logo logo
Particulate plastics-plant interaction in soil and its implications: A review. Wu Xiaolian,Lu Jinlian,Du Minghui,Xu Xiaoya,Beiyuan Jingzi,Sarkar Binoy,Bolan Nanthi,Xu Weicheng,Xu Song,Chen Xin,Wu Fengchang,Wang Hailong The Science of the total environment Particulate plastics (<5 mm), including macroplastics (1 μm to 5 mm), microplastics (100 nm to 1 μm) and nanoplastics (<100 nm), have become a global environmental problem due to their widespread occurrence, distribution and ecosystem risk. Although numerous studies on particulate plastics have been conducted in aquatic systems, investigations in the soil ecosystem are lacking. Soil is the main storage place of particulate plastics, conferring significant impacts on plant growth and development. The impact of particulate plastics on plants is directly related to the safety of agricultural products. This review comprehensively examines the pollution characteristics and exposure pathways of particulate plastics in agricultural soils, highlighting plastic uptake process, and mechanisms in plants, and effects of particulate plastics, biodegradable particulate plastics and combined pollution of plastics with other environmental pollutants on plant performances. This review identifies a number of future research prospects including the development of accurate quantitative methods for plastic analysis in soil and plant samples, understanding the environmental behaviors of conventional and biodegradable particulate plastics in the presence and absence of other environmental pollutants, unravelling the fate of particulate plastics in plants, phyto-toxicity and molecular regulatory mechanisms of particultate plastics, and developing best management practices for the production of safe agricultural products in plastic-contaminated soils. 10.1016/j.scitotenv.2021.148337
Uptake and transport of micro/nanoplastics in terrestrial plants: Detection, mechanisms, and influencing factors. The Science of the total environment The pervasive dispersion of micro/nanoplastics in various environmental matrices has raised concerns regarding their potential intrusion into terrestrial ecosystems and, notably, plants. In this comprehensive review, we focus on the interaction between these minute plastic particles and plants. We delve into the current methodologies available for detecting micro/nanoplastics in plant tissues, assess the accumulation and distribution of these particles within roots, stems, and leaves, and elucidate the specific uptake and transport mechanisms, including endocytosis, apoplastic transport, crack-entry mode, and stomatal entry. Moreover, uptake and transport of micro/nanoplastics are complex processes influenced by multiple factors, including particle size, surface charge, mechanical properties, and physiological characteristics of plants, as well as external environmental conditions. In conclusion, this review paper provided valuable insights into the current understanding of these mechanisms, highlighting the complexity of the processes and the multitude of factors that can influence them. Further research in this area is warranted to fully comprehend the fate of micro/nanoplastics in plants and their implications for environmental sustainability. 10.1016/j.scitotenv.2023.168155
Quantitative assessment and monitoring of microplastics and nanoplastics distributions and lipid metabolism in live zebrafish using hyperspectral stimulated Raman scattering microscopy. Environment international Microplastics (MP) and nanoplastics (NP) pollutions pose a rising environmental threat to humans and other living species, given their escalating presence in essential resources that living subjects ingest and/or inhale. Herein, to elucidate the potential health implications of MP/NP, we report for the first time by using label-free hyperspectral stimulated Raman scattering (SRS) imaging technique developed to quantitatively monitor the bioaccumulation and metabolic toxicity of MP/NP within live zebrafish larvae during their early developmental stages. Zebrafish embryos are exposed to environmentally related concentrations (3-60 μg/ml) of polystyrene (PS) beads with two typical sizes (2 μm and 50 nm). Zebrafish are administered isotope-tagged fatty acids through microinjection and dietary intake for in vivo tracking of lipid metabolism dynamics. In vivo 3D quantitative vibrational imaging of PS beads and intrinsic biomolecules across key zebrafish organs reveals that gut and liver are the primary target organs of MP/NP, while only 50 nm PS beads readily aggregate and adhere to the brain and blood vessels. The 50 nm PS beads are also found to induce more pronounced hepatic inflammatory response compared to 2 μm counterparts, characterized by increased biogenesis of lipid droplets and upregulation of arachidonic acid detected in zebrafish liver. Furthermore, Raman-tagged SRS imaging of fatty acids uncovers that MP/NP exposure significantly reduces yolk lipid utilization and promotes dietary lipid storage in zebrafish, possibly associated with developmental delays and more pronounced food dilution effects in zebrafish larvae exposed to 2 μm PS beads. The hyperspectral SRS imaging in this work shows that MP/NP exposure perturbs the development and lipid metabolism in zebrafish larvae, furthering the understanding of MP/NP ingestions and consequent toxicity in different organs in living species. 10.1016/j.envint.2024.108679
