Attenuating Effects of Dieckol on Hypertensive Nephropathy in Spontaneously Hypertensive Rats.
Son Myeongjoo,Oh Seyeon,Choi Junwon,Jang Ji Tae,Son Kuk Hui,Byun Kyunghee
International journal of molecular sciences
Hypertension induces renal fibrosis or tubular interstitial fibrosis, which eventually results in end-stage renal disease. Epithelial-to-mesenchymal transition (EMT) is one of the underlying mechanisms of renal fibrosis. Though previous studies showed that Ecklonia cava extracts (ECE) and dieckol (DK) had inhibitory action on angiotensin (Ang) I-converting enzyme, which converts Ang I to Ang II. It is known that Ang II is involved in renal fibrosis; however, it was not evaluated whether ECE or DK attenuated hypertensive nephropathy by decreasing EMT. In this study, the effect of ECE and DK on decreasing Ang II and its down signal pathway of angiotensin type 1 receptor (AT1R)//, which is related with the EMT and restoring renal function in spontaneously hypertensive rats (SHRs), was investigated. Either ECE or DK significantly decreased the serum level of Ang II in the SHRs. Moreover, the renal expression of AT1R// was decreased by the administration of either ECE or DK. The mesenchymal cell markers in the kidney of SHRs was significantly decreased by ECE or DK. The fibrotic tissue of the kidney of SHRs was also significantly decreased by ECE or DK. The ratio of urine albumin/creatinine of SHRs was significantly decreased by ECE or DK. Overall, the results of this study indicate that ECE and DK decreased the serum levels of Ang II and expression of AT1R//, and then decreased the EMT and renal fibrosis in SHRs. Furthermore, the decrease in EMT and renal fibrosis could lead to the restoration of renal function. It seems that ECE or DK could be beneficial for decreasing hypertensive nephropathy by decreasing EMT and renal fibrosis.
10.3390/ijms22084230
Molecular Mechanisms of Hypertensive Nephropathy: Renoprotective Effect of Losartan through Hsp70.
Costantino Valeria Victoria,Gil Lorenzo Andrea Fernanda,Bocanegra Victoria,Vallés Patricia G
Cells
Hypertensive nephrosclerosis is the second most common cause of end-stage renal disease after diabetes. For years, hypertensive kidney disease has been focused on the afferent arterioles and glomeruli damage and the involvement of the renin angiotensin system (RAS). Nonetheless, in recent years, novel evidence has demonstrated that persistent high blood pressure injures tubular cells, leading to epithelial-mesenchymal transition (EMT) and tubulointerstitial fibrosis. Injury primarily determined at the glomerular level by hypertension causes changes in post-glomerular peritubular capillaries that in turn induce endothelial damage and hypoxia. Microvasculature dysfunction, by inducing hypoxic environment, triggers inflammation, EMT with epithelial cells dedifferentiation and fibrosis. Hypertensive kidney disease also includes podocyte effacement and loss, leading to disruption of the filtration barrier. This review highlights the molecular mechanisms and histologic aspects involved in the pathophysiology of hypertensive kidney disease incorporating knowledge about EMT and tubulointerstitial fibrosis. The role of the Hsp70 chaperone on the angiotensin II-induced EMT after angiotensin II type 1 receptor (ATR) blockage, as a possible molecular target for therapeutic strategy against hypertensive renal damage is discussed.
10.3390/cells10113146