logo logo
Acid Treatment of FVIII-Containing Plasma Samples Unmasks a Broad Spectrum of FVIII-Specific Antibodies in ELISA. Hamostaseologie During routine treatment, plasma samples of patients with hemophilia A or acquired hemophilia A are frequently analyzed for the presence of FVIII-specific antibodies. While only inhibitory antibodies can be detected by the Bethesda assay, inhibitory and non-inhibitory antibodies can be detected by ELISA. However, plasma samples of patients frequently contain endogenous or substituted FVIII, hence interfering with both types of analyses. One option for the inactivation of FVIII is heat denaturation, which unfortunately has been shown to lead to high background signals complicating the discrimination of negative and positive plasma samples. In the current study, we developed a method of acid denaturation for FVIII-containing plasma samples that can help identify samples containing FVIII-specific antibodies and compared the effects of heat and acid denaturation on the detection of FVIII-antibody interactions in a monoclonal setting. The aim of our study was to establish an analysis that allows safer treatment decisions in the context of tolerance to FVIII. 10.1055/a-2329-1781
Kinetic Modeling for BT200 to Predict the Level of Plasma-Derived Coagulation Factor VIII in Humans. The AAPS journal Lack of Factor VIII (FVIII) concentrates is one of limiting factors for Hemophilia A prophylaxis in resource-limited countries. Rondaptivon pegol (BT200) is a pegylated aptamer and has been shown to elevate the level of von Willebrand Factor (VWF) and FVIII in previous studies. A population pharmacokinetic model for BT200 was built and linked to the kinetic models of VWF and FVIII based on reasonable assumptions. The developed PK/PD model for BT200 described the observed kinetic of BT200, VWF, and FVIII in healthy volunteers and patients with mild-to-moderate hemophilia A from two clinical trials. The developed model was evaluated using an external dataset in patients with severe hemophilia A taking recombinant FVIII products. The developed and evaluated PK/PD model was able to describe and predict concentration-time profiles of BT200, VWF, and FVIII in healthy volunteers and patients with hemophilia A. Concentration-time profiles of FVIII were then predicted following coadministration of plasma-derived FVIII concentrate and BT200 under various dosing scenarios in virtual patients with severe hemophilia A. Plasma-derived products, that contain VWF, are more accessible in low-resource countries as compared to their recombinant counterparts. The predicted time above 1 and 3 IU/dL FVIII in one week was compared between scenarios in the absence and presence of BT200. A combination dose of 6 mg BT200 once weekly plus 10 IU/kg plasma-derived FVIII twice weekly maintained similar coverage to a 30 IU/kg FVIII thrice weekly dose in absence of BT200, representing only 22% of the FVIII dose per week. 10.1208/s12248-024-00952-4
The impact of von Willebrand factor on fibrin formation and structure unveiled with type 3 von Willebrand disease plasma. Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis Normally, von Willebrand factor (VWF) remains inactive unless its A1A2 domains undergo a shear stress-triggered conformational change. We demonstrated the capacity of a recombinant A2 domain of VWF to bind and to affect fibrin formation, altering the fibrin clot structure. The data indicated that VWF contains an additional binding site for fibrin in the A2 domain that plays a role in the incorporation of VWF to the polymerizing fibrin. This study is to examine the hypothesis that active plasma VWF directly influence fibrin polymerization and the structure of fibrin clots. The study used healthy and type 3 von Willebrand disease (VWD) plasma, purified plasma VWF, fibrin polymerization assays, confocal microscopy and scanning electron microscopy. The exposed A2 domain in active VWF harbors additional binding sites for fibrinogen, and significantly potentiates fibrin formation (P < 0.02). Antibody against the A2 domain of VWF significantly decreased the initial rate of change of fibrin formation (P < 0.002). Clot analyses revealed a significant difference in porosity between normal and type 3 VWD plasma (P < 0.008), further supported by scanning electron microscopy, which demonstrated thicker fibrin fibers in the presence of plasma VWF (P < 0.0003). Confocal immunofluorescence microscopy showed punctate VWF staining along fibrin fibrils, providing visual evidence of the integration of plasma VWF into the fibrin matrix. The study with type 3 VWD plasma supports the hypothesis that plasma VWF directly influences fibrin polymerization and clot structure. In addition, a conformational change in the A1A2 domains exposes a hidden fibrin(ogen) binding site, indicating that plasma VWF determines the fibrin clot structure. 10.1097/MBC.0000000000001309
Plasma von Willebrand factor levels in patients with cancer: A meta‑analysis. Oncology letters von Willebrand Factor (VWF) is well recognized for being dysregulated in various malignancies and has emerged as a potential biomarker for cancer detection. The present meta-analysis aimed to elucidate the association between plasma VWF and the incidence and metastasis of cancer. For this purpose, a comprehensive search was conducted across multiple databases from their inception until March 3, 2023. This culminated in the selection of 15 original studies on various types of cancer, including a collective sample of 1,403 individuals. The standardized mean difference (SMD) and 95% confidence intervals (CIs) were employed as statistical parameters to determine the association between plasma VWF and the incidence and metastasis of cancer. These were estimated using a random-effects model. The pooled data revealed that the plasma VWF levels of patients with cancer were significantly elevated compared with those of healthy controls (SMD, 0.98; 95% CI, 0.59-1.36), and a significant association was observed between plasma VWF levels and cancer metastasis (SMD, 0.69; 95% CI, 0.33-1.06). The symmetry of the Begg's funnel plots indicated that no significant bias was present in the analyses of VWF in cancer and its metastasis. In summary, the results of the present meta-analysis support the hypothesis that increased plasma VWF levels may serve as a biomarker for cancer and metastatic progression. 10.3892/ol.2024.14532
