logo logo
Biosynthesis, Engineering, and Delivery of Selenoproteins. International journal of molecular sciences Selenocysteine (Sec) was discovered as the 21st genetically encoded amino acid. In nature, site-directed incorporation of Sec into proteins requires specialized biosynthesis and recoding machinery that evolved distinctly in bacteria compared to archaea and eukaryotes. Many organisms, including higher plants and most fungi, lack the Sec-decoding trait. We review the discovery of Sec and its role in redox enzymes that are essential to human health and important targets in disease. We highlight recent genetic code expansion efforts to engineer site-directed incorporation of Sec in bacteria and yeast. We also review methods to produce selenoproteins with 21 or more amino acids and approaches to delivering recombinant selenoproteins to mammalian cells as new applications for selenoproteins in synthetic biology. 10.3390/ijms25010223
The role of glutathione peroxidase-1 in health and disease. Free radical biology & medicine Glutathione peroxidase 1 (GPx1) is an important cellular antioxidant enzyme that is found in the cytoplasm and mitochondria of mammalian cells. Like most selenoenzymes, it has a single redox-sensitive selenocysteine amino acid that is important for the enzymatic reduction of hydrogen peroxide and soluble lipid hydroperoxides. Glutathione provides the source of reducing equivalents for its function. As an antioxidant enzyme, GPx1 modulates the balance between necessary and harmful levels of reactive oxygen species. In this review, we discuss how selenium availability and modifiers of selenocysteine incorporation alter GPx1 expression to promote disease states. We review the role of GPx1 in cardiovascular and metabolic health, provide examples of how GPx1 modulates stroke and provides neuroprotection, and consider how GPx1 may contribute to cancer risk. Overall, GPx1 is protective against the development and progression of many chronic diseases; however, there are some situations in which increased expression of GPx1 may promote cellular dysfunction and disease owing to its removal of essential reactive oxygen species. 10.1016/j.freeradbiomed.2022.06.004
Selenium and thyroid diseases. Frontiers in endocrinology Selenium, a non-metallic element, is a micronutrient essential for the biosynthesis of selenoproteins containing selenocysteine. In adults, the thyroid contains the highest amount of selenium per gram of tissue. Most known selenoproteins, such as glutathione peroxidase, are expressed in the thyroid and are involved in thyroid hormone metabolism, redox state regulation, and maintenance of cellular homeostasis. Some clinical studies have shown that lack of selenium will increase the prevalence of several kinds of thyroid diseases. Selenium treatment in patients with Graves' orbitopathy has been shown to delay disease progression and improve the quality of life. Selenium supplementation in Hashimoto's thyroiditis was associated with the decreased levels of anti-thyroid peroxidase antibody and improved thyroid ultrasound structure. In thyroid cancer, various selenium supplements have shown variable anticancer activity. However, published results remain the conflicting and more clinical evidence is still needed to determine the clinical significance of selenium. This article reviews the strong association between selenium and thyroid disease and provides new ideas for the clinical management of selenium in thyroid disease. 10.3389/fendo.2023.1133000
Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell Ferroptosis, a cell death process driven by iron-dependent phospholipid peroxidation, has been implicated in various diseases. There are two major surveillance mechanisms to suppress ferroptosis: one mediated by glutathione peroxidase 4 (GPX4) that catalyzes the reduction of phospholipid peroxides and the other mediated by enzymes, such as FSP1, that produce metabolites with free radical-trapping antioxidant activity. In this study, through a whole-genome CRISPR activation screen, followed by mechanistic investigation, we identified phospholipid-modifying enzymes MBOAT1 and MBOAT2 as ferroptosis suppressors. MBOAT1/2 inhibit ferroptosis by remodeling the cellular phospholipid profile, and strikingly, their ferroptosis surveillance function is independent of GPX4 or FSP1. MBOAT1 and MBOAT2 are transcriptionally upregulated by sex hormone receptors, i.e., estrogen receptor (ER) and androgen receptor (AR), respectively. A combination of ER or AR antagonist with ferroptosis induction significantly inhibited the growth of ER breast cancer and AR prostate cancer, even when tumors were resistant to single-agent hormonal therapies. 10.1016/j.cell.2023.05.003
