logo logo
Apoptosis, autophagy and atherosclerosis: Relationships and the role of Hsp27. Shan Ruiting,Liu Ning,Yan Youyou,Liu Bin Pharmacological research Atherosclerosis is a multifactorial chronic inflammatory disease of the arterial wall, and an important pathological basis of coronary heart disease. Endothelial cells, vascular smooth muscle cells, and macrophages play important roles in the development of atherosclerosis. Of note, apoptosis and autophagy, two types of programmed cell death, influence the development and progression of atherosclerosis via the modulation of such cells. The small heat shock protein Hsp27 is a multifunctional protein induced by various stress factors and has a protective effect on cells. A large number of studies have demonstrated that Hsp27 plays an important role in regulating apoptosis. Recently, some studies have suggested that Hsp27 also participates in the autophagic process. Moreover, Hsp27 is closely related to the occurrence and development of atherosclerosis. Here, we summarize the molecular mechanisms of apoptosis and autophagy and discuss their effects on endothelial cells, vascular smooth muscle cells, and macrophages in the context of atherosclerotic procession. We further explore the involvement of Hsp27 in apoptosis, autophagy, and atherosclerosis. We speculate that Hsp27 may exert its anti-atherosclerotic role via the regulation of apoptosis and autophagy; this may provide the basis for the development of new approaches for the prevention and treatment of atherosclerosis. 10.1016/j.phrs.2020.105169
Safety and feasibility study of non-invasive robot-assisted high-intensity focused ultrasound therapy for the treatment of atherosclerotic plaques in the femoral artery: protocol for a pilot study. BMJ open INTRODUCTION:Peripheral arterial disease (PAD) is an atherosclerotic disease leading to stenosis and/or occlusion of the arterial circulation of the lower extremities. The currently available revascularisation methods have an acceptable initial success rate, but the long-term patency is limited, while surgical revascularisation is associated with a relatively high perioperative risk. This urges the need for development of less invasive and more effective treatment modalities. This protocol article describes a study investigating a new non-invasive technique that uses robot assisted high-intensity focused ultrasound (HIFU) to treat atherosclerosis in the femoral artery. METHODS AND ANALYSIS:A pilot study is currently performed in 15 symptomatic patients with PAD with a significant stenosis in the common femoral and/or proximal superficial femoral artery. All patients will be treated with the dual-mode ultrasound array system to deliver imaging-guided HIFU to the atherosclerotic plaque. Safety and feasibility are the primary objectives assessed by the technical feasibility of this therapy and the 30-day major complication rate as primary endpoints. Secondary endpoints are angiographic and clinical success and quality of life. ETHICS AND DISSEMINATION:Ethical approval for this study was obtained in 2019 from the Medical Ethics Committee of the University Medical Center Utrecht, the Netherlands. Data will be presented at national and international conferences and published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER:NL7564. 10.1136/bmjopen-2021-058418
Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis. Kim Manse,Sahu Abhishek,Kim Gi Beom,Nam Gi Hoon,Um Wooram,Shin So Jin,Jeong Yong Yeon,Kim In-San,Kim Kwangmeyung,Kwon Ick Chan,Tae Giyoong Journal of controlled release : official journal of the Controlled Release Society Atherosclerosis plaque is a major cause of cardiovascular diseases across the globe and a silent killer. There are no physical symptoms of the disease in its early stage and current diagnostic techniques cannot detect the small plaques effectively or safely. Plaques formed in blood vessels can cause serious clinical problems such as impaired blood flow or sudden death, regardless of their size. Thus, detecting early stage of plaques is especially more important to effectively reduce the risk of atherosclerosis. Nanoparticle based delivery systems are recognized as a promising option to fight against this disease, and various targeting ligands are typically used to improve their efficiency. So, the choice of appropriate targeting ligand is a crucial factor for optimal targeting efficiency. cRGD peptide and collagen IV targeting peptide, which binds with the αβ integrin overexpressed in the neovasculature of the plaque and collagen type IV present in the plaque, respectively, are frequently used for the targeting of nanoparticles. However, at present no study has directly compared these two peptides. Therefore, in this study, we have prepared cRGD or collagen IV targeting (Col IV-tg-) peptide conjugated and iron oxide nanoparticle (IONP) loaded Pluronic based nano-carriers for systemic comparison of their targeting ability towards in vivo atherosclerotic plaque in Apolipoprotein E deficient (Apo E) mouse model. Nano-carriers with similar size, surface charge, and IONP loading content but with different targeting ligands were analyzed through in vitro and in vivo experiments. Near infrared fluorescence imaging and magnetic resonance imaging techniques as well as Prussian blue staining were used to compare the accumulation of different ligand conjugated nano-caariers in the aorta of atherosclerotic mice. Our results indicate that cRGD based targeting is more efficient than Col IV-tg-peptide in the early stage of atherosclerosis. 10.1016/j.jconrel.2017.11.033
Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. den Hartigh Laura J Nutrients Obesity and its comorbidities, including type 2 diabetes and cardiovascular disease, are straining our healthcare system, necessitating the development of novel strategies for weight loss. Lifestyle modifications, such as exercise and caloric restriction, have proven effective against obesity in the short term, yet obesity persists because of the high predilection for weight regain. Therefore, alternative approaches to achieve long term sustainable weight loss are urgently needed. Conjugated linoleic acid (CLA), a fatty acid found naturally in ruminant animal food products, has been identified as a potential anti-obesogenic agent, with substantial efficacy in mice, and modest efficacy in obese human populations. Originally described as an anti-carcinogenic fatty acid, in addition to its anti-obesogenic effects, CLA has now been shown to possess anti-atherosclerotic properties. This review summarizes the pre-clinical and human studies conducted using CLA to date, which collectively suggest that CLA has efficacy against cancer, obesity, and atherosclerosis. In addition, the potential mechanisms for the many integrative physiological effects of CLA supplementation will be discussed in detail, including an introduction to the gut microbiota as a potential mediator of CLA effects on obesity and atherosclerosis. 10.3390/nu11020370
The Fluid Aspect of the Mediterranean Diet in the Prevention and Management of Cardiovascular Disease and Diabetes: The Role of Polyphenol Content in Moderate Consumption of Wine and Olive Oil. Ditano-Vázquez Paola,Torres-Peña José David,Galeano-Valle Francisco,Pérez-Caballero Ana Isabel,Demelo-Rodríguez Pablo,Lopez-Miranda José,Katsiki Niki,Delgado-Lista Javier,Alvarez-Sala-Walther Luis A Nutrients A growing interest has emerged in the beneficial effects of plant-based diets for the prevention of cardiovascular disease, diabetes and obesity. The Mediterranean diet, one of the most widely evaluated dietary patterns in scientific literature, includes in its nutrients two fluid foods: olive oil, as the main source of fats, and a low-to-moderate consumption of wine, mainly red, particularly during meals. Current mechanisms underlying the beneficial effects of the Mediterranean diet include a reduction in inflammatory and oxidative stress markers, improvement in lipid profile, insulin sensitivity and endothelial function, as well as antithrombotic properties. Most of these effects are attributable to bioactive ingredients including polyphenols, mono- and poly-unsaturated fatty acids. Polyphenols are a heterogeneous group of phytochemicals containing phenol rings. The principal classes of red wine polyphenols include flavonols (quercetin and myricetin), flavanols (catechin and epicatechin), anthocyanin and stilbenes (resveratrol). Olive oil has at least 30 phenolic compounds. Among them, the main are simple phenols (tyrosol and hydroxytyrosol), secoroids and lignans. The present narrative review focuses on phenols, part of red wine and virgin olive oil, discussing the evidence of their effects on lipids, blood pressure, atheromatous plaque and glucose metabolism. 10.3390/nu11112833
Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Messner Barbara,Bernhard David Arteriosclerosis, thrombosis, and vascular biology Smoking represents one of the most important preventable risk factors for the development of atherosclerosis. The present review aims at providing a comprehensive summary of published data from clinical and animal studies, as well as results of basic research on the proatherogenic effect of smoking. Extensive search and review of literature revealed a vast amount of data on the influence of cigarette smoke and its constituents on early atherogenesis, particularly on endothelial cells. Vascular dysfunction induced by smoking is initiated by reduced nitric oxide (NO) bioavailability and further by the increased expression of adhesion molecules and subsequent endothelial dysfunction. Smoking-induced increased adherence of platelets and macrophages provokes the development of a procoagulant and inflammatory environment. After transendothelial migration and activation, macrophages take up oxidized lipoproteins arising from oxidative modifications and transdifferentiate into foam cells. In addition to direct physical damage to endothelial cells, smoking induces tissue remodeling, and prothrombotic processes together with activation of systemic inflammatory signals, all of which contribute to atherogenic vessel wall changes. There are still great gaps in our knowledge about the effects of smoking on cardiovascular disease. However, we know that smoking cessation is the most effective measure for reversing damage that has already occurred and preventing fatal cardiovascular outcomes. 10.1161/ATVBAHA.113.300156
Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Marchio Patricia,Guerra-Ojeda Sol,Vila José M,Aldasoro Martín,Victor Victor M,Mauricio Maria D Oxidative medicine and cellular longevity Atherosclerosis is a chronic vascular inflammatory disease associated to oxidative stress and endothelial dysfunction. Oxidation of low-density lipoprotein (LDL) cholesterol is one of the key factors for the development of atherosclerosis. Nonoxidized LDL have a low affinity for macrophages, so they are not themselves a risk factor. However, lowering LDL levels is a common clinical practice to reduce oxidation and the risk of major events in patients with cardiovascular diseases (CVD). Atherosclerosis starts with dysfunctional changes in the endothelium induced by disturbed shear stress which can lead to endothelial and platelet activation, adhesion of monocytes on the activated endothelium, and differentiation into proinflammatory macrophages, which increase the uptake of oxidized LDL (oxLDL) and turn into foam cells, exacerbating the inflammatory signalling. The atherosclerotic process is accelerated by a myriad of factors, such as the release of inflammatory chemokines and cytokines, the generation of reactive oxygen species (ROS), growth factors, and the proliferation of vascular smooth muscle cells. Inflammation and immunity are key factors for the development and complications of atherosclerosis, and therefore, the whole atherosclerotic process is a target for diagnosis and treatment. In this review, we focus on early stages of the disease and we address both biomarkers and therapeutic approaches currently available and under research. 10.1155/2019/8563845