logo logo
Expression and physiology of opioid receptors in the gastrointestinal tract. Mosińska Paula,Zielińska Marta,Fichna Jakub Current opinion in endocrinology, diabetes, and obesity PURPOSE OF REVIEW:Stimulation of opioid receptors elicits analgesic effect not only in the central nervous system, but also in the gastrointestinal tract, where a high concentration of opioid receptors can be found within the enteric nervous system as well as muscular and immune cells. Along with antinociception, opioid receptors in the stomach and intestine relay signals crucial for secretory and motor gastrointestinal function. RECENT FINDINGS:The review focuses on the utility of opioid receptor antagonists, which is generally contributing to the management of postoperative ileus and opioid bowel dysfunction in chronic pain patients nonetheless, opioid receptor antagonists can also be useful in the treatment of irritable bowel syndrome and chronic idiopathic constipation. The study also discusses several antidiarrheal opioid agonists, as well as opioids and opioid mimetics encompassing the concept of ligand-biased agonism and truncated opioid receptor splice variants. SUMMARY:Good understanding of the localization and the role of opioid receptors is vital for regulation of various pathophysiological processes in the gastrointestinal tract and may simultaneously provide a tempting approach in eliminating adverse effects related to centrally acting opioids. 10.1097/MED.0000000000000219
Gut microbiota, immunity and pain. Santoni Matteo,Miccini Francesca,Battelli Nicola Immunology letters The interplay between microbiota and nervous system has been associated with a variety of diseases, including stress, anxiety, depression and cognition. The growing body of evidences on the essential role of gut microbiota in modulating acute and chronic pain has opened a new frontier for pain management. Gut microbiota is involved in the development of visceral, inflammatory and neuropathic pain. Bacterial alterations due to chronic opioid administration have been directly related to the development of drug tolerance, which can be potentially restored by the use of probiotics and antibiotics. In this review we describe the mechanisms underlying the brain/gut axis and the relationship between gut microbiota, immunity and pain. 10.1016/j.imlet.2020.11.010
versus the Microbiome. Rogers Andrew W L,Tsolis Renée M,Bäumler Andreas J Microbiology and molecular biology reviews : MMBR A balanced gut microbiota contributes to health, but the mechanisms maintaining homeostasis remain elusive. Microbiota assembly during infancy is governed by competition between species and by environmental factors, termed habitat filters, that determine the range of successful traits within the microbial community. These habitat filters include the diet, host-derived resources, and microbiota-derived metabolites, such as short-chain fatty acids. Once the microbiota has matured, competition and habitat filtering prevent engraftment of new microbes, thereby providing protection against opportunistic infections. Competition with endogenous , habitat filtering by short-chain fatty acids, and a host-derived habitat filter, epithelial hypoxia, also contribute to colonization resistance against serovars. However, at a high challenge dose, these frank pathogens can overcome colonization resistance by using their virulence factors to trigger intestinal inflammation. In turn, inflammation increases the luminal availability of host-derived resources, such as oxygen, nitrate, tetrathionate, and lactate, thereby creating a state of abnormal habitat filtering that enables the pathogen to overcome growth inhibition by short-chain fatty acids. Thus, studying the process of ecosystem invasion by serovars clarifies that colonization resistance can become weakened by disrupting host-mediated habitat filtering. This insight is relevant for understanding how inflammation triggers dysbiosis linked to noncommunicable diseases, conditions in which endogenous expand in the fecal microbiota using some of the same growth-limiting resources required by serovars for ecosystem invasion. In essence, ecosystem invasion by serovars suggests that homeostasis and dysbiosis simply represent states where competition and habitat filtering are normal or abnormal, respectively. 10.1128/MMBR.00027-19
The bidirectional relationship between opioids and the gut microbiome: Implications for opioid tolerance and clinical interventions. International immunopharmacology Opioids are widely used in treating patients with acute and chronic pain; however, this class of drugs is also commonly abused. Opioid use disorder and associated overdoses are becoming more prevalent as the opioid crisis continues. Chronic opioid use is associated with tolerance, which decreases the efficacy of opioids over time, but also puts individuals at risk of fatal overdoses. Therefore, it is essential to identify strategies to reduce opioid tolerance in those that use these agents. The gut microbiome has been found to play a critical role in opioid tolerance, with opioids causing dysbiosis of the gut, and changes in the gut microbiome impacting opioid tolerance. These changes in turn have a detrimental effect on the gut microbiome, creating a positive feedback cycle. We review the bidirectional relationship between the gut microbiome and opioid tolerance, discuss the role of modulation of the gut microbiome as a potential therapeutic option in opioid-induced gut dysbiosis, and suggest opportunities for further research and clinical interventions. 10.1016/j.intimp.2023.111142