Selenoprotein K knockdown induces apoptosis in skeletal muscle satellite cells via calcium dyshomeostasis-mediated endoplasmic reticulum stress. Poultry science Skeletal muscle satellite cells (SMSCs), known as muscle stem cells, play an important role in muscle embryonic development, post-birth growth, and regeneration after injury. Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident selenoprotein, is known to regulate calcium ion (Ca) flux and ER stress (ERS). SELENOK deficiency is involved in dietary selenium deficiency-induced muscle injury, but the regulatory mechanisms of SELENOK in SMSCs development remain poorly explored in chicken. Here, we established a SELENOK deficient model to explore the role of SELENOK in SMSCs. SELENOK knockdown inhibited SMSCs proliferation and differentiation by regulating the protein levels of paired box 7 (Pax7), myogenic factor 5 (Myf5), CyclinD1, myogenic differentiation (MyoD), and Myf6. Further analysis exhibited that SELENOK knockdown markedly activated the ERS signaling pathways, which ultimately induced apoptosis in SMSCs. SELENOK knockdown-induced ERS is related with ER Ca ([Ca]) overload via decreasing the protein levels of STIM2, Orai1, palmitoylation of inositol 1,4,5-trisphosphate receptor 1 (IP3R1), phospholamban (PLN), and plasma membrane Ca-ATPase (PMCA) while increasing the protein levels of sarco/endoplasmic Ca-ATPase 1 (SERCA1) and Na/Ca exchanger 1 (NCX1). Moreover, thimerosal, an activator of IP3R1, reversed the overload of [Ca], ERS, and subsequent apoptosis caused by SELENOK knockdown. These findings indicated that SELENOK knockdown triggered ERS driven by intracellular Ca dyshomeostasis and further induced apoptosis, which ultimately inhibited SMSCs proliferation and differentiation. 10.1016/j.psj.2023.103053
Targeted Restoration of GPX3 Attenuates Renal Ischemia/Reperfusion Injury by Balancing Selenoprotein Expression and Inhibiting ROS-mediated Mitochondrial Apoptosis. Transplantation BACKGROUND:Renal ischemia/reperfusion (IR) injury is the leading cause of acute kidney injury in both autologous and transplanted kidneys. Low-level glutathione peroxidase 3 (GPX3) is associated with renal IR injury. The exact mechanism of targeted GPX3 restoration in renal IR injury has yet to be determined. METHODS:The distribution of GPX3 in different tissues and organs of the body was investigated. The level of GPX3 in renal IR injury was assessed. To confirm the action of GPX3 and its mechanisms, IR models were used to introduce adeno-associated virus 9 containing GPX3, as well as hypoxia/reoxygenation-exposed normal rat kidney cells that consistently overexpressed GPX3. Reverse molecular docking was used to confirm whether GPX3 was a target of ebselen. RESULTS:GPX3 is abundant in the kidneys and decreases in expression during renal IR injury. GPX3 overexpression reduced renal IR injury and protected tubular epithelial cells from apoptosis. Proteomics analysis revealed a strong link between GPX3 and mitochondrial signaling, cellular redox state, and different expression patterns of selenoproteins. GPX3 inhibited reactive oxygen species-induced mitochondrial apoptosis and balanced the disordered expression of selenoproteins. GPX3 was identified as a stable selenoprotein that interacts with ebselen. Ebselen enhanced the level of GPX3 and reduced IR-induced mitochondrial damage and renal dysfunction. CONCLUSIONS:Targeted restoration of GPX3 attenuates renal IR injury by balancing selenoprotein expression and inhibiting reactive oxygen species-mediated mitochondrial apoptosis, indicating that GPX3 could be a potential therapeutic target for renal IR injury. 10.1097/TP.0000000000005068
Biology and Roles in Diseases of Selenoprotein I Characterized by Ethanolamine Phosphotransferase Activity and Antioxidant Potential. The Journal of nutrition Selenoprotein I (SELENOI) has been demonstrated to be an ethanolamine phosphotransferase (EPT) characterized by a nonselenoenzymatic domain and to be involved in the main synthetic branch of phosphatidylethanolamine (PE) in the endoplasmic reticulum. Therefore, defects of SELENOI may affect the health status through the multiple functions of PE. On the other hand, selenium (Se) is covalently incorporated into SELENOI as selenocysteine (Sec) in its peptide, which forms a Sec-centered domain as in the other members of the selenoprotein family. Unlike other selenoproteins, Sec-containing SELENOI was formed at a later stage of animal evolution, and the high conservation of the structural domain for PE synthesis across a wide range of species suggests the importance of EPT activity in supporting the survival and evolution of organisms. A variety of factors, such as species characteristics (age and sex), diet and nutrition (dietary Se and fat intakes), SELENOI-specific properties (tissue distribution and rank in the selenoproteome), etc., synergistically regulate the expression of SELENOI in a tentatively unclear interaction. The N- and C-terminal domains confer 2 distinct biochemical functions to SELENOI, namely PE regulation and antioxidant potential, which may allow it to be involved in numerous physiological processes, including neurological diseases (especially hereditary spastic paraplegia), T cell activation, tumorigenesis, and adipocyte differentiation. In this review, we summarize advances in the biology and roles of SELENOI, shedding light on the precise regulation of SELENOI expression and PE homeostasis by dietary Se intake and pharmaceutical or transgenic approaches to modulate the corresponding pathological status. 