibited catalytic activity towards both HOPDA and halogenated HOPDA. Especially, our manganese peroxidase used 3,8,11-3Cl HOPDA as substrate, while biphenyl hydrolase (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase) and Rhodococcus sp. R04 showed negligible activity towards this substrate. The steady-state kinetic analysis indicated that HOPDA displayed the lowest Km among 5 HOPDAs, the catalytic efficiency (Kcat/Km) of 3, 10-2F HOPDA was the highest. UV-visible spectroscopy analysis indicated that the maximum absorption of products of HOPDA showed blue-shift with increasing the reaction time in the visible region. Infrared analysis showed that MnP converted conjugated diene of HOPDA to monoethylenically, and cause hydroxyl on Cβ to disappear. Conclusion:Manganese peroxidase can effectively degrade HOPDA and its derivatives. Such catalytic properties of manganese peroxidase provide a new strategy for successfully degrading biphenyl and its intermediate metabolites.
Heterologous expression of manganese peroxidase in Aspergillus niger and its effect on phenanthrene removal from soil. Cortés-Espinosa Diana V,Absalón Ángel E,Sanchez Noé,Loera Octavio,Rodríguez-Vázquez Refugio,Fernández Francisco J Journal of molecular microbiology and biotechnology A strain of Aspergillus niger, previously isolated from sugarcane bagasse because of its capacity to degrade phenanthrene in soil by solid culture, was used to express a manganese peroxidase gene (mnp1) from Phanerochaete chrysosporium, aiming at increasing its polycyclic aromatic hydrocarbons degradation capacity. Transformants were selected based on their resistance to hygromycin B and the discoloration induced on Poly R-478 dye by the peroxidase activity. The recombinant A. niger SBC2-T3 strain developed MnP activity and was able to remove 95% of the initial phenanthrene (400 ppm) from a microcosm soil system after 17 days, whereas the wild strain removed 72% under the same conditions. Transformation success was confirmed by PCR amplification using gene-specific primers, and a single fragment (1,348 bp long, as expected) of the recombinant mnp1 was amplified in the DNA from transformants, which was absent from the parental strain. 10.1159/000331563
Evaluation of manganese peroxidase (MnP) for its ability to resist the ozonization and thereafter decolorize methyl orange. Cheng Zhou,Xiang-hua Wen,Xi Zhao Water science and technology : a journal of the International Association on Water Pollution Research The goal of this study was to determine whether ozone can be used to suppress bacterial growth in operating a white rot fungi reactor system. The effects of ozone dose on the activity of manganese peroxidase (MnP) and on the death rate of Escherichia coli were investigated. The results showed that at ozone dose of 0.98 mg/L the MnP activity was not affected after 40 min continuous treatment while the Escherichia coli inactivation rate can reach 99.9% after 30 min; In addition, the MnP that exposed to ozone dose of 1.56 mg/L for 40 min maintained their activity for decolorization of Methyl Orange. After 16 h, the decolorization rate of Methyl Orange was about 41%. These results showed that MnP have the ability to resist to some extent the attack of ozonization, which suggest that ozone might have its potential in suppressing the bacteria contamination in operating the white rot fungi reactor. 10.2166/wst.2010.466
Detoxification of aflatoxin B1 by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624. Wang Jianqiao,Ogata Makoto,Hirai Hirofumi,Kawagishi Hirokazu FEMS microbiology letters Aflatoxin B(1) (AFB(1) ) is a potent mycotoxin with mutagenic, carcinogenic, teratogenic, hepatotoxic, and immunosuppressive properties. In order to develop a bioremediation system for AFB(1) -contaminated foods by white-rot fungi or ligninolytic enzymes, AFB(1) was treated with manganese peroxidase (MnP) from the white-rot fungus Phanerochaete sordida YK-624. AFB(1) was eliminated by MnP. The maximum elimination (86.0%) of AFB(1) was observed after 48 h in a reaction mixture containing 5 nkat of MnP. The addition of Tween 80 enhanced AFB(1) elimination. The elimination of AFB(1) by MnP considerably reduced its mutagenic activity in an umu test, and the treatment of AFB(1) by 20 nkat MnP reduced the mutagenic activity by 69.2%. (1) H-NMR and HR-ESI-MS analysis suggested that AFB(1) is first oxidized to AFB(1) -8,9-epoxide by MnP and then hydrolyzed to AFB(1) -8,9-dihydrodiol. This is the first report that MnP can effectively remove the mutagenic activity of AFB(1) by converting it into AFB(1) -8,9-dihydrodiol. 10.1111/j.1574-6968.2010.02158.x
Induction, purification and characterization of a novel manganese peroxidase from Irpex lacteus CD2 and its application in the decolorization of different types of dye. Qin Xing,Zhang Jie,Zhang Xiaoyu,Yang Yang PloS one Manganese peroxidase (MnP) is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B), anthraquinone dye (Remazol Brilliant Blue R), indigo dye (Indigo Carmine) and triphenylmethane dye (Methyl Green) as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology. 10.1371/journal.pone.0113282
