logo logo
Kaempferol exerts a neuroprotective effect to reduce neuropathic pain through TLR4/NF-ĸB signaling pathway. Phytotherapy research : PTR Switching microglial polarization from the M1 to M2 phenotype is a promising therapeutic strategy for neuropathic pain (NP). Toll-like receptor 4 (TLR4) is activated by lipopolysaccharide (LPS). Uncontrolled activation of TLR4 has been proven to trigger chronic inflammation. Kaempferol, a dietary flavonoid, is known to have anti-inflammatory properties. This study is aimed to investigate the analgesic and anti-inflammatory effects and the underlying mechanisms of kaempferol, which were explored with an NP model in vivo and LPS-induced injury in microglial BV2 cells in vitro. The levels of proinflammatory cytokines were evaluated. H&E staining and immunohistochemistry were used to assess the sciatic nerve condition after chronic constriction injury surgery. Western blotting and immunofluorescence were used to determine whether TLR4/NF-ĸB signaling pathway plays a major role in kaempferol-mediated alleviation of neuroinflammation. Quantitative real-time polymerase chain reaction and flow cytometry were used to examine the modulator effect of kaempferol on microglial M1/M2 polarization. We found that kaempferol treatment can significantly reduce NP and proinflammatory cytokine production. Kaempferol attenuated the activation of TLR4/NF-κB pathways in LPS-activated BV2 cells. The analgesic effects of kaempferol on NP may be due to inhibition of microglia activation and switching the M1 to M2 phenotype. 10.1002/ptr.7396
Kaempferol Mediated AMPK/mTOR Signal Pathway Has a Protective Effect on Cerebral Ischemic-Reperfusion Injury in Rats by Inducing Autophagy. Neurochemical research Ischemia/reperfusion (I/R) caused by ischemic stroke treatments leads to brain injury and its pathological mechanism is related to autophagy. The underlying mechanism of kaempferol on cerebral I/R injury needs to be explored. To establish I/R injury, we used a middle cerebral artery occlusion-reperfusion (MCAO) model in rats. MCAO rats were treated with the same amount of saline (I/R group); Treatment group rats were treated orally with kaempferol (50, 100, 200 mg/kg) for 7 days before surgery. After reperfusion for 24 h, the scores of neurological deficits and infarct volume in each group were evaluated. LC3, Beclin-1 p62, AMPK and mTOR protein expression levels were examined by TTC staining, immunofluorescence staining, qRT-PCR and western blotting assay. H&E and TTC staining showed that compared with model group, the infarction size of rats in kaempferol group was markedly reduced. Meanwhile, the results showed that kaempferol had a dose-dependent nerve function repairability. Nissl and TUNEL staining showed that kaempferol could reduce neuronal apoptosis and ameliorate neuronal impairment after I/R. Western blotting and qRT-PCR results showed that kaempferol could protect the brain from ischemia reperfusion by activating autophagy. In addition, add AMPK inhibitor, western blotting and immumohistochemical staining showed that kaempferol mediated AMPK/mTOR signal pathway in MCAO rats. Kaempferol could mediate the AMPK signal pathway to regulate autophagy and inhibit apoptosis to protect brain against I/R injury. 10.1007/s11064-022-03604-1
Redox-sensitive TRP channels: a promising pharmacological target in chemotherapy-induced peripheral neuropathy. Singh Ramandeep,Adhya Pratik,Sharma Shyam Sunder Expert opinion on therapeutic targets INTRODUCTION:Chemotherapy-induced peripheral neuropathy (CIPN) and its related pain is a major side effect of certain chemotherapeutic agents used in cancer treatment. Available analgesics are mostly symptomatic, and on prolonged treatment, patients become refractive to them. Hence, the development of improved therapeutics that act on novel therapeutic targets is necessary. Potential targets include the redox-sensitive TRP channels [e.g. TRPA1, TRPC5, TRPC6, TRPM2, TRPM8, TRPV1, TRPV2, and TRPV4] which are activated under oxidative stress associated with CIPN. AREAS COVERED:We have examined numerous neuropathy-inducing cancer chemotherapeutics and their pathophysiological mechanisms. Oxidative stress and its downstream targets, the redox-sensitive TRP channels, together with their potential pharmacological modulators, are discussed. Finally, we reflect upon the barriers to getting new therapeutic approaches into the clinic. The literature search was conducted in PubMed upto and including April 2021. EXPERT OPINION:Redox-sensitive TRP channels are a promising target in CIPN. Pharmacological modulators of these channels have reduced pain in preclinical models and in clinical studies. Clinical scrutiny suggests that TRPA1, TRPM8, and TRPV1 are the most promising targets because of their pain-relieving potential. In addition to the analgesic effect, TRPV1 agonist-Capsaicin possesses a disease-modifying effect in CIPN through its restorative property in damaged sensory nerves. 10.1080/14728222.2021.1956464
