logo logo
Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Gonzalez-Rivas Paula A,Chauhan Surinder S,Ha Minh,Fegan Narelle,Dunshea Frank R,Warner Robyn D Meat science Heat stress is one of the most stressful events in the life of livestock with harmful consequences for animal health, productivity and product quality. Ruminants, pigs and poultry are susceptible to heat stress due to their rapid metabolic rate and growth, high level of production, and species-specific characteristics such as rumen fermentation, sweating impairment, and skin insulation. Acute heat stress immediately before slaughter stimulates muscle glycogenolysis and can result in pale, soft and exudative (PSE) meat characterized by low water holding capacity (WHC). By contrast, animals subjected to chronic heat stress, have reduced muscle glycogen stores resulting in dark, firm and dry (DFD) meat with high ultimate pH and high WHC. Furthermore, heat stress leads to oxidative stress, lipid and protein oxidation, and reduced shelf life and food safety due to bacterial growth and shedding. This review discusses the scientific evidence regarding the effects of heat stress on livestock physiology and metabolism, and their consequences for meat quality and safety. 10.1016/j.meatsci.2019.108025
Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell research Pig epiblast-derived pluripotent stem cells are considered to have great potential and broad prospects for human therapeutic model development and livestock breeding. Despite ongoing attempts since the 1990s, no stably defined pig epiblast-derived stem cell line has been established. Here, guided by insights from a large-scale single-cell transcriptome analysis of pig embryos from embryonic day (E) 0 to E14, specifically, the tracing of pluripotency changes during epiblast development, we developed an in vitro culture medium for establishing and maintaining stable pluripotent stem cell lines from pig E10 pregastrulation epiblasts (pgEpiSCs). Enabled by chemical inhibition of WNT-related signaling in combination with growth factors in the FGF/ERK, JAK/STAT3, and Activin/Nodal pathways, pgEpiSCs maintain their pluripotency transcriptome features, similar to those of E10 epiblast cells, and normal karyotypes after more than 240 passages and have the potential to differentiate into three germ layers. Strikingly, ultradeep in situ Hi-C analysis revealed functional impacts of chromatin 3D-spatial associations on the transcriptional regulation of pluripotency marker genes in pgEpiSCs. In practice, we confirmed that pgEpiSCs readily tolerate at least three rounds of successive gene editing and generated cloned gene-edited live piglets. Our findings deliver on the long-anticipated promise of pig pluripotent stem cells and open new avenues for biological research, animal husbandry, and regenerative biomedicine. 10.1038/s41422-021-00592-9
A Microbiota-Derived Bacteriocin Targets the Host to Confer Diarrhea Resistance in Early-Weaned Piglets. Hu Jun,Ma Libao,Nie Yangfan,Chen Jianwei,Zheng Wenyong,Wang Xinkai,Xie Chunlin,Zheng Zilong,Wang Zhichang,Yang Tao,Shi Min,Chen Lingli,Hou Qiliang,Niu Yaorong,Xu Xiaofan,Zhu Yuhua,Zhang Yong,Wei Hong,Yan Xianghua Cell host & microbe Alternatives to antibiotics for preventing diarrhea in early-weaned farm animals are sorely needed. CM piglets (a native Chinese breed) are more resistant to early-weaning stress-induced diarrhea than the commercial crossbred LY piglets. Transferring fecal microbiota, but not saline, from healthy CM into LY piglets by oral administration prior to early weaning conferred diarrhea resistance. By comparing the relative abundance of intestinal microbiota in saline and microbiota transferred LY piglets, we identified and validated Lactobacillus gasseri LA39 and Lactobacillus frumenti as two bacterial species that mediate diarrhea resistance. Diarrhea resistance depended on the bacterial secretory circular peptide gassericin A, a bacteriocin. The binding of gassericin A to Keratin 19 (KRT19) on the plasma membrane of intestinal epithelial cells was essential for enhancement of fluid absorption and decreased secretion. These findings suggest the use of L. gasseri LA39 and L. frumenti as antibiotic alternatives for preventing diarrhea in mammals. 10.1016/j.chom.2018.11.006
Trends and prospects in mitochondrial genome editing. Experimental & molecular medicine Mitochondria are of fundamental importance in programmed cell death, cellular metabolism, and intracellular calcium concentration modulation, and inheritable mitochondrial disorders via mitochondrial DNA (mtDNA) mutation cause several diseases in various organs and systems. Nevertheless, mtDNA editing, which plays an essential role in the treatment of mitochondrial disorders, still faces several challenges. Recently, programmable editing tools for mtDNA base editing, such as cytosine base editors derived from DddA (DdCBEs), transcription activator-like effector (TALE)-linked deaminase (TALED), and zinc finger deaminase (ZFD), have emerged with considerable potential for correcting pathogenic mtDNA variants. In this review, we depict recent advances in the field, including structural biology and repair mechanisms, and discuss the prospects of using base editing tools on mtDNA to broaden insight into their medical applicability for treating mitochondrial diseases. 10.1038/s12276-023-00973-7