Nano-assembly of manganese peroxidase and lignin peroxidase from P. chrysosporium for biocatalysis in aqueous and non-aqueous media. Patel Devendra S,Aithal Rajendra K,Krishna Gopal,Lvov Yuri M,Tien Ming,Kuila Debasish Colloids and surfaces. B, Biointerfaces Development, characterization, and activity studies of nano-assemblies of lignin peroxidase (LiP), and manganese peroxidase (MnP) from Phanerochaete chrysosporium on flat surfaces as well as colloidal particles have been investigated. These assemblies of LiP and MnP were fabricated with polyelectrolytes-poly(ethylenimine) (PEI), poly(dimethyldiallylammonium chloride) (PDDA), and poly(allylamine) (PAH)-using a layer-by-layer self-assembly technique (LbL). Characterization of these assemblies on flat surfaces was monitored using quartz crystal microbalance (QCM), while assemblies on microparticles such as melamine formaldehyde (MF) were carried out with zeta potential analyzer (ZPA). A unique dynamic adsorption-desorption of the enzyme layers is observed during the assembly. All the nano-assemblies of LiP and MnP can effectively oxidize veratryl alcohol (VA) to its aldehyde for an extended period of time. The effect of different polyions and the number of polyion layers on the activities of LiP and MnP nano-assembly was also examined. It is observed that drying of enzyme layer during the assembly and the use of non-aqueous media, such as acetone can significantly reduce the activity of the enzymes. Enzyme activity reaches a minimum when the concentration of acetone is increased to 30%; however, the activity can be restored to its original value by increasing the concentration of aqueous media. Preliminary studies using assemblies of LiP and MnP on MF microparticles further demonstrate the feasibility of developing potential systems for degradation of environmental pollutants. 10.1016/j.colsurfb.2005.03.007
Conversion of adamsite (phenarsarzin chloride) by fungal manganese peroxidase. Haas R,Tsivunchyk O,Steinbach K,von Löw E,Scheibner K,Hofrichter M Applied microbiology and biotechnology Fungal manganese peroxidase was found to convert the persistent chemical warfare agent adamsite (phenarsarzin chloride) in a cell-free reaction mixture containing sodium malonate, Mn(2+) ions, and reduced glutathione. The organo-arsenical compound disappeared completely within 48 h accompanied by the formation of a more polar metabolite with a clearly modified UV spectrum. Thus, As(III) in the adamsite molecule was oxidized by manganese peroxidase to As(V) which added dioxygen and released chloride. 10.1007/s00253-003-1453-x
Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. Bilal Muhammad,Asgher Muhammad,Iqbal Munawar,Hu Hongbo,Zhang Xuehong International journal of biological macromolecules Textile industry has led to severe environmental pollution and is posing a serious threat to the ecosystems. Immobilized biocatalysts have gained importance as potential bio-remediating agent. Manganese peroxidase (MnP) was immobilized onto glutaraldehyde activated chitosan beads by crosslinking and employed for the degradation and detoxification of dyes in textile effluents. The efficiency of chitosan-immobilized MnP (CI-MnP) was evaluated on the basis of decolorization, water quality improvement and toxicity reduction. Maximum color removal of 97.31% was recorded and up to 82.40%, 78.30% and 91.7% reductions in COD, TOC, and BOD were achieved, respectively. The cytotoxicity of bio-treated effluents reduced significantly and 38.46%, 43.47% and 41.83% Allium cepa root length, root count and mitotic index were increased, respectively, whereas brine shrimp nauplii death reduced up to 63.64%. Mutagenicity (Ames test) reduced up to 73.44% and 75.43% for TA98 and TA100 strains, respectively. The CI-MnP retained 60% activity after 10 repeated decolorization batches. The CI-MnP showed excellent efficiency for the bioremediation of textile effluents and can be used for the remediation of toxic agents in wastewater. The monitoring of processed wastewater using bioassays is suggested to evaluate bio-efficiency of treatment method for safe disposal of effluents into water bodies. 10.1016/j.ijbiomac.2016.04.075
Methylene blue as a lignin surrogate in manganese peroxidase reaction systems. Goby Jeffrey D,Penner Michael H,Lajoie Curtis A,Kelly Christine J Analytical biochemistry Manganese peroxidase (MnP) is associated with lignin degradation and is thus relevant to lignocellulosic-utilization technologies. Technological applications require reaction mixture optimization. A surrogate substrate can facilitate this if its susceptibility to degradation is easily monitored and mirrors that of lignin. The dye methylene blue (MB) was evaluated in these respects as a surrogate substrate by testing its reactivity in reaction mixtures containing relevant redox mediators (dicarboxylic acids, fatty acids). Relative rates of MB degradation were compared to available literature reports of lignin degradation under similar conditions, and suggest that MB can be a useful lignin surrogate in MnP systems. 10.1016/j.ab.2017.08.010
Fungal Growth and Manganese Peroxidase Production in a Deep Tray Solid-State Bioreactor, and In Vitro Decolorization of Poly R-478 by MnP. Zhao Xinshan,Huang Xianjun,Yao Juntao,Zhou Yue,Jia Rong Journal of microbiology and biotechnology The growth of Irpex lacteus F17 and manganese peroxidase (MnP) production in a selfdesigned tray bioreactor, operating in solid-state conditions at a laboratory scale, were studied. The bioreactor was divided into three layers by three perforated trays. Agroindustrial residues were used both as the carrier of bound mycelia and as a nutrient medium for the growth of I. lacteus F17. The maximum biomass production in the bioreactor was detected at 60 h of fermentation, which was consistent with the CO2 releasing rate by the fungus. During the stationary phase of fungal growth, the maximum MnP activity was observed, reaching 950 U/l at 84 h. Scanning electron microscopy images clearly showed the growth situation of mycelia on the support matrix. Furthermore, the MnP produced by I. lacteus F17 in the bioreactor was isolated and purified, and the internal peptide sequences were also identified with mass spectrometry. The optimal activity of the enzyme was detected at pH 7 and 25 °C, with a long half-life time of 9 days. In addition, the MnP exhibited significant stability within a broad pH range of 4-7 and at temperature up to 55 °C. Besides this, the MnP showed the ability to decolorize the polymeric model dye Poly R-478 in vitro.