Polystyrene nanoplastics induce lipid metabolism disorder and alter fatty acid composition in the hepatopancreas of Pacific whiteleg shrimp (Litopenaeus vannamei). The Science of the total environment The impact of nanoplastics (NPs) on environmental pollution and aquatic organisms has gradually attracted attention, but there are relatively few reports of the effects of NPs on the lipid metabolism of crustaceans. In this study, we exposed Pacific whiteleg shrimp (Litopenaeus vannamei) to different concentrations of polystyrene NPs (0, 0.1, 1, 5, and 10 mg/L) for 28 days. We then evaluated the effects of NP exposure on metabolite content, histology, lipid metabolism-related enzyme activity, and gene expression. Our results showed that with increasing NPs concentrations and exposure time, (1) the crude protein and crude fat content decreased and fatty acid composition changed; (2) the tissue structure was destroyed and the number of lipid droplets increased in the hepatopancreas; (3) the activities of acetyl-CoA carboxylase, fatty acid synthase, carnitine palmitoyl transferase-1, pyruvate kinase and low-density lipoprotein content tended to decrease and that of lipase and high-density lipoprotein content first increased and then decreased; the content of triglycerides and total carbohydrate first decreased and then increased; (4) the expression of fatty acid synthesis-related genes (Fas, SREBP, and FAD), fatty acid transport-related genes (FATP, FABP, and ACBP), and fatty acid decomposition-related genes (Ampk and lip1) first increased and then decreased. These results indicate that exposure to NPs can cause physiological disorders of fat metabolism in L.vannamei and that high concentrations of NPs have a negative impact on lipid metabolism. These results of this study provide valuable ecotoxicological data for better interpretation of the mechanism of action of NPs in crustaceans. 10.1016/j.scitotenv.2023.167616
Vitamin D modulates disordered lipid metabolism in zebrafish (Danio rerio) liver caused by exposure to polystyrene nanoplastics. Environment international In this study, zebrafish (Danio rerio) were exposed to polystyrene nanoplastics (PS-NPs, 80 nm) at 0, 15, or 150 μg/L for 21 days and supplied with a low or high vitamin D (VD) diet (280 or 2800 IU/kg, respectively, indicated by - or +) to determine whether and how VD can regulate lipid metabolism disorder induced by PS-NPs. Six groups were created according to the PS-NP concentration and VD diet status: 0-, 0+, 15-, 15+,150-, and 150 +. Transmission electron microscopy showed that PS-NPs accumulated in the livers of zebrafish, which led to large numbers of vacuoles and lipid droplets in liver cell matrices; this accumulation was most prominent in the 150- group, wherein the number of lipid droplets increased significantly by 136.36%. However, the number of lipid droplets decreased significantly by 76.92% in the 150+ group compared with the 150- group. An examination of additional biochemical indicators showed that the high VD diet partially reversed the increases in the triglyceride and total cholesterol contents induced by PS-NPs (e.g., triglycerides decreased by 58.52% in the 150+ group, and total cholesterol decreased by 44.64% in the 15+ group), and regulated lipid metabolism disorder mainly by inhibiting lipid biosynthesis. Untargeted lipidomics analysis showed that exposure to PS-NPs was associated mainly with changes in the lipid molecular content related to cell membrane function and lipid biosynthesis and that the high VD diet reduced the content of lipid molecules related to lipid biosynthesis, effectively alleviating cell membrane damage and lipid accumulation. These findings highlight the potential of VD to alleviate lipid metabolism disorder caused by PS-NP exposure, thereby providing new insights into how the toxic effects of NPs on aquatic organisms could be reduced. 10.1016/j.envint.2023.108328
Polystyrene nanoplastics dysregulate lipid metabolism in murine macrophages in vitro. Florance Ida,Ramasubbu Seenivasan,Mukherjee Amitava,Chandrasekaran Natarajan Toxicology Micro and nanoplastics are one of the major emerging environmental contaminants. Their impact on human health is less explored. There are several in vitro studies on their cellular uptake and accumulation, where micro and nanoplastics were mostly reported to be non-cytotoxic. The effects caused by the direct contact of nanoplastics with the immune system, especially at the cellular level is less known. Here we report that RAW 264.7 macrophages undergo differentiation into lipid laden foam cells when exposed to polystyrene nanoplastics (50 μg/mL). We found that exposure of RAW 264.7 macrophages to sulfate-modified polystyrene nanoplastics results in the accumulation of lipid droplets in the cytoplasm leading to foam cell formation. Exposure to high concentration of polystyrene nanoplastics (100 and 200 μg/mL) results in increased reactive oxygen species and impair lysosomes in macrophages. The exposure of BV2 microglial cells to polystyrene nanoplastics (50 μg/mL) induces lipid accumulation. In addition, our results indicate the role of polystyrene nanoplastics in altering the lipid metabolism in murine macrophages in vitro. In the present study we reported that polystyrene nanoplastics stabilized with anionic surfactants can be potent stimuli for lipotoxicity and foam cell formation leading to the pathogenesis of atherosclerosis posing major threat for animal and human health. 10.1016/j.tox.2021.152850
Exposure to polystyrene nanoplastics impairs lipid metabolism in human and murine macrophages in vitro. Ecotoxicology and environmental safety The use of polystyrene micro and nanoplastics in cosmetics and personal care products continues to grow every day. The harmful effects of their biological accumulation in organisms of all trophic levels including humans have been reported by several studies. While we have accumulating evidence on the impact of nanoplastics on different organ systems in humans, only a handful of reports on the impact of polystyrene nanoplastics upon direct contact with the immune system at the cellular level are avialable. The present study offers significant evidence on the cell-specific harmful impact of sulfate-modified nanoplastics (S-NPs) on human macrophages. Here we report that exposure of human macrophages to S-NPs (100 µg/mL) stimulated the accumulation of lipids droplets (LDs) in the cytoplasm resulting in the differentiation of macrophages into foam cells. The observed effect was specific for human and murine macrophages but not for other cell types, especially human keratinocytes, liver, and lung cell models. Furthermore, we found that S-NPs mediated LDs accumulation in human macrophages was accompanied by acute mitochondrial oxidative stress. The accumulated LDs were further delivered and accumulated into lysosomes leading to impaired lysosomal clearance. In conclusion, our study reveals that exposure to polystyrene nanoplastics stabilized with anionic surfactants can be a potent stimulus for dysregulation of lipid metabolism and macrophage foam cell formation, a characteristic feature observed during atherosclerosis posing a serious threat to human health. 10.1016/j.ecoenv.2022.113612