logo logo
Borneol: a Promising Monoterpenoid in Enhancing Drug Delivery Across Various Physiological Barriers. Kulkarni Madhur,Sawant Niserga,Kolapkar Anjali,Huprikar Aishwarya,Desai Namita AAPS PharmSciTech Incorporation of permeation enhancers is one of the most widely employed approaches for delivering drugs across biological membranes. Permeation enhancers aid in delivering drugs across various physiological barriers such as brain capillary endothelium, stratum corneum, corneal epithelium, and mucosal membranes that pose resistance to the entry of a majority of drugs. Borneol is a natural, plant-derived, lipophilic, volatile, bicyclic monoterpenoid belonging to the class of camphene. It has been used under the names "Bing Pian" or "Long Nao" in Traditional Chinese Medicine for more than 1000 years. Borneol has been incorporated predominantly as an adjuvant in the traditional Chinese formulations of centrally acting drugs to improve drug delivery to the brain. This background knowledge and anecdotal evidence have led to extensive research in establishing borneol as a permeation enhancer across the blood-brain barrier. Alteration in cell membrane lipid structures and modulation of multiple ATP binding cassette transporters as well as tight junction proteins are the major contributing factors to blood-brain barrier opening functions of borneol. Owing to these mechanisms of altering membrane properties, borneol has also shown promising potential to improve drug delivery across other physiological barriers as well. The current review focuses on the role of borneol as a permeation enhancer across the blood-brain barrier, mucosal barriers including nasal and gastrointestinal linings, transdermal, transcorneal, and blood optic nerve barrier. 10.1208/s12249-021-01999-8
Progress in Borneol Intervention for Ischemic Stroke: A Systematic Review. Li Yong,Ren Mihong,Wang Jiajun,Ma Rong,Chen Hai,Xie Qian,Li Hongyan,Li Jinxiu,Wang Jian Frontiers in pharmacology Borneol is a terpene and bicyclic organic compound that can be extracted from plants or chemically synthesized. As an important component of proprietary Chinese medicine for the treatment of stroke, its neuroprotective effects have been confirmed in many experiments. Unfortunately, there is no systematic review of these studies. This study aimed to systematically examine the neuroprotective effects of borneol in the cascade reaction of experimental ischemic stroke at different periods. Articles on animal experiments and cell-based research on the actions of borneol against ischemic stroke in the past 20°years were collected from Google Scholar, Web of Science, PubMed, ScienceDirect, China National Knowledge Infrastructure (CNKI), and other biomedical databases. Meta-analysis was performed on key indicators experiments. After sorting the articles, we focused on the neuroprotective effects and mechanism of action of borneol at different stages of cerebral ischemia. Borneol is effective in the prevention and treatment of nerve injury in ischemic stroke. Its mechanisms of action include improvement of cerebral blood flow, inhibition of neuronal excitotoxicity, blocking of Ca overload, and resistance to reactive oxygen species injury in the acute ischemic stage. In the subacute ischemic stage, borneol may antagonize blood-brain barrier injury, intervene in inflammatory reactions, and prevent neuron excessive death. In the late stage, borneol promotes neurogenesis and angiogenesis in the treatment of ischemic stroke. Borneol prevents neuronal injury after cerebral ischemia via multiple action mechanisms, and it can mobilize endogenous nutritional factors to hasten repair and regeneration of brain tissue. Because the neuroprotective effects of borneol are mediated by various therapeutic factors, deficiency caused by a single-target drug is avoided. Besides, borneol promotes other drugs to pass through the blood-brain barrier to exert synergistic therapeutic effects. 10.3389/fphar.2021.606682