10.1016/j.tjnut.2023.03.023
Selenoprotein W Ameliorates Experimental Colitis and Promotes Intestinal Epithelial Repair. Antioxidants (Basel, Switzerland) Selenoprotein W (Selenow) is a ~9 kDa selenoprotein suggested to play a beneficial role in resolving inflammation. However, the underlying mechanisms are poorly understood. expression in the human GI tract using ScRNAseq Gut Cell Atlas and Gene Expression Omnibus (GEO) databases revealed its expression in the small intestine and colonic epithelial, endothelial, mesenchymal, and stem cells and correlated with a protective effect in ulcerative colitis patients. KO mice treated with 4% dextran sodium sulfate (DSS) showed exacerbated acute colitis, with greater weight loss, shorter colons, and increased fecal occult blood compared to the WT counterparts. KO mice expressed higher colonic Tnfα, increased Tnfα macrophages in the colonic lamina propria, and exhibited loss in epithelial barrier integrity and decreased zonula occludens 1 (Zo-1) expression following DSS treatment. Expression of epithelial cellular adhesion marker (EpCam), yes-associated protein 1 (Yap1), and epidermal growth factor receptor (Egfr) were decreased along with CD24lo cycling epithelial cells in KO mice. Colonic lysates and organoids confirmed a crosstalk between Egfr and Yap1 that was regulated by Selenow. Overall, our findings suggest Selenow expression is key for efficient resolution of inflammation in experimental colitis that is mediated through the regulation of Egfr and Yap1. 10.3390/antiox12040850
Selenoprotein I is indispensable for ether lipid homeostasis and proper myelination. The Journal of biological chemistry Selenoprotein I (SELENOI) catalyzes the final reaction of the CDP-ethanolamine branch of the Kennedy pathway, generating the phospholipids phosphatidylethanolamine (PE) and plasmenyl-PE. Plasmenyl-PE is a key component of myelin and is characterized by a vinyl ether bond that preferentially reacts with oxidants, thus serves as a sacrificial antioxidant. In humans, multiple loss-of-function mutations in genes affecting plasmenyl-PE metabolism have been implicated in hereditary spastic paraplegia, including SELENOI. Herein, we developed a mouse model of nervous system-restricted SELENOI deficiency that circumvents embryonic lethality caused by constitutive deletion and recapitulates phenotypic features of hereditary spastic paraplegia. Resulting mice exhibited pronounced alterations in brain lipid composition, which coincided with motor deficits and neuropathology including hypomyelination, elevated reactive gliosis, and microcephaly. Further studies revealed increased lipid peroxidation in oligodendrocyte lineage cells and disrupted oligodendrocyte maturation both in vivo and in vitro. Altogether, these findings detail a critical role for SELENOI-derived plasmenyl-PE in myelination that is of paramount importance for neurodevelopment. 10.1016/j.jbc.2024.107259
Deciphering the Role of Selenoprotein M. Antioxidants (Basel, Switzerland) Selenocysteine (Sec), the 21st amino acid, is structurally similar to cysteine but with a sulfur to selenium replacement. This single change retains many of the chemical properties of cysteine but often with enhanced catalytic and redox activity. Incorporation of Sec into proteins is unique, requiring additional translation factors and multiple steps to insert Sec at stop (UGA) codons. These Sec-containing proteins (selenoproteins) are found in all three domains of life where they often are involved in cellular homeostasis (e.g., reducing reactive oxygen species). The essential role of selenoproteins in humans requires us to maintain appropriate levels of selenium, the precursor for Sec, in our diet. Too much selenium is also problematic due to its toxic effects. Deciphering the role of Sec in selenoproteins is challenging for many reasons, one of which is due to their complicated biosynthesis pathway. However, clever strategies are surfacing to overcome this and facilitate production of selenoproteins. Here, we focus on one of the 25 human selenoproteins, selenoprotein M (SELENOM), which has wide-spread expression throughout our tissues. Its thioredoxin motif suggests oxidoreductase function; however, its mechanism and functional role(s) are still being uncovered. Furthermore, the connection of both high and low expression levels of SELENOM to separate diseases emphasizes the medical application for studying the role of Sec in this protein. In this review, we aim to decipher the role of SELENOM through detailing and connecting current evidence. With multiple proposed functions in diverse tissues, continued research is still necessary to fully unveil the role of SELENOM. 10.3390/antiox12111906
