logo logo
A patient suffered a second myocardial infarction after a bee sting: a case report. The Journal of international medical research A few cases have shown that bee stings can be linked to coronary stent thrombosis. However, instances of recurrent myocardial infarction resulting from bee stings among patients who have successfully undergone revascularization treatment are rare. This case report describes a man in his early 60s who experienced an acute myocardial infarction. The left anterior descending coronary artery was revascularized by a drug-eluting stent. Just 1 week later, the patient experienced a second acute myocardial infarction and it occurred immediately after a bee sting. Angiography revealed stent thrombosis so thrombus aspiration was performed. Subsequently, the blood flow in the stent was unobstructed. Follow-up coronary angiography 1 year later revealed no signs of restenosis within the stent. Hymenoptera venoms contains thrombogenic substances that might lead to acute stent thrombosis. 10.1177/03000605241259428
Acute renal failure due to multiple bee stings--case reports. Ramanathan M,Lam H S The Medical journal of Malaysia This report deals with a father and his son who developed acute renal failure following multiple bee stings. The renal lesion in these patients appears to be due to rhabdomyolysis caused by the bee venom. The other mechanisms are also discussed. The need for clinicians to be aware of acute renal failure as a complication of bee stings is stressed.
Melittin Inducing the Apoptosis of Renal Tubule Epithelial Cells through Upregulation of Bax/Bcl-2 Expression and Activation of TNF- Signaling Pathway. BioMed research international BACKGROUND:Acute kidney injury (AKI) caused by bee stings is common, with characteristics of acute onset, severe illness, and high mortality. Melittin, a major component of bee venom, has been considered to play a key role in bee sting related AKI. This study aims to illustrate whether melittin could lead to apoptosis of renal tubular epithelial cells (RTECs) and to investigate its mechanism. METHODS:In vivo, 45 mice were randomly divided into the melittin group (n=30, injected with melittin into the tail vein according to the total dose of 4.0 ug/g weight) and the control group (n=15, injected with the same volume of saline into the tail vein). In vitro, human RTECs (HK-2) were cultured and treated with melittin (2ug/ml or 4ug/ml) and TNF- (10ng/ml). Biochemical analysis, HE stains, and electron microscope were performed to evaluate renal function and pathological changes. TUNEL stains and flow cytometry were performed to detect apoptosis. Real-time PCR was performed to detect mRNA levels of Bax, Bcl-2, and TNF-. Simple western assay and immunohistochemical (IH) and immunofluorescent (IF) stains were performed for protein detection. RESULTS:Melittin successfully induced AKI in mice. Compared with the control group, obvious injury and apoptosis of RTECs were observed in the melittin group; the mRNA and protein expressions of Bax were significantly increased, while the expression of Bcl-2 was significantly decreased. The serum TNF-level in melittin group was significantly higher than that in control group. In vitro, the results confirmed that melittin can cause HK-2 cells apoptosis. The trends of expression of Bax and Bcl-2 were consistent with the results in vivo. The levels of TNF- mRNA and protein by PCR and Western blot were significantly higher in melittin group than those in control group. CONCLUSION:Melittin can lead to the apoptosis of RTECs, which may be mediated by upregulating the expression of Bax/Bcl-2 and activating the TNF- signaling pathway. 10.1155/2019/9450368
Acute kidney injury complicating bee stings - a review. Silva Geraldo Bezerra da,Vasconcelos Adolfo Gomes,Rocha Amanda Maria Timbó,Vasconcelos Vanessa Ribeiro de,Barros João de,Fujishima Julye Sampaio,Ferreira Nathália Barros,Barros Elvino José Guardão,Daher Elizabeth De Francesco Revista do Instituto de Medicina Tropical de Sao Paulo Bee stings can cause severe reactions and have caused many victims in the last years. Allergic reactions can be triggered by a single sting and the greater the number of stings, the worse the prognosis. The poisoning effects can be systemic and can eventually cause death. The poison components are melitin, apamin, peptide 401, phospholipase A2, hyaluronidase, histamine, dopamine, and norepinephrine, with melitin being the main lethal component. Acute kidney injury (AKI) can be observed in patients suffering from bee stings and this is due to multiple factors, such as intravascular hemolysis, rhabdomyolysis, hypotension and direct toxicity of the venom components to the renal tubules. Arterial hypotension plays an important role in this type of AKI, leading to ischemic renal lesion. The most commonly identified biopsy finding in these cases is acute tubular necrosis, which can occur due to both, ischemic injury and the nephrotoxicity of venom components. Hemolysis and rhabdomyolysis reported in many cases in the literature, were demonstrated by elevated serum levels of indirect bilirubin and creatine kinase. The severity of AKI seems to be associated with the number of stings, since creatinine levels were higher, in most cases, when there were more than 1,000 stings. The aim of this study is to present an updated review of AKI associated with bee stings, including the currently advised clinical approach. 10.1590/S1678-9946201759025