logo logo
Quinoa germ-enriched pasta: Technological, nutritional, textural, and morphological properties. Journal of food science Germ is the most significant component of quinoa having good nutritional value. Quinoa germ (QG), with balanced amino acid profile and unsaturated fatty acid, is a unique ingredient for human nutrition. In present study, pasta supplemented with QG was characterized for physical, nutritional, morphological, and textural properties. Dough rheology showed increased farinograph water absorption and decreased dough stability with the addition of QG. Addition of QG up to 30% significantly improved the pasta protein content from 13.55% to 20.55%. The substitution of QG to pasta showed decrease in whiteness index and increase in optimum cooking time, swelling index, cooked weight, and cooking loss. It is reported that 20% QG supplement pasta was found to be acceptable; beyond, this level the pasta quality was inferior. Firmness value of pasta significantly increased up to 20% supplementation of QG from 157 to 178 g. The micrographs of pasta with the addition of QG observed increased protein matrix around the starch granules. The results inferred that the QG can serve as a potential functional ingredient for the development of nutritionally enhanced pasta for food industry. PRACTICAL APPLICATION: Quinoa germ (QG) is concentrated source of nutrient with unique nutrition and alternative source of protein. Pasta is the one the popular and fast-growing food in world and explored for enhancement of its nutritional composition to target a larger population with specific nutrient demand. Hence, pasta becomes important vehicle for the supplementation. Developed QG-enriched high-protein pasta will help industry to produce nutritious products at large scale. 10.1111/1750-3841.16813
Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties. Graf Brittany L,Poulev Alexander,Kuhn Peter,Grace Mary H,Lila Mary Ann,Raskin Ilya Food chemistry Quinoa (Chenopodium quinoa Willd.) contains high levels of biologically active phytoecdysteroids, which have been implicated in plant defense from insects, and have shown a range of beneficial pharmacological effects in mammals. We demonstrated that the most prevalent phytoecdysteroid, 20-hydroxyecdysone (20HE), was secreted (leached) from intact quinoa seeds into water during the initial stages of seed germination. Leaching efficiency was optimized by ethanol concentration (70% ethanol), temperature (80°C), time (4h), and solvent ratio (5 ml/g seed). When compared to extraction of macerated seeds, the leaching procedure released essentially all the 20HE available in the seeds (491 μg/g seed). The optimized quinoa leachate (QL), containing 0.86% 20HE, 1.00% total phytoecdysteroids, 2.59% flavonoid glycosides, 11.9% oil, and 20.4% protein, significantly lowered fasting blood glucose in obese, hyperglycemic mice. Leaching effectively releases and concentrates bioactive phytochemicals from quinoa seeds, providing an efficient means to produce a food-grade mixture that may be useful for anti-diabetic applications. 10.1016/j.foodchem.2014.04.088