Research progress of glutathione peroxidase family (GPX) in redoxidation. Frontiers in pharmacology Maintaining the balance of a cell's redox function is key to determining cell fate. In the critical redox system of mammalian cells, glutathione peroxidase (GPX) is the most prominent family of proteins with a multifaceted function that affects almost all cellular processes. A total of eight members of the GPX family are currently found, namely GPX1-GPX8. They have long been used as antioxidant enzymes to play an important role in combating oxidative stress and maintaining redox balance. However, each member of the GPX family has a different mechanism of action and site of action in maintaining redox balance. GPX1-4 and GPX6 use selenocysteine as the active center to catalyze the reduction of HO or organic hydroperoxides to water or corresponding alcohols, thereby reducing their toxicity and maintaining redox balance. In addition to reducing HO and small molecule hydroperoxides, GPX4 is also capable of reducing complex lipid compounds. It is the only enzyme in the GPX family that directly reduces and destroys lipid hydroperoxides. The active sites of GPX5 and GPX7-GPX8 do not contain selenium cysteine (Secys), but instead, have cysteine residues (Cys) as their active sites. GPX5 is mainly expressed in epididymal tissue and plays a role in protecting sperm from oxidative stress. Both enzymes, GPX7 and GPX8, are located in the endoplasmic reticulum and are necessary enzymes involved in the oxidative folding of endoplasmic reticulum proteins, and GPX8 also plays an important role in the regulation of Ca in the endoplasmic reticulum. With an in-depth understanding of the role of the GPX family members in health and disease development, redox balance has become the functional core of GPX family, in order to further clarify the expression and regulatory mechanism of each member in the redox process, we reviewed GPX family members separately. 10.3389/fphar.2023.1147414
Role of Selenoprotein F in Protein Folding and Secretion: Potential Involvement in Human Disease. Ren Bingyu,Liu Min,Ni Jiazuan,Tian Jing Nutrients Selenoproteins form a group of proteins of which its members contain at least one selenocysteine, and most of them serve oxidoreductase functions. Selenoprotein F (SELENOF), one of the 25 currently identified selenoproteins, is located in the endoplasmic reticulum (ER) organelle and is abundantly expressed in many tissues. It is regulated according to its selenium status, as well as by cell stress conditions. SELENOF may be functionally linked to protein folding and the secretion process in the ER. Several studies have reported positive associations between genetic variations and several types of cancer. Also, altered expression levels of SELENOF have been found in cancer cases and neurodegenerative diseases. In this review, we summarize the current understanding of the structure, expression, and potential function of SELENOF and discuss its possible relation with various pathological processes. 10.3390/nu10111619
Roles for Selenoprotein I and Ethanolamine Phospholipid Synthesis in T Cell Activation. Ma Chi,Martinez-Rodriguez Verena,Hoffmann Peter R International journal of molecular sciences The selenoprotein family includes 25 members, many of which are antioxidant or redox regulating enzymes. A unique member of this family is Selenoprotein I (SELENOI), which does not catalyze redox reactions, but instead is an ethanolamine phosphotransferase (Ept). In fact, the characteristic selenocysteine residue that defines selenoproteins lies far outside of the catalytic domain of SELENOI. Furthermore, data using recombinant SELENOI lacking the selenocysteine residue have suggested that the selenocysteine amino acid is not directly involved in the Ept reaction. SELENOI is involved in two different pathways for the synthesis of phosphatidylethanolamine (PE) and plasmenyl PE, which are constituents of cellular membranes. Ethanolamine phospholipid synthesis has emerged as an important process for metabolic reprogramming that occurs in pluripotent stem cells and proliferating tumor cells, and this review discusses roles for upregulation of SELENOI during T cell activation, proliferation, and differentiation. SELENOI deficiency lowers but does not completely diminish de novo synthesis of PE and plasmenyl PE during T cell activation. Interestingly, metabolic reprogramming in activated SELENOI deficient T cells is impaired and this reduces proliferative capacity while favoring tolerogenic to pathogenic phenotypes that arise from differentiation. The implications of these findings are discussed related to vaccine responses, autoimmunity, and cell-based therapeutic approaches. 10.3390/ijms222011174
