logo logo
Novel Liver Injury Phenotypes and Outcomes in Pulmonary Arterial Hypertension. medRxiv : the preprint server for health sciences Background:Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are disorders of the pulmonary vasculature that cause right ventricular dysfunction. Systemic consequences of right ventricular dysfunction include damage to other solid organs, such as the liver. However, the profiles and consequences of hepatic injury due to PAH and CTEPH have not been well-studied. Methods:We aimed to identify underlying patterns of liver injury in a cohort of PAH and CTEPH patients enrolled in 15 randomized clinical trials conducted between 1998 and 2012. We used unsupervised machine learning to identify liver injury clusters in 13 trials and validated the findings in two additional trials. We then determined whether these liver injury clusters were associated with clinical outcomes or treatment effect heterogeneity. Results:Our training dataset included 4,219 patients and our validation dataset included 1,756 patients with complete liver laboratory panels (serum total bilirubin, alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and albumin). Using k-means clustering paired with factor analysis, we identified four unique liver phenotypes (no liver injury, hepatocellular injury, cholestatic injury, and combined injury patterns). Patients in the cholestatic injury liver cluster had the shortest time to clinical worsening and highest chance of worsening World Health Organization functional class. Randomization to the experimental arm was associated with a transition to healthier liver clusters compared to randomization to the control arm. The cholestatic injury group experienced the greatest placebo-corrected treatment benefit in terms of six-minute walk distance. Conclusions:Liver injury patterns were associated with adverse outcomes in patients with PAH and CTEPH. Randomization to active treatment of pulmonary hypertension in these clinical trials had beneficial effects on liver health compared to placebo. The independent role of liver disease (often subclinical) in determining outcomes warrants prospective studies of the clinical utility of liver phenotyping for PAH prognosis and contribution to clinical disease. 10.1101/2023.09.28.23296316
Premorbid weight in pulmonary arterial hypertension. Pulmonary circulation Relationships between obesity and outcomes in pulmonary arterial hypertension (PAH) are complex. Previous work suggested obesity, occurring alongside PAH, may be associated with better survival. In our work, we suggest obesity prior to PAH development is associated with worse survival. This may add a novel temporal element to the "obesity-paradox." 10.1002/pul2.12308
Pulmonary arterial hypertension. Presse medicale (Paris, France : 1983) Pulmonary arterial hypertension (PAH) is a rare and progressive disease characterised by remodelling of the pulmonary arteries and progressive narrowing of the pulmonary vasculature. This leads to a progressive increase in pulmonary vascular resistance and pulmonary arterial pressure and, if left untreated, to right ventricular failure and death. A correct diagnosis requires a complete work-up including right heart catheterisation performed in a specialised centre. Although our knowledge of the epidemiology, pathology and pathophysiology of the disease, as well as the development of innovative therapies, has progressed in recent decades, PAH remains a serious clinical condition. Current treatments for the disease target the three specific pathways of endothelial dysfunction that characterise PAH: the endothelin, nitric oxide and prostacyclin pathways. The current treatment algorithm is based on the assessment of severity using a multiparametric risk stratification approach at the time of diagnosis (baseline) and at regular follow-up visits. It recommends the initiation of combination therapy in PAH patients without cardiopulmonary comorbidities. The choice of therapy (dual or triple) depends on the initial severity of the condition. The main treatment goal is to achieve low-risk status. Further escalation of treatment is required if low-risk status is not achieved at subsequent follow-up assessments. In the most severe patients, who are already on maximal medical therapy, lung transplantation may be indicated. Recent advances in understanding the pathophysiology of the disease have led to the development of promising emerging therapies targeting dysfunctional pathways beyond endothelial dysfunction, including the TGF-β and PDGF pathways. 10.1016/j.lpm.2023.104168