Production of laccase and manganese peroxidase by Pleurotus pulmonarius in solid-state cultures and application in dye decolorization. dos Santos Bazanella Gisele Cristina,de Souza Daniela Farani,Castoldi Rafael,Oliveira Roselene Ferreira,Bracht Adelar,Peralta Rosane Marina Folia microbiologica The production of ligninolytic enzymes (laccase and Mn-dependent peroxidase) by the white-rot fungus Pleurotus pulmonarius (FR.) Quélet was studied in solid-state cultures using agricultural and food wastes as substrate. The highest activities of laccase were found in wheat bran (2,860 ± 250 U/L), pineapple peel (2,450 ± 230 U/L), and orange bagasse (2,100 ± 270 U/L) cultures, all of them at an initial moisture level of 85 %. The highest activities of Mn peroxidase were obtained in pineapple peel cultures (2,200 ± 205 U/L) at an initial moisture level of 75 %. In general, the condition of high initial moisture level (80-90 %) was the best condition for laccase activity, while the best condition for Mn peroxidase activity was cultivation at low initial moisture (50-70 %). Cultures containing high Mn peroxidase activities were more efficient in the decolorization of the industrial dyes remazol brilliant blue R (RBBR), Congo red, methylene blue, and ethyl violet than those containing high laccase activity. Also, crude enzymatic extracts with high Mn peroxidase activity were more efficient in the in vitro decolorization of methylene blue, ethyl violet, and Congo red. The dye RBBR was efficiently decolorized by both crude extracts, rich in Mn peroxidase activity or rich in laccase activity. 10.1007/s12223-013-0253-7
Biodegradation and decolorization of melanoidin solutions by manganese peroxidase yeasts. Mahgoub Samir,Tsioptsias Costas,Samaras Petros Water science and technology : a journal of the International Association on Water Pollution Research The ability of selected manganese peroxidase (MnP) yeast strains, isolated from the mixed liquor of an activated sludge bioreactor treating melanoidins wastewater, was investigated in this work, aiming to examine the degradation potential of melanoidins, in the presence or absence of nutrients. Ten yeast strains were initially isolated from the mixed liquor; four yeast strains (Y1, Y2, Y3 and Y4) were selected for further studies, based on their tolerance towards synthetic melanoidins (SMs) degradation and MnP activity onto solid agar medium. The Y1 strain exhibited almost 98% homology to Candida glabrata yeast, based on 28S rRNA identification studies. During experiments carried out using SM at 30 °C, the four isolated yeast cultures showed a noticeable organic matter reduction and decolorization capacity reaching up to 70% within 2-5 days. However, the corresponding yeast cultures grown in glucose peptone yeast extract medium using real melanoidin wastewater at 30°C showed lower organic matter and color removal capacity, reaching about 60% within 2-5 days. Nevertheless, it was found that the removal of real and synthetic melanoidins could be carried out by these strains under non-aseptic conditions, without requiring further addition of nutrients. 10.2166/wst.2016.101
Characterisation of manganese peroxidase and laccase producing bacteria capable for degradation of sucrose glutamic acid-Maillard reaction products at different nutritional and environmental conditions. Kumar Vineet,Chandra Ram World journal of microbiology & biotechnology Maillard reactions products (MRPs) are a major colorant of distillery effluent. It is major source of environmental pollution due to its complex structure and recalcitrant nature. This study has revealed that sucrose glutamic acid-Maillard reaction products (SGA-MRPs) showed many absorption peaks between 200 and 450 nm. The absorption maximum peak was noted at 250 nm in spectrophotometric detection. This indicated the formation of variable molecular weight Maillard products during the SGA-MRPs formation at high temperature. The identified aerobic bacterial consortium consisting Klebsiella pneumoniae (KU726953), Salmonella enterica (KU726954), Enterobacter aerogenes (KU726955), Enterobacter cloaceae (KU726957) showed optimum production of MnP and laccase at 120 and 144 h of growth, respectively. The potential bacterial consortium showed decolourisation of Maillard product up to 70% in presence of glucose (1%), peptone (0.1%) at optimum pH (8.1), temperature (37 °C) and shaking speed (180 rpm) within 192 h of incubation. The reduction of colour of Maillard product correlated with shifting of absorption peaks in UV-Vis spectrophotometry analysis. Further, the changing of functional group in FT-IR data showed appearance of new peaks and GC-MS analysis of degraded sample revealed the depolymerisation of complex MRPs. The toxicity evaluation using seed of Phaseolus mungo L. showed reduction of toxicity of MRPs after bacterial treatment. Hence, this study concluded that developed bacterial consortium have capability for decolourisation of MRPs due to high content of MnP and laccase. 10.1007/s11274-018-2416-9
Characteristic features and dye degrading capability of agar-agar gel immobilized manganese peroxidase. Bilal Muhammad,Asgher Muhammad,Shahid Muhammad,Bhatti Haq Nawaz International journal of biological macromolecules Immobilization of enzymes has been regarded as an efficient approach to develop biocatalyst with improved activity and stability characteristics under reaction conditions. In the present study, purified manganese peroxidase (MnP) from Ganoderma lucidum IBL-05 was immobilized in agar-agar support using entrapment technique. Maximum immobilization yield was accomplished at 4.0% agar-agar gel. The immobilized MnP exhibited better resistance to changes in pH and temperature than the free enzyme, with optimal conditions being pH 6.0 and 50 °C. The kinetic parameters Km and Kcat/Km for free and entrapped MnP were calculated to be 65.6 mM and 6.99 M(-1) s(-1), and 82 mM and 8.15 M(-1) s(-1), respectively. Thermo-stability was significantly improved after immobilization. After 120 h, the insolubilized MnP retained its activity up to 71.9% and 60.3% at 30 °C and 40 °C, respectively. It showed activity until 10th cycle and retained 74.3% residual activity after 3th cycle. The effects of H2O2, ionic strength and potential inhibitors on activity of free and immobilized enzyme were investigated. Moreover, the decolorization of three structurally different dyes was monitored in order to assess the degrading capability of the entrapped MnP. The decolorization efficiencies for all the tested dyes were 78.6-84.7% after 12h. The studies concluded that the toxicity of dyes aqueous solutions was significantly reduced after treatment. The remarkable catalytic, thermo-stability and re-cycling features of the agar-agar immobilized MnP display a high potential for biotechnological applications. 10.1016/j.ijbiomac.2016.02.014
Kinetic properties of manganese peroxidase from the mushroom Stereum ostrea and its ability to decolorize dyes. Praveen K,Usha K Y,Viswanath Buddolla,Reddy B Rajasekhar Journal of microbiology and biotechnology Manganese peroxidase (MnP) was isolated from the culture filtrate of the wood log mushroom Stereum ostrea (S. ostrea), grown on Koroljova medium, and then purified by ammonium sulfate [70% (w/v)] fractionation, DEAE-cellulose anion exchange chromatography, and Sephadex G-100 column chromatography, with an attainment of 88.6-fold purification and the recovery of 22.8% of initial activity. According to SDS-PAGE the molecular mass of the MnP was 40 kDa. The optimal pH and temperature were found to be 4.5 and 35 degrees C, respectively. The enzyme was stable even after exposure to a pH range of 4.5 to 6.0, and at temperatures of up to 35 degrees C at a pH of 4.5 for 1h. The K(m) and V(max) values for the substrate phenol red were found to be 8 micronm and 111.14 U/mg of protein, respectively. The MnP also oxidized other substrates such as guaiacol, DMP, and veratryl alcohol. Sodium azide, EDTA, SDS, Cu(2+), and Fe(2+), at 1-5 mM, strongly inhibited enzyme activity, whereas Ca(2+) and Zn(2+) increased enzyme activity. The participation of the purified enzyme in the decolorization of dyes suggests that S. ostrea manganese peroxidase could be effectively employed in textile industries.