Selenoprotein S: A versatile disordered protein. Archives of biochemistry and biophysics Selenoprotein S (selenos) is a small, intrinsically disordered membrane protein that is associated with various cellular functions, such as inflammatory processes, cellular stress response, protein quality control, and signaling pathways. It is primarily known for its contribution to the ER-associated degradation (ERAD) pathway, which governs the extraction of misfolded proteins or misassembled protein complexes from the ER to the cytosol for degradation by the proteasome. However, selenos's other cellular roles in signaling are equally vital, including the control of transcription factors and cytokine levels. Consequently, genetic polymorphisms of selenos are associated with increased risk for diabetes, dyslipidemia, and cardiovascular diseases, while high expression levels correlate with poor prognosis in several cancers. Its inhibitory role in cytokine secretion is also exploited by viruses. Since selenos binds multiple protein complexes, however, its specific contributions to various cellular pathways and diseases have been difficult to establish. Thus, the precise cellular functions of selenos and their interconnectivity have only recently begun to emerge. This review aims to summarize recent insights into the structure, interactome, and cellular roles of selenos. 10.1016/j.abb.2022.109427
Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability. Nature chemical biology The selenoprotein glutathione peroxidase 4 (GPX4) prevents ferroptosis by converting lipid peroxides into nontoxic lipid alcohols. GPX4 has emerged as a promising therapeutic target for cancer treatment, but some cancer cells are resistant to ferroptosis triggered by GPX4 inhibition. Using a chemical-genetic screen, we identify LRP8 (also known as ApoER2) as a ferroptosis resistance factor that is upregulated in cancer. Loss of LRP8 decreases cellular selenium levels and the expression of a subset of selenoproteins. Counter to the canonical hierarchical selenoprotein regulatory program, GPX4 levels are strongly reduced due to impaired translation. Mechanistically, low selenium levels result in ribosome stalling at the inefficiently decoded GPX4 selenocysteine UGA codon, leading to ribosome collisions, early translation termination and proteasomal clearance of the N-terminal GPX4 fragment. These findings reveal rewiring of the selenoprotein hierarchy in cancer cells and identify ribosome stalling and collisions during GPX4 translation as ferroptosis vulnerabilities in cancer. 10.1038/s41589-022-01033-3
The selenoprotein methionine sulfoxide reductase B1 (MSRB1). Free radical biology & medicine Methionine (Met) can be oxidized to methionine sulfoxide (MetO), which exist as R- and S-diastereomers. Present in all three domains of life, methionine sulfoxide reductases (MSR) are the enzymes that reduce MetO back to Met. Most characterized among them are MSRA and MSRB, which are strictly stereospecific for the S- and R-diastereomers of MetO, respectively. While the majority of MSRs use a catalytic Cys to reduce their substrates, some employ selenocysteine. This is the case of mammalian MSRB1, which was initially discovered as selenoprotein SELR or SELX and later was found to exhibit an MSRB activity. Genomic analyses demonstrated its occurrence in most animal lineages, and biochemical and structural analyses uncovered its catalytic mechanism. The use of transgenic mice and mammalian cell culture revealed its physiological importance in the protection against oxidative stress, maintenance of neuronal cells, cognition, cancer cell proliferation, and the immune response. Coincident with the discovery of Met oxidizing MICAL enzymes, recent findings of MSRB1 regulating the innate immunity response through reversible stereospecific Met-R-oxidation of cytoskeletal actin opened up new avenues for biological importance of MSRB1 and its role in disease. In this review, we discuss the current state of research on MSRB1, compare it with other animal Msrs, and offer a perspective on further understanding of biological functions of this selenoprotein. 10.1016/j.freeradbiomed.2022.08.043
