logo logo
High-fat diet feeding triggers a regenerative response in the adult zebrafish brain. Molecular neurobiology Non-alcoholic fatty liver disease (NAFLD) includes a range of liver conditions ranging from excess fat accumulation to liver failure. NAFLD is strongly associated with high-fat diet (HFD) consumption that constitutes a metabolic risk factor. While HFD has been elucidated concerning its several systemic effects, there is little information about its influence on the brain at the molecular level. Here, by using a high-fat diet (HFD)-feeding of adult zebrafish, we first reveal that excess fat uptake results in weight gain and fatty liver. Prolonged exposure to HFD induces a significant increase in the expression of pro-inflammation, apoptosis, and proliferation markers in the liver and brain tissues. Immunofluorescence analyses of the brain tissues disclose stimulation of apoptosis and widespread activation of glial cell response. Moreover, glial activation is accompanied by an initial decrease in the number of neurons and their subsequent replacement in the olfactory bulb and the telencephalon. Long-term consumption of HFD causes activation of Wnt/β-catenin signaling in the brain tissues. Finally, fish fed an HFD induces anxiety, and aggressiveness and increases locomotor activity. Thus, HFD feeding leads to a non-traumatic brain injury and stimulates a regenerative response. The activation mechanisms of a regeneration response in the brain can be exploited to fight obesity and recover from non-traumatic injuries. 10.1007/s12035-023-03210-4
Cold induces brain region-selective neuronal activity-dependent lipid metabolism. bioRxiv : the preprint server for biology Previous studies have been focused on lipid metabolism in peripheral tissues such as adipose tissues, while little or nothing is known about that in the brain. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue (WAT) lipid lipolysis and beiging, and brown adipose tissue (BAT) thermogenesis in mammals. However, it remains unclear whether and how the genes responsible for lipid metabolism in the brain are also under the control of cold acclimations. Here, we show that cold exposure predominantly increases the expressions of the genes encoding lipid lipolysis in the paraventricular nucleus of the hypothalamus (PVH). Mechanistically, we find that inactivation of neurons in the PVH blunts the cold-induced lipid peroxidation and lipolysis. Together, these findings indicate that lipid metabolism in the PVH is cold sensitive, potentially participating in cold regulations of energy metabolism. 10.1101/2024.04.15.589506
Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders. Science (New York, N.Y.) The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities. Taking advantage of the Wnt7a/b-specific Gpr124/Reck co-receptor complex, we genetically engineered Wnt7a ligands into BBB-specific Wnt activators. In a "hit-and-run" adeno-associated virus-assisted CNS gene delivery setting, these new Gpr124/Reck-specific agonists protected BBB function, thereby mitigating glioblastoma expansion and ischemic stroke infarction. This work reveals that the signaling specificity of Wnt ligands is adjustable and defines a modality to treat CNS disorders by normalizing the BBB. 10.1126/science.abm4459
The long-chain fatty acid receptors FFA1 and FFA4 are involved in food intake regulation in fish brain. The Journal of experimental biology We hypothesized that the free fatty acid receptors FFA1 and FFA4 might be involved in the anorectic response observed in fish after rising levels of long-chain fatty acids (LCFAs) such as oleate. In one experiment we demonstrated that intracerebroventricular (i.c.v.) treatment of rainbow trout with FFA1 and FFA4 agonists elicited an anorectic response 2, 6 and 24 h after treatment. In a second experiment, the same i.c.v. treatment resulted after 2 h in an enhancement in the mRNA abundance of anorexigenic neuropeptides and and a decrease in the values of orexigenic peptides and These changes occurred in parallel with those observed in the mRNA abundance and/or protein levels of the transcription factors Creb, Bsx and FoxO1, protein levels and phosphorylation status of Ampkα and Akt, and mRNA abundance of and Finally, we assessed in a third experiment the response of all these parameters after 2 h of i.c.v. treatment with oleate (the endogenous ligand of both free fatty acid receptors) alone or in the presence of FFA1 and FFA4 antagonists. Most effects of oleate disappeared in the presence of FFA1 and FFA4 antagonists. The evidence obtained supports the involvement of FFA1 and FFA4 in fatty acid sensing in fish brain, and thus involvement in food intake regulation through mechanisms not exactly comparable (differential response of neuropeptides and cellular signalling) to those known in mammals. 10.1242/jeb.227330
Central administration of oleate or octanoate activates hypothalamic fatty acid sensing and inhibits food intake in rainbow trout. Librán-Pérez Marta,Otero-Rodiño Cristina,López-Patiño Marcos A,Míguez Jesús M,Soengas José L Physiology & behavior If levels of fatty acids like oleate and octanoate are directly sensed through different fatty acid (FA) sensing systems in hypothalamus of rainbow trout, intracerebroventricular (ICV) administration of FA should elicit effects similar to those previously observed after intraperitoneal (IP) treatment. Accordingly, we observed after ICV treatment with oleate or octanoate decreased food intake accompanied in hypothalamus by reduced potential of lipogenesis and FA oxidation, and decreased potential of ATP-dependent inward rectifier potassium channel (K(+)ATP). Those changes support direct FA sensing through mechanisms related to FA metabolism and mitochondrial activity. The FA sensing through binding to FAT/CD36 and subsequent expression of transcription factors appears to be also direct but an interaction with peripheral hormones cannot be rejected. Moreover, decreased expression of NPY and increased expression of POMC were observed in parallel with the activation of FA sensing systems and decreased food intake. These results allow us to suggest the involvement of at least these peptides in controlling the decreased food intake noted after oleate and octanoate treatment in rainbow trout. 10.1016/j.physbeh.2014.02.061