Construction of a combined enzyme system of graphene oxide and manganese peroxidase for efficient oxidation of aromatic compounds. Yang Shichao,Yang Jun,Wang Tao,Li Liuqing,Yu Siming,Jia Rong,Chen Ping Nanoscale Manganese peroxidase (MnP) from Irpex lacteus F17 has potential use as a biocatalyst in the field of environmental biotechnology because of its unique properties and ability to decompose harmful aromatic compounds. However, its requirement of harsh acidic reaction conditions and its insufficient catalytic activity restrict its practical applications. Here, we combine graphene oxide (GO) and MnP to construct an efficient enzyme system (GO-MnP) with improved catalytic efficiencies and a wide pH range for the oxidation of aromatic substances and dye decolorization. We found that the Michaelis constant (K) of GO-MnP for Mn was 2.8 times lower and the catalytic efficiency (k/K) of GO-MnP was 4.5 times higher than those of MnP, and that the decolorization of various dyes by GO-MnP was significantly improved over the pH range of 4.5-5.5. A comparison of the midpoint redox potentials also reflects the strong oxidation ability of GO-MnP. Furthermore, we demonstrated that, in the GO-MnP system, the MnP activity is mainly determined by the amounts of epoxy and carboxyl groups in GO, based on an analysis of the functional group changes in GO and reduced GO associated with different reduction degrees as shown by X-ray photoelectron spectroscopy. 10.1039/d0nr00408a
Characterization of a manganese peroxidase from white-rot fungus Trametes sp.48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. Zhang Hao,Zhang Shu,He Feng,Qin Xing,Zhang Xiaoyu,Yang Yang Journal of hazardous materials Manganese peroxidase, MnP-Tra-48424, was purified and characterized from the white-rot fungus Trametes sp.48424. MnP-Tra-48424 was strongly resistant to metal ions such as Ni, Li, Ca, K, Mn. MnP-Tra-48424 was also resistant to organic solvents such as propanediol, glycerol, and glycol. MnP-Tra-48424 decolorized dyes (indigo, anthraquinone, azo and triphenylmethane) and degraded different polycyclic aromatic hydrocarbons (PAHs). Indigo Carmine, Remazol Brilliant Blue R, Remazol Brilliant Violet 5R and Methyl Green were efficiently decolorized by MnP-Tra-48424. MnP-Tra-48424 also decolorized Indigo Carmine and Methyl Green combined with metal ions and organic solvents. The decolorization capability of MnP-Tra-48424 was not inhibited by selected metal ions and organic solvents. A combination of MnP-Tra-48424 and Lac-Tra-48424 improved the decolorization rate. In addition to dyes, MnP-Tra-48424 was effective at degrading individual PAHs (fluorene, fluoranthene, pyrene, phenanthrene, anthracene) and also PAHs in mixtures. 10.1016/j.jhazmat.2016.07.065
Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus. Yehia Ramy Sayed Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] Manganese peroxidase (MnP) was produced from white rot edible mushroom Pleurotus ostreatus on the culture filtrate. The enzyme was purified to homogeneity using (NH4)2SO4 precipitation, DEAE-Sepharose and Sephadex G-100 column chromatography. The final enzyme activity achieved 81 U mL(-1), specific activity 78 U mg(-1) with purification fold of 130 and recovery 1.2% of the crude enzyme. SDS-PAGE indicated that the pure enzyme have a molecular mass of approximately 42 kDa. The optimum pH was between 4-5 and the optimum temperature was 25 °C. The pure MnP activity was enhanced by Mn(2+), Cu(2+), Ca(2+) and K(+) and inhibited by Hg(+2) and Cd(+2). H2O2 at 5 mM enhanced MnP activity while at 10 mM inhibited it significantly. The MnP-cDNA encoding gene was sequenced and determined (GenBank accession no. AB698450.1). The MnP-cDNA was found to consist of 497 bp in an Open Reading Frame (ORF) encoding 165 amino acids. MnP from P. ostreatus could detoxify aflatoxin B1 (AFB1) depending on enzyme concentration and incubation period. The highest detoxification power (90%) was observed after 48 h incubation at 1.5 U mL(-1) enzyme activities. 10.1590/S1517-83822014005000026
Expression of a fungal manganese peroxidase in Escherichia coli: a comparison between the soluble and refolded enzymes. Wang Nan,Ren Kai,Jia Rong,Chen Wenting,Sun Ruirui BMC biotechnology BACKGROUND:Manganese peroxidase (MnP) from Irpex lacteus F17 has been shown to have a strong ability to degrade recalcitrant aromatic pollutants. In this study, a recombinant MnP from I. lacteus F17 was expressed in Escherichia coli Rosetta (DE3) in the form of inclusion bodies, which were refolded to achieve an active enzyme. Further, we optimized the in vitro refolding conditions to increase the recovery yield of the recombinant protein production. Additionally, we attempted to express recombinant MnP in soluble form in E. coli, and compared its activity with that of refolded MnP. RESULTS:Refolded MnP was obtained by optimizing the in vitro refolding conditions, and soluble MnP was produced in the presence of four additives, TritonX-100, Tween-80, ethanol, and glycerol, through incubation at 16 °C. Hemin and Ca supplementation was crucial for the activity of the recombinant protein. Compared with refolded MnP, soluble MnP showed low catalytic efficiencies for Mn and HO substrates, but the two enzymes had an identical, broad range substrate specificity, and the ability to decolorize azo dyes. Furthermore, their enzymatic spectral characteristics were analysed by circular dichroism (CD), electronic absorption spectrum (UV-VIS), fluorescence and Raman spectra, indicating the differences in protein conformation between soluble and refolded MnP. Subsequently, size exclusion chromatography (SEC) and dynamic light scattering (DLS) analyses demonstrated that refolded MnP was a good monomer in solution, while soluble MnP predominantly existed in the oligomeric status. CONCLUSIONS:Our results showed that two forms of recombinant MnP could be expressed in E. coli by varying the culture conditions during protein expression. 10.1186/s12896-016-0317-2
Contribution of manganese peroxidase and laccase to dye decoloration by Trametes versicolor. Champagne Paul-Philippe,Ramsay Juliana Akit Applied microbiology and biotechnology During dye decoloration by Trametes versicolor ATCC 20869 in modified Kirk's medium, manganese peroxidase (MnP) and laccase were produced, but not lignin peroxidase, cellobiose dehydrogenase or manganese-independent peroxidase. Purified MnP decolorized azo dyes [amaranth, reactive black 5 (RB5) and Cibacron brilliant yellow] in Mn(2+)-dependent reactions but did not decolorize an anthraquinone dye [Remazol brilliant blue R (RBBR)]. However, the purified laccase decolorized RBBR five to ten times faster than the azo dyes and the addition of a redox mediator, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), did not alter decoloration rates. Amaranth and RB5 were decolorized the most rapidly by MnP since they have a hydroxyl group in an ortho position and a sulfonate group in the meta position relative to the azo bond. During a typical batch decoloration with the fungal culture, the ratio of laccase:MnP was 10:1 to 20:1 (based on enzyme activity) and increased to greater than 30:1 after decoloration was complete. Since MnP decolorized amaranth about 30 times more rapidly than laccase per unit of enzyme activity, MnP should have contributed more to decoloration than laccase in batch cultures. 10.1007/s00253-005-1964-8