Gastrointestinal motility, dysbiosis and opioid-induced tolerance: is there a link? Nature reviews. Gastroenterology & hepatology 10.1038/s41575-019-0150-x
Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain. Pharmacology & therapeutics The composition of intestinal microbiota is influenced by a number of factors, including medications, which may have a substantial impact on host physiology. Nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics are among those widely used medications that have been shown to alter microbiota composition in both animals and humans. Although much effort has been devoted to identify microbiota signatures associated with these medications, much less is known about the underlying mechanisms. Mucosal inflammation, changes in intestinal motility, luminal pH and bile acid metabolism, or direct drug-induced inhibitory effect on bacterial growth are all potential contributors to NSAID- and opioid-induced dysbiosis, however, only a few studies have addressed directly these issues. In addition, there is a notable overlap between the microbiota signatures of these drugs and certain diseases in which they are used, such as spondyloarthritis (SpA), rheumatoid arthritis (RA) and neuropathic pain associated with type 2 diabetes (T2D). The aims of the present review are threefold. First, we aim to provide a comprehensive up-to-date summary on the bacterial alterations caused by NSAIDs and opioids. Second, we critically review the available data on the possible underlying mechanisms of dysbiosis. Third, we review the current knowledge on gut dysbiosis associated with SpA, RA and neuropathic pain in T2D, and highlight the similarities between them and those caused by NSAIDs and opioids. We posit that drug-induced dysbiosis may contribute to the persistence of these diseases, and may potentially limit the therapeutic effect of these medications by long-term use. In this context, we will review the available literature data on the effect of probiotic supplementation and fecal microbiota transplantation on the therapeutic efficacy of NSAIDs and opioids in these diseases. 10.1016/j.pharmthera.2022.108327
Progress in the study of intestinal microbiota involved in morphine tolerance. Heliyon Morphine is a widely used opioid for treatment of pain. The attendant problems including morphine tolerance and morphine dependence pose a major public health challenge. In recent years, there has been increasing interest in the gastrointestinal microbiota in many physiological and pathophysiological processes. The connectivity network between the gut microbiota and the brain is involved in multiple biological systems, and bidirectional communication between them is critical in gastrointestinal tract homeostasis, the central nervous system, and the microbial system. Many research have previously shown that morphine has a variety of effects on the gastrointestinal tract, but none have determined the function of intestinal microbiota in morphine tolerance. This study reviewed the mechanisms of morphine tolerance from the perspective of dysregulation of microbiota-gut-brain axis homeostasis, by summarizing the possible mechanisms originating from the gut that may affect morphine tolerance and the improvement of morphine tolerance through the gut microbiota. 10.1016/j.heliyon.2024.e27187
Gut Homeostasis, Microbial Dysbiosis, and Opioids. Wang Fuyuan,Roy Sabita Toxicologic pathology Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases. 10.1177/0192623316679898
Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome. Proceedings of the National Academy of Sciences of the United States of America Prolonged exposure to opioids results in analgesic tolerance, drug overdose, and death. The mechanism underlying morphine analgesic tolerance still remains unresolved. We show that morphine analgesic tolerance was significantly attenuated in germfree (GF) and in pan-antibiotic-treated mice. Reconstitution of GF mice with naïve fecal microbiota reinstated morphine analgesic tolerance. We further demonstrated that tolerance was associated with microbial dysbiosis with selective depletion in and Probiotics, enriched with these bacterial communities, attenuated analgesic tolerance in morphine-treated mice. These results suggest that probiotic therapy during morphine administration may be a promising, safe, and inexpensive treatment to prolong morphine's efficacy and attenuate analgesic tolerance. We hypothesize a vicious cycle of chronic morphine tolerance: morphine-induced gut dysbiosis leads to gut barrier disruption and bacterial translocation, initiating local gut inflammation through TLR2/4 activation, resulting in the activation of proinflammatory cytokines, which drives morphine tolerance. 10.1073/pnas.1901182116
