logo logo
TREM1 facilitates the development of gastric cancer through regulating neutrophil extracellular traps-mediated macrophage polarization. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver Triggering receptor expressed on myeloid cell 1 (TREM1) elevation is associated with the unfavorable prognosis of gastric cancer (GC) patients. This work uncovered the effects and mechanism of TREM1 in GC. IHC staining examined TREM1 expression in GC tissues. TREM1-knockout and TREM1 knock-in mice were generated prior to the construction of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced GC mice model. H&E staining detected the pathological alternations of gastric tissues. IHC staining tested Ki67 expression. Wright-Giemsa staining performed neutrophil counting and flow cytometry analysis measured neutrophil infiltration. ELISA analyzed serum and tissue myeloperoxidase (MPO) levels and serum MPO-DNA levels. Immunofluorescence, Western blotting and related kits detected NETs formation. Immunofluorescence and IHC staining evaluated macrophage polarization. In MNNG-treated GES-1 cells and phorbal myristate acetate (PMA)-treated neutrophils, TREM1 expression was also examined. CCK-8 method and Western blotting assayed cell proliferation. Western blotting and immunofluorescence detected NETs formation. Flow cytometry analysis detected the changes of macrophage typing. TREM1 was overexpressed in tumor tissues, MNNG-treated GES-1 cells and PMA-treated neutrophils. TREM1 deficiency hindered tumor growth, reduced neutrophil infiltration, NETs formation and stimulated M1 macrophage polarization in MNNG-induced GC models. Neutrophil extracellular traps (NETs) degrader DNase-1 countervailed the impacts of TREM1 on MNNG-induced GC models in vivo. Collectively, TREM1 knockdown obstructed NETs-mediated M2 macrophage polarization to hamper GC progression. 10.1016/j.dld.2023.12.002
PTX3/TWIST1 Feedback Loop Modulates Lipopolysaccharide-Induced Inflammation via PI3K/Akt Signaling Pathway. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research Chronic inflammation of nasal mucosal tissue is an obvious feature of allergic rhinitis. Pentraxin 3 (PTX3) is a member of the pentraxin family and plays important roles in inflammation. We aimed to investigate the roles and mechanisms of PTX3 in inflammatory factors and MUC5AC production in human nasal epithelia cells. Loss- and gain-of-function experiments were performed. We found that the silencing of PTX3 dramatically blocked the expression of interleukin (IL)-6, IL-8, IL-1β, and MUC5AC induced by lipopolysaccharide (LPS). Gain-of-function of PTX3 displayed the opposite results. Interestingly, the ablation of PTX3 blocked activation of the PI3K/Akt signaling pathway, whereas the administration of an agonist of PI3K, 740Y-P, partially reversed the inhibitory functions of PTX3 silencing on inflammation and MUC5AC production. Moreover, PTX3 was a positive regulator of TWIST1, which is one of the transcription factors of PTX3. We noticed that TWIST1 downregulation reduced the expression of PTX3. Furthermore, chromatin immunoprecipitation assay and dual-luciferase reporter assay demonstrated that TWIST1 could bind to the promoter of PTX3. Importantly, the depletion of TWIST1 attenuated the LPS-mediated expression and secretion of inflammatory cytokines, whereas these effects were partially abolished upon PTX3 overexpression. Taken together, our findings revealed that the PTX3/TWIST1 feedback loop modulates LPS-induced inflammation and MUC5AC production via the PI3K/Akt signaling pathway. 10.1089/jir.2021.0183