Manganese peroxidase h4 isozyme mediated degradation and detoxification of triarylmethane dye malachite green: optimization of decolorization by response surface methodology. Saravanakumar Thiyagarajan,Palvannan Thayumanavan,Kim Dae-Hyuk,Park Seung-Moon Applied biochemistry and biotechnology A cDNA encoding for manganese peroxidase isozyme H4 (MnPH4), isolated from Phanerochaete chrysosporium, was expressed in Pichia pastoris, under the control of alcohol oxidase I promoter. The recombinant MnPH4 was efficiently secreted onto media supplemented with hemin at a maximum concentration of 500 U/L, after which purified rMnPH4 was used to decolorize the triarylmethane dye malachite green (MG). Response surface methodology (RSM) was employed to optimize three different operational parameters for the decolorization of MG. RSM showed that the optimized variables of enzyme (0.662 U), MnSO4 (448 μM), and hydrogen peroxide (159 μM) decolorized 100 mg/L of MG completely at 3 h. Additionally, UV-VIS spectra, high-performance liquid chromatography, gas chromatography-mass spectrometry, and liquid chromatography-electrospray ionization/mass spectrometry analysis confirmed the degradation of MG by the formation of main metabolites 4-dimethylamino-benzophenone hydrate, N, N-dimethylaniline (N,N-dimethyl-benzenamine), and methylbenzaldehyde. Interestingly, it was found that rMnPH4 mediates hydroxyl radical attack on the central carbon of MG. Finally, rMnPH4 degraded MG resulted in the complete removal of its toxicity, which was checked under in vitro conditions. 10.1007/s12010-013-0220-4
Expression and characteristics of manganese peroxidase from Ganoderma lucidum in Pichia pastoris and its application in the degradation of four dyes and phenol. Xu Hui,Guo Meng-Yuan,Gao Yan-Hua,Bai Xiao-Hui,Zhou Xuan-Wei BMC biotechnology BACKGROUND:Manganese peroxidase (MnP) of white rot basidiomycetes, an extracellular heme enzyme, is part of a peroxidase superfamily that is capable of degrading the different phenolic compounds. Ganoderma, a white rot basidiomycete widely distributed worldwide, could secrete lignin-modifying enzymes (LME), including laccase (Lac), lignin peroxidases (LiP) and MnP. RESULTS:After the selection of a G. lucidum strain from five Ganoderma strains, the 1092 bp full-length cDNA of the MnP gene, designated as G. lucidum MnP (GluMnP1), was cloned from the selected strain. We subsequently constructed an eukaryotic expression vector, pAO815:: GlMnP, and transferred it into Pichia pastoris SMD116. Recombinant GluMnP1 (rGluMnP1) was with a yield of 126 mg/L and a molecular weight of approximately 37.72 kDa and a specific enzyme activity of 524.61 U/L. The rGluMnP1 could be capable of the decolorization of four types of dyes and the degradation of phenol. Phenol and its principal degradation products including hydroquinone, pyrocatechol, resorcinol, benzoquinone, were detected successfully in the experiments. CONCLUSIONS:The rGluMnP1 could be effectively expressed in Pichia pastoris and with a higher oxidation activity. We infer that, in the initial stages of the reaction, the catechol-mediated cycle should be the principal route of enzymatic degradation of phenol and its oxidation products. This study highlights the potential industrial applications associated with the production of MnP by genetic engineering methods, and the application of industrial wastewater treatment. 10.1186/s12896-017-0338-5
Increasing manganese peroxidase production and biodecolorization of triphenylmethane dyes by novel fungal consortium. Yang Xiuqing,Wang Jingren,Zhao Xiaoxia,Wang Qi,Xue Rui Bioresource technology A fungal consortium-SR consisting of Trametes sp. SQ01 and Chaetomium sp. R01 was developed for decolorizing three kinds of triphenylmethane dyes, which were decolorized by individual fungi with low efficiencies. The fungal consortium-SR produced 1.3 U ml(-1) of manganese peroxidase, 5.5 times higher than that produced by the monoculture of Trametes sp. SQ01, and decolorized Crystal Violet, Coomassie Brilliant Blue G250 (CBB G250) and Cresol Red. The fungal consortium-SR had a decolorization rate of 63-96%, much higher than that of the monoculture of strain SQ01 (38-72%). In consortium-SR, the higher efficiencies of decolorization of Crystal Violet and CBB G250 were obtained when they added to the culture after 4d of mixed cultivation rather than at the beginning of cultivation. Cresol Red was the exception. It is suggested that the consortium-SR has great potential for decolorizing triphenylmethane dyes. 10.1016/j.biortech.2011.06.034
Exploring the potential of a newly constructed manganese peroxidase-producing yeast consortium for tolerating lignin degradation inhibitors while simultaneously decolorizing and detoxifying textile azo dye wastewater. Bioresource technology MnP-YC4, a newly constructed manganese peroxidase-producing yeast consortium, has been developed to withstand lignin degradation inhibitors while degrading and detoxifying azo dye. MnP-YC4 tolerance to major biomass-derived inhibitors was promising. MnP induced by lignin was found to be highly related to dye decolorization by MnP-YC4. Simulated azo dye-containing wastewater supplemented with a lignin co-substrate (3,5-Dimethoxy-4-hydroxybenzaldehyde) decolorized up to 100, 91, and 76% at final concentrations of 20, 40, and 60%, respectively. MnP-YC4 effectively decolorized the real textile wastewater sample, reaching up to 91.4%, and the COD value decreased significantly during the decolorization, reaching 7160 mg/l within 7 days. A possible dye biodegradation pathway was proposed based on the degradation products identified by UV-vis, FTIR, GC/MS, and HPLC techniques, beginning with azo bond cleavage and eventually mineralized to CO and HO. When compared to the phytotoxic original dye, the phytotoxicity of MnP-YC4 treated dye-containing wastewater samples confirmed the nontoxic nature. 10.1016/j.biortech.2022.126861
Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. Rekik Hatem,Zaraî Jaouadi Nadia,Bouacem Khelifa,Zenati Bilal,Kourdali Sidali,Badis Abdelmalek,Annane Rachid,Bouanane-Darenfed Amel,Bejar Samir,Jaouadi Bassem International journal of biological macromolecules A new manganese peroxidase-producing white-rot basidiomycete fungus was isolated from symptomatic wood of the camphor trees Cinnamomum camphora (L.) at the Hamma Botanical Garden (Algeria) and identified as Trametes pubescens strain i8. The enzyme was purified (MnP TP55) to apparent electrophoretic homogeneity and biochemically characterized. The specific activity and Reinheitzahl value of the purified enzyme were 221 U/mg and 2.25, respectively. MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 55.2 kDa. The NH-terminal sequence of the first 26 amino acid residues of MnP TP55 showed high similarity with those of white-rot fungal peroxidases. It revealed optimal activity at pH 5 and 40 °C. This peroxidase was completely inhibited by sodium azide and potassium cyanide, suggesting the presence of heme-components in its tertiary structure. Interestingly, MnP TP55 showed higher catalytic efficiency, organic solvent-tolerance, dye-decolorization ability, and detergent-compatibility than that of horseradish peroxidase (HRP) from roots of Armoracia rustanica, manganese peroxidase from Bjerkandera adusta strain CX-9 (MnP BA30), and manganese peroxidase from Phanerochaete chrysosporium (MnP PC). Overall, the findings provide strong support for the potential candidacy of MnP TP55 for environmental applications, mainly the development of enzyme-based technologies for lignin biodegradation, textile-dyes biodecolorization, and detergent formulations. 10.1016/j.ijbiomac.2018.12.053
Enhancement of MBBR reactor efficiency using effective microorganism for treatment of wastewater containing diazinon by engineered Pseudomonas putida KT2440 with manganese peroxidase 2 gene. Journal of environmental management Pesticides not only are harmful to humans but they are noxious for water reservoirs, soil, and air quality as well. In this research, diazinon was removed from aqueous solutions by Moving Bed Biofilm Reactor (MBBR). The MBBR was spiked with transgenic Pseudomonas putida KT2440 with Pleurotus ostreatus fungus manganese peroxidase 2 gene to enhance the capabilities of Pseudomonas putida KT2440 in the degradation of diazinon. Although the amount of diazinon and COD and diazinon removal in the reactor including transgenic P. putida KT2440 was 95.46% and 97.47% and they were greater than the control and wild type (non-modified) P. putida KT2440 reactors, the surprising result was related to the adaptation pace of transgenic P. putida KT2440. The produced metabolites and the quantity of diazinon were assessed by HPLC and LC/MS. The metabolite hydroxyisopropyl diazinon was not found in the transgenic P. putida KT2440 reactor. Furthermore, a new sequence of cloned manganese peroxidase 2 gene has been recorded in GenBank with the accession number MT185558. According to bacterial identification of provided sludge the most frequent genus belonged to Aeromonas. Therefore, it seems that the MBBR in the presence of transgenic P. putida KT2440 with manganese peroxidase 2 gene can effectively remove the diazinon. 10.1016/j.jenvman.2022.115293
Targeting deoxynivalenol for degradation by a chimeric manganese peroxidase/glutathione system. Ecotoxicology and environmental safety The manganese peroxidase (MnP) can degrade multiple mycotoxins including deoxynivalenol (DON) efficiently; however, the lignin components abundant in foods and feeds were discovered to interfere with DON catalysis. Herein, using MnP from Ceriporiopsis subvermispora (CsMnP) as a model, it was demonstrated that desired catalysis of DON, but not futile reactions with lignin, in the reaction systems containing feeds could be achieved by engineering MnP and supplementing with a boosting reactant. Specifically, two successive strategies (including the fusion of CsMnP to a DON-recognizing ScFv and identification of glutathione as a specific targeting enhancer) were combined to overcome the lignin competition, which together resulted into elevation of the degradation rate from 2.5% to as high as 82.7% in the feeds. The method to construct a targeting MnP and fortify it with an additional enhancer could be similarly applied to catalyze the many other mycotoxins with yet unknown responsive biocatalysts. 10.1016/j.ecoenv.2024.116130
Performance of Meyerozyma caribbica as a novel manganese peroxidase-producing yeast inhabiting wood-feeding termite gut symbionts for azo dye decolorization and detoxification. Ali Sameh Samir,Al-Tohamy Rania,Sun Jianzhong The Science of the total environment For hazardous toxic pollutants such as textile wastewater and azo dyes, microbial-based and peroxidase-assisted remediation represents a highly promising and environmentally friendly alternative. Under this scope, gut symbionts of the wood-feeding termites Coptotermes formosanus and Reticulitermes chinenesis were used for the screening of manganese peroxidase (MnP) producing yeasts intended for decolorization and detoxification of textile azo dyes, such as Acid Orange 7 (AO7). To this end, nine out of 38 yeast isolates exhibited high levels of extracellular MnP activity ranging from 23 to 27 U/mL. The isolate PPY-27, which had the highest MnP activity, was able to decolorize various azo dyes with an efficiency ranging from 87.2 to 98.8%. This isolate, which represents the molecularly identified species Meyerozyma caribbica, was successfully characterized in terms of morphological and physiological traits, as well as enzymatic activities. Almost complete decolorization was achieved by the MnP-producing M. caribbica strain SSA1654 after 6 h of incubation with 50 mg/L of the sulfonated azo dye AO7 at 28 °C with an agitation speed of 150 rpm. The maximum decolorization efficiency of AO7 reached 93.8% at 400 mg/L. The decolorization of AO7 was confirmed by Fourier transform infrared (FTIR) and UV-Vis spectral analysis. High performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) were used to identify AO7 decomposition intermediates. Based on UV-Vis spectra, FTIR, HPLC, and GC-MS analyses, a plausible AO7 biodegradation mechanism pathway was explored, showing azo bond (-N=N-) cleavage and toxic aromatic amines mineralization CO and HO. Microtox® and phytotoxicity assays confirmed that the AO7 metabolites produced by the strain SSA1654 were almost non-toxic compared to the original sulfonated azo dye. 10.1016/j.scitotenv.2021.150665
Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrous-bed reactor. Al-Dhabi Naif Abdullah,Esmail Galal Ali,Valan Arasu Mariadhas Chemosphere A tetracycline degrading bacterial strains was characterized from the municipal sludge and detected its ability to produce manganese peroxidase. The molecular weight of manganese peroxidase was determined as 46 kDa after Biogel P-100 gel filtration column chromatography purification. Maximum tetracycline degradation was observed with the manganese peroxidase from the strain Bacillus velezensis Al-Dhabi 140 and the optimum degradation process was studied. Optimization revealed the maximum removal efficacy was obtained as 87 mg/L at initial tetracycline concentration 143.75 mg/L, pH 6.94 and 8.04% inoculum. Consequently, fibrous bed reactor containing the culture of B. velezensis Al-Dhabi 140 in fibrous matrix was formed to transform tetracycline in synthetic wastewater. The transformed product of tetracycline from the fibrous bed reactor was evident by the activity of ligninolytic enzymes produced by B. velezensis Al-Dhabi 140 in reactor. The decreased level of antibacterial potency was obtained after 10 days. The zone of inhibition was 24 ± 1 mm after 1 day and it decreased as 9 ± 1 mm after 10 days. Based on the findings, fibrous bed B. velezensis Al-Dhabi 140 could be an efficient strain for tetracycline removal from artificial wastewater, even from natural wastewater. 10.1016/j.chemosphere.2020.128726
Manganese peroxidase degrades pristine but not surface-oxidized (carboxylated) single-walled carbon nanotubes. Zhang Chengdong,Chen Wei,Alvarez Pedro J J Environmental science & technology The transformation of engineered nanomaterials in the environment can significantly affect their transport, fate, bioavailability, and toxicity. Little is known about the biotransformation potential of single-walled carbon nanotubes (SWNTs). In this study, we compared the enzymatic transformation of SWNTs and oxidized (carboxylated) SWNTs (O-SWNTs) using three ligninolytic enzymes: lignin peroxidase, manganese peroxidase (MnP), and laccase. Only MnP was capable of transforming SWNTs, as determined by Raman spectroscopy, near-infrared spectroscopy, and transmission electron microscopy. Interestingly, MnP degraded SWNTs but not O-SWNTs. The recalcitrance of O-SWNTs to enzymatic transformation is likely attributable to the binding of Mn2+ by their surface carboxyl groups at the enzyme binding site, which inhibits critical steps in the MnP catalytic cycle (i.e., Mn2+ oxidation and Mn3+ dissociation from the enzyme). Our results suggest that oxygen-containing surface functionalities do not necessarily facilitate the biodegradation of carbonaceous nanomaterials, as is commonly assumed. 10.1021/es5011175
A Co-Immobilized Enzyme-Mediator System for Facilitating Manganese Peroxidase Catalysis in Solution Free of Divalent Manganese Ions. Bioresource technology Manganese peroxidase (MnP) offers significant potential in various environmental and industrial applications; however, its reliance on Mn ions for electron shuttling limits its use in Mn-deficient systems. Herein, a novel approach is presented to address this limitation by co-immobilizing MnP and Mn in silica gels. These gels were synthesized following the standard sol-gel method and found to effectively immobilize Mn ions, primarily through electrostatic interactions. The MnP co-immobilized with Mn ions in the silica gel exhibited 4-5 times higher activity than the MnP immobilized alone in activity assays, and generated Mn within the gel, indicating the immobilized Mn ions remain capable of shuttling electrons to the co-immobilized MnP. In decolorization tests with two organic dyes, the co-immobilized system also outperformed the MnP immobilized without Mn ions, resulting in 2-4 times higher dye removals. This study will enable a broader application of MnP enzymes in sustainable environmental remediation and industrial catalysis. 10.1016/j.biortech.2023.129897
Manganese peroxidase-catalyzed oxidative degradation of vanillylacetone. Hwang Sangpill,Lee Chang-Ha,Ahn Ik-Sung,Park Kwangyong Chemosphere When 4-(4-hydroxy-3-methoxy-phenyl)-2-butanone (vanillylacetone) was tested for manganese peroxidase (MnP)-catalyzed oxidation, it was found to be degraded with the cleavage of an aromatic ring. Among numerous products of vanillylacetone oxidation, four major ones were purified by thin-layer chromatography and identified using mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analysis. Three of them maintained the aromatic ring structure and were identified as 4-[6,2'-dihydroxy-5,3'-dimethoxy-5'-(3-oxo-butyl)-biphenyl]-butan-2-one, 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, and 4-[6,2'-dihydroxy-5,3'-dimethoxy-5'-(3-oxo-butyl)-biphenyl]-3-buten-2-one. Even though the fourth product could not be purified to a single compound, data from infrared spectroscopy showed that it did not have a benzene ring. From MS and NMR analysis, 3-(3-oxo-butyl)-hexa-2,4-dienedioic acid-1-methyl ester was tentatively suggested as the dominant species. The reaction mechanism was suggested on the basis of the structural information of these products. To our knowledge, this paper is the first report on aromatic ring cleavage of the phenolic compound by MnP. 10.1016/j.chemosphere.2008.03.013
Synergistic Degradation of Maize Straw Lignin by Manganese Peroxidase from Irpex lacteus. Applied biochemistry and biotechnology Lignocellulose in maize straw includes cellulose, hemicellulose, and lignin, and the degradation of lignocellulose is a complex process in which multiple enzymes are jointly involved. In exploring the co-degradation of a certain substrate by multiple enzymes, different enzymes are combined freely for the achievement of the effective synergism. Additionally, some organic acids and small molecule aromatic compounds can also increase the enzymatic activity of lignin enzymes and improve the degradation rate of lignin. In this study, manganese peroxidase (MnP) from Irpex lacteus (I. lacteus) was heterologously expressed in food-grade Schizosaccharomyces pombe (S. pombe). The multiple enzymes co-fermentation conditions were initially screened by orthogonal tests: 0.5% CaCl, 1% 10,000 U/g Laccase (Lac), 0.3% MnSO, and 0.4% glucose oxidase (GOD). It was showed that the lignin degradation rate could reach 65.85% after 3 days of synergistic degradation with the addition of 0.02% Tween-80, 0.5 mM oxalic acid. This indicates that oxalic acid has a promoting effect on the activity of MnP, and the promoting effect is more significant when Tween-80 is complexed with oxalic acid. 10.1007/s12010-022-04189-9