Interaction between drugs and the gut microbiome. Weersma Rinse K,Zhernakova Alexandra,Fu Jingyuan Gut The human gut microbiome is a complex ecosystem that can mediate the interaction of the human host with their environment. The interaction between gut microbes and commonly used non-antibiotic drugs is complex and bidirectional: gut microbiome composition can be influenced by drugs, but, vice versa, the gut microbiome can also influence an individual's response to a drug by enzymatically transforming the drug's structure and altering its bioavailability, bioactivity or toxicity (pharmacomicrobiomics). The gut microbiome can also indirectly impact an individual's response to immunotherapy in cancer treatment. In this review we discuss the bidirectional interactions between microbes and drugs, describe the changes in gut microbiota induced by commonly used non-antibiotic drugs, and their potential clinical consequences and summarise how the microbiome impacts drug effectiveness and its role in immunotherapy. Understanding how the microbiome metabolises drugs and reduces treatment efficacy will unlock the possibility of modulating the gut microbiome to improve treatment. 10.1136/gutjnl-2019-320204
Targeting the gut and tumor microbiota in cancer. Nature medicine Microorganisms within the gut and other niches may contribute to carcinogenesis, as well as shaping cancer immunosurveillance and response to immunotherapy. Our understanding of the complex relationship between different host-intrinsic microorganisms, as well as the multifaceted mechanisms by which they influence health and disease, has grown tremendously-hastening development of novel therapeutic strategies that target the microbiota to improve treatment outcomes in cancer. Accordingly, the evaluation of a patient's microbial composition and function and its subsequent targeted modulation represent key elements of future multidisciplinary and precision-medicine approaches. In this Review, we outline the current state of research toward harnessing the microbiome to better prevent and treat cancer. 10.1038/s41591-022-01779-2
Gut microbiota in human metabolic health and disease. Fan Yong,Pedersen Oluf Nature reviews. Microbiology Observational findings achieved during the past two decades suggest that the intestinal microbiota may contribute to the metabolic health of the human host and, when aberrant, to the pathogenesis of various common metabolic disorders including obesity, type 2 diabetes, non-alcoholic liver disease, cardio-metabolic diseases and malnutrition. However, to gain a mechanistic understanding of how the gut microbiota affects host metabolism, research is moving from descriptive microbiota census analyses to cause-and-effect studies. Joint analyses of high-throughput human multi-omics data, including metagenomics and metabolomics data, together with measures of host physiology and mechanistic experiments in humans, animals and cells hold potential as initial steps in the identification of potential molecular mechanisms behind reported associations. In this Review, we discuss the current knowledge on how gut microbiota and derived microbial compounds may link to metabolism of the healthy host or to the pathogenesis of common metabolic diseases. We highlight examples of microbiota-targeted interventions aiming to optimize metabolic health, and we provide perspectives for future basic and translational investigations within the nascent and promising research field. 10.1038/s41579-020-0433-9
The Microbiota-Gut-Brain Axis. Cryan John F,O'Riordan Kenneth J,Cowan Caitlin S M,Sandhu Kiran V,Bastiaanssen Thomaz F S,Boehme Marcus,Codagnone Martin G,Cussotto Sofia,Fulling Christine,Golubeva Anna V,Guzzetta Katherine E,Jaggar Minal,Long-Smith Caitriona M,Lyte Joshua M,Martin Jason A,Molinero-Perez Alicia,Moloney Gerard,Morelli Emanuela,Morillas Enrique,O'Connor Rory,Cruz-Pereira Joana S,Peterson Veronica L,Rea Kieran,Ritz Nathaniel L,Sherwin Eoin,Spichak Simon,Teichman Emily M,van de Wouw Marcel,Ventura-Silva Ana Paula,Wallace-Fitzsimons Shauna E,Hyland Niall,Clarke Gerard,Dinan Timothy G Physiological reviews The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson's disease, and Alzheimer's disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders. 10.1152/physrev.00018.2018
Opioid system influences gut-brain axis: Dysbiosis and related alterations. Rueda-Ruzafa Lola,Cruz Francisco,Cardona Diana,Hone Arik J,Molina-Torres Guadalupe,Sánchez-Labraca Nuria,Roman Pablo Pharmacological research Opioid drugs are widely used to treat chronic pain, but their misuse can lead to tolerance, dependence, and addiction and have created a significant public health problem. In addition, food-derived opioid peptides, known as exorphins, like gluten exorphins have been shown to have harmful effects in certain pathologies like celiac disease, for example. Several studies support the involvement of the opioid system in the development of disorders such as autism spectrum syndrome. Moreover, bidirectional communication between the intestine and brain has been shown to be altered in various neurodegenerative diseases including Alzheimer´s and Parkinson´s. The presence of opioid receptors in both the digestive tract and the central nervous system (CNS) suggests that opioid drugs and exorphins may modulate the gut-brain axis. Morphine, for example, has shown a dysbiotic effect on the bacterial microbiota in addition to inducing an increase in intestinal permeability facilitating bacterial translocation. Furthermore, certain components of bacteria can modify the expression of opioid receptors at the central level increasing sensitivity to pain. Strategies based on use of probiotics have resulted in improvements in symptoms of autism and Parkinson´s disease. In this manuscript, we review the role of the opioid system in disorders and CNS pathologies and the involvement of the gut-brain axis. 10.1016/j.phrs.2020.104928