Selenoprotein K protects skeletal muscle from damage and is required for satellite cells-mediated myogenic differentiation. Redox biology The regeneration of adult skeletal muscle after injury is primarily initiated by satellite cells (SCs), but the regulatory mechanisms of cells committed to myogenic differentiation remain poorly explored. Small molecular selenoprotein K (SelK) plays crucial roles in the modulation of endoplasmic reticulum (ER) stress and against oxidative stress. Here, we first showed that SelK expression is activated in myogenic cells during differentiation both in vivo and in vitro. Meanwhile, loss of SelK delayed skeletal muscle regeneration, inhibited the development of myoblasts into myotubes, and was accompanied by reduced expression of myogenic regulatory factors (MRFs). Moreover, ER stress, intracellular reactive oxygen species (ROS), autophagy and apoptosis under myogenesis induction were more severe in SelK-deficient mice and cells than in the corresponding control groups. Supplementation with specific inhibitors to alleviate excessive ER stress or oxidative stress partly rescued the differentiation potential and formation of myotubes. Notably, we demonstrated that Self-mediated regulation of cellular redox status was primarily derived from its subsequent effects on ER stress. Together, our results suggest that SelK protects skeletal muscle from damage and is a crucial regulator of myogenesis. 10.1016/j.redox.2022.102255
Selenoprotein T: An Essential Oxidoreductase Serving as a Guardian of Endoplasmic Reticulum Homeostasis. Pothion Hugo,Jehan Cédric,Tostivint Hervé,Cartier Dorthe,Bucharles Christine,Falluel-Morel Anthony,Boukhzar Loubna,Anouar Youssef,Lihrmann Isabelle Antioxidants & redox signaling Selenoproteins incorporate the essential nutrient selenium into their polypeptide chain. Seven members of this family reside in the endoplasmic reticulum (ER), the exact function of most of which is poorly understood. Especially, how ER-resident selenoproteins control the ER redox and ionic environment is largely unknown. Since alteration of ER function is observed in many diseases, the elucidation of the role of selenoproteins could enhance our understanding of the mechanisms involved in ER homeostasis. Among selenoproteins, selenoprotein T (SELENOT) is remarkable as the most evolutionarily conserved and the only ER-resident selenoprotein whose gene knockout in mouse is lethal. Recent data indicate that SELENOT contributes to ER homeostasis: reduced expression of SELENOT in transgenic cell and animal models promotes accumulation of reactive oxygen and nitrogen species, depletion of calcium stores, activation of the unfolded protein response and impaired hormone secretion. SELENOT is anchored to the ER membrane and associated with the oligosaccharyltransferase complex, suggesting that it regulates the early steps of -glycosylation. Furthermore, it exerts a selenosulfide oxidoreductase activity carried by its thioredoxin-like domain. However, the physiological role of the redox activity of SELENOT is not fully understood. Likewise, the nature of its redox partners needs to be further characterized. Given the impact of ER stress in pathologies such as neurodegenerative, cardiovascular, metabolic and immune diseases, understanding the role of SELENOT and developing derived therapeutic tools such as selenopeptides to improve ER proteostasis and prevent ER stress could contribute to a better management of these diseases. 10.1089/ars.2019.7931
Protein AMPylation by an Evolutionarily Conserved Pseudokinase. Sreelatha Anju,Yee Samantha S,Lopez Victor A,Park Brenden C,Kinch Lisa N,Pilch Sylwia,Servage Kelly A,Zhang Junmei,Jiou Jenny,Karasiewicz-Urbańska Monika,Łobocka Małgorzata,Grishin Nick V,Orth Kim,Kucharczyk Roza,Pawłowski Krzysztof,Tomchick Diana R,Tagliabracci Vincent S Cell Approximately 10% of human protein kinases are believed to be inactive and named pseudokinases because they lack residues required for catalysis. Here, we show that the highly conserved pseudokinase selenoprotein-O (SelO) transfers AMP from ATP to Ser, Thr, and Tyr residues on protein substrates (AMPylation), uncovering a previously unrecognized activity for a member of the protein kinase superfamily. The crystal structure of a SelO homolog reveals a protein kinase-like fold with ATP flipped in the active site, thus providing a structural basis for catalysis. SelO pseudokinases localize to the mitochondria and AMPylate proteins involved in redox homeostasis. Consequently, SelO activity is necessary for the proper cellular response to oxidative stress. Our results suggest that AMPylation may be a more widespread post-translational modification than previously appreciated and that pseudokinases should be analyzed for alternative transferase activities. 10.1016/j.cell.2018.08.046