Plasma levels of complement components C5 and C9 are associated with thrombin generation. Journal of thrombosis and haemostasis : JTH BACKGROUND:The thrombin generation assay (TGA) evaluates the potential of plasma to generate thrombin over time, providing a global picture of an individual's hemostatic balance. OBJECTIVES:This study aimed to identify novel biological determinants of thrombin generation using a multiomics approach. METHODS:Associations between TGA parameters and plasma levels of 377 antibodies targeting 236 candidate proteins for cardiovascular risk were tested using multiple linear regression analysis in 770 individuals with venous thrombosis from the Marseille Thrombosis Association (MARTHA) study. Proteins associated with at least 3 TGA parameters were selected for validation in an independent population of 536 healthy individuals (Etablissement Français du Sang Alpes-Méditerranée [EFS-AM]). Proteins with strongest associations in both groups underwent additional genetic analyses and in vitro experiments. RESULTS:Eighteen proteins were associated (P < 1.33 × 10⁻) with at least 3 TGA parameters in MARTHA, among which 13 demonstrated a similar pattern of associations in EFS-AM. Complement proteins C5 and C9 had the strongest associations in both groups. Ex vivo supplementation of platelet-poor plasma with purified C9 protein had a significant dose-dependent effect on TGA parameters. No effect was observed with purified C5. Several single nucleotide polymorphisms associated with C5 and C9 plasma levels were identified, with the strongest association for the C5 missense variant rs17611, which was associated with a decrease in C5 levels, endogenous thrombin potential, and peak in MARTHA. No association of this variant with TGA parameters was observed in EFS-AM. CONCLUSION:This study identified complement proteins C5 and C9 as potential determinants of thrombin generation. Further studies are warranted to establish causality and elucidate the underlying mechanisms. 10.1016/j.jtha.2024.04.026
Plasma kallikrein supports FXII-independent thrombin generation in mouse whole blood. Blood advances ABSTRACT:Plasma kallikrein (PKa) is an important activator of factor XII (FXII) of the contact pathway of coagulation. Several studies have shown that PKa also possesses procoagulant activity independent of FXII, likely through its ability to directly activate FIX. We evaluated the procoagulant activity of PKa using a mouse whole blood (WB) thrombin-generation (TG) assay. TG was measured in WB from PKa-deficient mice using contact pathway or extrinsic pathway triggers. PKa-deficient WB had significantly reduced contact pathway-initiated TG compared with that of wild-type controls and was comparable with that observed in FXII-deficient WB. PKa-deficient WB supported equivalent extrinsic pathway-initiated TG compared with wild-type controls. Consistent with the presence of FXII-independent functions of PKa, targeted blockade of PKa with either small molecule or antibody-based inhibitors significantly reduced contact pathway-initiated TG in FXII-deficient WB. Inhibition of activated FXII (FXIIa) using an antibody-based inhibitor significantly reduced TG in PKa-deficient WB, consistent with a PKa-independent function of FXIIa. Experiments using mice expressing low levels of tissue factor demonstrated that persistent TG present in PKa- and FXIIa-inhibited WB was driven primarily by endogenous tissue factor. Our work demonstrates that PKa contributes significantly to contact pathway-initiated TG in the complex milieu of mouse WB, and a component of this contribution occurs in an FXII-independent manner. 10.1182/bloodadvances.2024012613
Reduced plasma factor X is associated with a lack of response to recombinant activated factor VII in patients with hemophilia A and inhibitor, but does not impair emicizumab-driven hemostasis in vitro. Thrombosis research BACKGROUND:The hemostatic effect of recombinant (r) factor (F)VIIa after repetitive intermittent administration may be attenuated in patients with hemophilia A (PwHA) with inhibitors (PwHAwI) creating a clinically unresponsive status, although mechanism(s) remain to be clarified. In patients receiving prophylaxis treatment with emicizumab, concomitant rFVIIa is sometimes utilized in multiple doses for surgical procedures or breakthrough bleeding. AIM AND METHODS:We identified 'unresponsiveness' to rFVIIa, based on global coagulation function monitored using rotational thromboelastometry (ROTEM) in 11 PwHAwI and 5 patients with acquired HA, and investigated possible mechanisms focusing on the association between plasma FX levels and rFVIIa-mediated interactions. RESULTS:Our data demonstrated that FX antigen levels were lower in the rFVIIa-unresponsive group than in the rFVIIa-responsive group (0.46 ± 0.14 IU/mL vs. 0.87 ± 0.15 IU/mL, p < 0.01). This relationship was further examined by thrombin generation assays using a FX-deficient PwHAwI plasma model. The addition of FX with rFVIIa was associated with increased peak thrombin (PeakTh) generation. At low levels of FX (<0.5 IU/mL), rFVIIa failed to increase PeakTh to the normal range, consistent with clinical rFVIIa-unresponsiveness. In the presence of emicizumab (50 μg/mL), PeakTh was increased maximally to 80 % of normal, even at low levels of FX (0.28 IU/mL). CONCLUSIONS:Unresponsiveness to rFVIIa was associated with reduced levels of FX in PwHAwI. Emicizumab exhibited in vitro coagulation potential in the presence of FX at concentrations that appeared to limit the clinical response to rFVIIa therapy. 10.1016/j.thromres.2024.03.023