A mutant R70V/E166A of short manganese peroxidase showing Mn-independent dye decolorization. Applied microbiology and biotechnology Il-MnP1, a short-type manganese peroxidase from Irpex lacteus F17, can oxidize some substrates in the absence of Mn, but the catalysis was much lower than in the presence of Mn. Here, we report a mutant R70V/E166A of Il-MnP1 with some unique properties, which possessed clearly higher catalysis for the decolorization of anthraquinone and azo dyes in the absence of Mn than that of Il-MnP1. Importantly, the optimum pH of R70V/E166A for decolorization of anthraquinone dyes (Reactive Blue 19, RB19) was 6.5, and the mutant achieved high decolorization activities in the range of pH 4.0-7.0, whereas Il-MnP1 only showed decolorization for RB19 at pH 3.5-4.0. In addition, the optimum HO concentration of R70V/E166A for RB19 decolorization was eight times that of Il-MnP1 and the HO stability has improved 1.4 times compared with Il-MnP1. Furthermore, Mn competitively inhibited the oxidation of RB19 by R70V/E166A, explaining the higher catalytic activity of the mutant R70V/E166A in the absence of Mn. Molecular docking results suggested that RB19 binds to the distal side of the heme plane in mutant R70V/E166A, which extended from the heme δ-side to the heme γ-side, and close to the mutated residues of R70V and E166A, whereas RB19 could not access the heme pocket of Il-MnP1 due to the steric hindrance of the side-chain group of Arg 70. Thus, this study constructed a useful mutant R70V/E166A and analyzed its higher Mn-independent activity, which is very important for better understanding the Mn-independent catalytic mechanism for short manganese peroxidases. KEY POINTS: • The mutant R70V/E166A of atypical MnP1 of I. lacteus F17 shows unique catalytic properties. • At pH 6.5, the R70V/E166A had a strong ability to decolorize anthraquinone dyes in the absence of Mn. • The binding sites of Reactive Blue 19 in mutant R70V/E166A were elucidated. 10.1007/s00253-023-12438-y
Enzymatic hydrolysis of corn stover lignin by laccase, lignin peroxidase, and manganese peroxidase. Bioresource technology Lignin of high purity and structural integrity was isolated from the enzymatic residue of corn stover. Degradation of the lignin by laccase, lignin peroxidase, and manganese peroxidase was investigated. Structural changes in the lignin after degradation were characterized by scanning electron microscopy, nitrogen adsorption and Fourier transform infrared spectroscopy, and the enzymatic products were systematically analyzed by gas chromatography mass spectrometry. The highest percentage of lignin degradation was obtained with a mixture of three enzymes (25.79%): laccase (Lac), the starting enzyme of the mixed enzyme reaction, worked with lignin peroxidase (LiP), and manganese peroxidase (MnP) to further degrade lignin. This degradation destroyed the macromolecular structure of lignin, broke its key chemical bonds, and opened benzene rings, thus producing more acidic compounds. This study elucidated the concept of degrading lignin from corn stover using the Lac, LiP and MnP enzymes synergistically, thus providing a theoretical basis for the biodegradation of lignin. 10.1016/j.biortech.2022.127699
Detoxification of the Mycotoxin Citrinin by a Manganese Peroxidase from . Toxins Citrinin (CIT) is a mycotoxin found in foods and feeds and most commonly discovered in red yeast rice, a food additive made from ordinary rice by fermentation with . Currently, no enzyme is known to be able to degrade CIT effectively. In this study, it was discovered that manganese peroxidase (MnP) from could degrade CIT. The degradation appeared to be fulfilled by a combination of direct and indirect actions of the MnP with the CIT. Pure CIT, at a final concentration of 10 mg/L, was completely degraded by MnP within 72 h. One degradation product was identified to be dihydrocitrinone. The toxicity of the CIT-degradation product decreased, as monitored by the increased survival rate of the Caco-2 cells incubated with MnP-treated CIT. In addition, MnP could degrade CIT (with a starting concentration of up to 4.6 mg/L) completely contaminated in red yeast rice. MnP serves as an excellent candidate enzyme for CIT detoxification. 10.3390/toxins14110801
Transformation of Tetracycline by Manganese Peroxidase from . Sun Xuemei,Leng Yifei,Wan Duanji,Chang Fengyi,Huang Yu,Li Zhu,Xiong Wen,Wang Jun Molecules (Basel, Switzerland) The negative impacts on the ecosystem of antibiotic residues in the environment have become a global concern. However, little is known about the transformation mechanism of antibiotics by manganese peroxidase (MnP) from microorganisms. This work investigated the transformation characteristics, the antibacterial activity of byproducts, and the degradation mechanism of tetracycline (TC) by purified MnP from . The results show that nitrogen-limited and high level of Mn medium could obtain favorable MnP activity and inhibit the expression of lignin peroxidase by . The purified MnP could transform 80% tetracycline in 3 h, and the threshold of reaction activator (HO) was about 0.045 mmol L. After the 3rd cyclic run, the transformation rate was almost identical at the low initial concentration of TC (77.05-88.47%), while it decreased when the initial concentration was higher (49.36-60.00%). The antimicrobial potency of the TC transformation products by MnP decreased throughout reaction time. We identified seven possible degradation products and then proposed a potential TC transformation pathway, which included demethylation, oxidation of the dimethyl amino, decarbonylation, hydroxylation, and oxidative dehydrogenation. These findings provide a novel comprehension of the role of MnP on the fate of antibiotics in nature and may develop a potential technology for tetracycline removal. 10.3390/molecules26226803
Patulin Detoxification by Recombinant Manganese Peroxidase from Expressed by . Toxins The fungal secondary metabolite patulin is a mycotoxin widespread in foods and beverages which poses a serious threat to human health. However, no enzyme was known to be able to degrade this mycotoxin. For the first time, we discovered that a manganese peroxidase (MnP) from can efficiently degrade patulin. The MnP gene was cloned into pPICZα(A) and then the recombinant plasmid was transformed into X-33. The recombinant strain produced extracellular manganese peroxidase with an activity of up to 3659.5 U/L. The manganese peroxidase MnP was able to rapidly degrade patulin, with hydroascladiol appearing as a main degradation product. Five mg/L of pure patulin were completely degraded within 5 h. Moreover, up to 95% of the toxin was eliminated in a simulated patulin-contaminated apple juice after 24 h. Using as a model, it was demonstrated that the deconstruction of patulin led to detoxification. Collectively, these traits make MnP an intriguing candidate useful in enzymatic detoxification of patulin in foods and beverages. 10.3390/toxins14070440