logo logo
Contribution of viral and bacterial infections to senescence and immunosenescence. Frontiers in cellular and infection microbiology Cellular senescence is a key biological process characterized by irreversible cell cycle arrest. The accumulation of senescent cells creates a pro-inflammatory environment that can negatively affect tissue functions and may promote the development of aging-related diseases. Typical biomarkers related to senescence include senescence-associated β-galactosidase activity, histone H2A.X phosphorylation at serine139 (γH2A.X), and senescence-associated heterochromatin foci (SAHF) with heterochromatin protein 1γ (HP-1γ protein) Moreover, immune cells undergoing senescence, which is known as immunosenescence, can affect innate and adaptative immune functions and may elicit detrimental effects over the host's susceptibility to infectious diseases. Although associations between senescence and pathogens have been reported, clear links between both, and the related molecular mechanisms involved remain to be determined. Furthermore, it remains to be determined whether infections effectively induce senescence, the impact of senescence and immunosenescence over infections, or if both events coincidently share common molecular markers, such as γH2A.X and p53. Here, we review and discuss the most recent reports that describe cellular hallmarks and biomarkers related to senescence in immune and non-immune cells in the context of infections, seeking to better understand their relationships. Related literature was searched in Pubmed and Google Scholar databases with search terms related to the sections and subsections of this review. 10.3389/fcimb.2023.1229098
Reduction of histone proteins dosages increases CFW sensitivity and attenuates virulence of Candida albicans. Microbiological research Histone proteins are important components of nucleosomes, which play an important role in regulating the accessibility of DNA and the function of genomes. However, the effect of histone proteins dosages on physiological processes is not clear in the human fungal pathogen Candida albicans. In this study, we found that the deletion of the histone protein H3 coding gene HHT21 and the histone protein H4 coding gene HHF1 resulted in a significant decrease in the expression dosage of the histone proteins H3 and H4, which had a significant impact on the localization of the histone protein H2A and plasmid maintenance. Stress sensitivity experiments showed that the mutants hht21Δ/Δ, hhf1Δ/Δ and hht21Δ/Δhhf1Δ/Δ were more sensitive to cell wall stress induced by Calcofluor White (CFW) than the wild-type strain. Further studies showed that the decrease in the dosage of the histone proteins H3 and H4 led to the change of cell wall components, increased chitin contents, and down-regulated expression of the SAP9, KAR2, and CRH11 genes involved in the cell wall integrity (CWI) pathway. Overexpression of SAP9 could rescue the sensitivity of the mutants to CFW. Moreover, the decrease in the histone protein s dosages affected the FAD-catalyzed oxidation of Ero1 protein, resulting in the obstruction of protein folding in the ER, and thus reduced resistance to CFW. It was also found that CFW induced a large amount of ROS accumulation in the mutants, and the addition of ROS scavengers could restore the growth of the mutants under CFW treatment. In addition, the reduction of the histone proteins dosages greatly weakened systemic infection and kidney fungal burden in mice, and hyphal development was significantly impaired in the mutants under macrophage treatment, indicating that the histone proteins dosages is very important for the virulence of C. albicans. This study revealed that histone proteins dosages play a key role in the cell wall stress response and pathogenicity in C. albicans. 10.1016/j.micres.2023.127552
Histone H2A variant H2A.B is enriched in transcriptionally active HSV-1 lytic chromatin. bioRxiv : the preprint server for biology Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections, but the precise mechanisms are not fully defined. Nucleosomes are dynamic; they slide, breathe, assemble and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X and macroH2A were enhanced in infected cells, whereas those of H2A.B uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, ectopic, and endogenous H2B, were assembled into HSV-1 chromatin evenly throughout the genome, but canonical H2A was relatively depleted from the viral chromatin whereas H2A.B was enriched in the most dynamic viral chromatin. When viral transcription was restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency, and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. Importance:HSV-1 transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed mechanisms of regulation of HSV-1 transcription by epigenetics have not been fully characterized and may differ from those regulating cellular transcription. In particular, the lytic HSV-1 chromatin is unusually dynamic, whereas the latent silenced one is not, but the mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment on the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding for its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation. 10.1101/2023.12.22.573075
Short Communication: Mosquito Histone 2A Protein Facilitate Japanese Encephalitis Virus Infection in the Mosquito. Vector borne and zoonotic diseases (Larchmont, N.Y.) Japanese encephalitis virus is mainly prevalent in the tropical and subtropical regions of Asia and Oceania. Through immunoprecipitation-mass spectrometry analysis using monoclonal antibodies targeting JEV E protein, we found that mosquito Histone 2A protein could bind to JEV particles. The binding of H2A and JEV was detected in the salivary gland and supernatant of mosquito cells. Furthermore, RNA interference experiments and confirmed that H2A protein promotes JEV infection in mosquitoes. In summary, we found that mosquito H2A is a factor that supports JEV infection and can potentially facilitate cross-species transmission of JEV. 10.1089/vbz.2023.0081
Histone H2A variant H2A.B is enriched in transcriptionally active and replicating HSV-1 lytic chromatin. Journal of virology Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections but the precise mechanisms are not fully defined. Nucleosomes are dynamic: they slide, breathe, assemble, and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent, whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X, and macroH2A were enhanced in infected cells, whereas those of H2A.B were uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, as well as ectopic and endogenous H2B were assembled into HSV-1 chromatin evenly throughout the genome but canonical H2A was relatively depleted whereas H2A.B was enriched, particularly in the most dynamic viral chromatin. When viral transcription and DNA replication were restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. IMPORTANCE:Herpes simplex virus 1 (HSV-1) transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed epigenetic mechanisms of regulation of HSV-1 transcription have not been fully characterized and may differ from those regulating cellular transcription. Whereas lytic HSV-1 chromatin is unusually dynamic, latent silenced HSV-1 chromatin is not. The mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment of the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding of its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation. 10.1128/jvi.02015-23
Identification of a novel histone H2A mono-ubiquitination-inhibiting cell-active small molecule. Bioorganic & medicinal chemistry letters Histone H2A mono-ubiquitination plays important roles in epigenetic gene expression and is also involved in tumorigenesis. Small molecules controlling H2A ubiquitination are of interest as potential chemical tools and anticancer drugs. To identify novel small molecule inhibitors of H2A ubiquitination, we synthesized and evaluated several compounds designed based on PRT4165 (1), which is a reported histone ubiquitin ligase RING1A inhibitor. We found that compound 11b strongly inhibited the viability and reduced histone H2A mono-ubiquitination in human osteosarcoma U2OS cells. Therefore, compound 11b is a promising lead compound for the development of H2A histone ubiquitination-inhibiting small molecules. 10.1016/j.bmcl.2024.129759