Neural cell activation by phenolic compounds from the Siberian larch (Larix sibirica). Loers Gabriele,Yashunsky Dmitry V,Nifantiev Nikolay E,Schachner Melitta Journal of natural products Small organic phenolic compounds from natural sources have attracted increasing attention due to their potential to ameliorate the serious consequences of acute and chronic traumata of the mammalian nervous system. In this contribution, it is reported that phenols from the knot zones of Siberian larch (Larix sibirica) wood, namely, the antioxidant flavonoid (+)-dihydroquercetin (1) and the lignans (-)-secoisolariciresinol (2) and (+)-isolariciresinol (3), affect migration and outgrowth of neurites/processes from cultured neurons and glial cells of embryonic and early postnatal mice. Compounds 1-3, which were available in preparative amounts, enhanced neurite outgrowth from cerebellar granule neurons, dorsal root ganglion neurons, and motoneurons, as well as process formation of Schwann cells in a dose-dependent manner in the low nanomolar range. Migration of cultured astrocytes was inhibited by 1-3, and migration of neurons out of cerebellar explants was enhanced by 1. These observations provide evidence for the neuroactive features of these phenolic compounds in enhancing the beneficial properties of neurons and reducing the inhibitory properties of activated astrocytes in an in vitro setting and encourage the further investigation of these effects in vivo, in animal models of acute and chronic neurological diseases. 10.1021/np4009738
Effect of Taxifolin on Ischemia/Reperfusion-Induced Oxidative Injury of Sciatic Nerve in Rats. Yuceli Sahin,Suleyman Bahadir,Yazici Gulce Naz,Mammadov Renad,Cankaya Murat,Kunak Celaleddin Semih,Bulut Seval,Suleyman Halis,Altuner Durdu Transplantation proceedings BACKGROUND:Ischemia is a condition in which blood flow to tissues is decreased or entirely stopped for various reasons. The reperfusion process exacerbates damage caused by ischemia in the organs and tissues. Reactive oxygen species (ROS) are mainly responsible for ischemia-reperfusion (IR) damage. ROS increase results in lipid peroxidation (LPO) and oxidative stress. In the literature, taxifolin reportedly suppresses ROS production. This study aimed to determine the effect of taxifolin, which is a flavonoid, on IR injury of the sciatic nerve in rats. METHODS:This study divided 30 albino Wistar rats into 3 groups: IR without medication (IR) group, taxifolin applied IR (TAX+IR) group, and only dissection made to the sciatic nerve sham group (SHAM). Sciatic nerve injury was induced by applying 2 hours of ischemia and 3 hours of reperfusion to the abdominal aorta and iliolumbar arteries. Biochemical and histopathologic investigations then were performed on sciatic nerve tissues. Malondialdehyde, total glutathione, glutathione reductase, and glutathione peroxidase were analyzed as oxidative stress markers, and tumor necrosis factor-α and interleukin-1β levels were evaluated as inflammatory stress markers in biochemical tests. RESULTS:The IR group has statistically significantly high oxidant and cytokine levels and low antioxidant levels compared with the TAX+IR group. Taxifolin treatment was also shown to cause significant histopathologic improvement. CONCLUSIONS:We suggest that taxifolin may be effective in preventing IR injury of the sciatic nerve. 10.1016/j.transproceed.2021.09.041
Taxifolin attenuates inflammation via suppressing MAPK signal pathway and analysis. Chinese herbal medicines Objective:Taxifolin is a natural flavonoid compound that can be isolated from onions, grapes, oranges and grapefruit. It also acts as a medicine food homology with extraordinary antioxidant and anti-inflammatory activity. This study aims to explain the protective effects and potential mechanisms of taxifolin against inflammatory reaction. Methods:Levels of interleukin (IL)-6, IL-1β and intracellular reactive oxygen species (ROS) were assessed in different time after the treatment of taxifolin in RAW264.7 cells induced by lipopolysaccharide (LPS). Subsequently, the mRNA and protein levels of inducible nitric oxide synthase (iNOS), vascular endothelial growth factor (VEGF), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α and the phosphorylation expression levels of the MAPK signal pathway were also evaluated. A silico analysis was used to explain the binding situation for the investigation of taxifolin and MAPK signal pathway. And then MAPK inhibitors were used to reveal the expression level of iNOS, VEGF, COX-2 and TNF-α in RAW264.7 cells. Results:It was demonstrated that cell inflammatory damage induced by LPS was significantly alleviated after the treatment of taxifolin. Then, the mRNA and protein levels of iNOS, VEGF, COX-2 and TNF-α were reduced and the phosphorylation expression levels of the MAPK signal pathway were down-regulated remarkably as well. In silico analysis, taxifolin could form a relatively stable combination with MAPK signal pathway. MAPK inhibitors showed increasing or decreasing effect in the mRNA levels of iNOS, VEGF, COX-2 and TNF-α, which suggesting that taxifolin down-regulated iNOS, VEGF, COX-2 and TNF-α expressions were not entirely through the MAPK pathway. Conclusion:This finding demonstrated that taxifolin improved the inflammatory responses that partly involved in the phosphorylation expression level of MAPK signal pathway in RAW264.7 cells exposed to acute stress. 10.1016/j.chmed.2021.03.002
Novel Therapeutic Potentials of Taxifolin for Amyloid-β-associated Neurodegenerative Diseases and Other Diseases: Recent Advances and Future Perspectives. Tanaka Masashi,Saito Satoshi,Inoue Takayuki,Satoh-Asahara Noriko,Ihara Masafumi International journal of molecular sciences Amyloid-β (Aβ) has been closely implicated in the pathogenesis of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD), the major causes of dementia. Thus, Aβ could be a target for the treatment of these diseases, for which, currently, there are no established effective treatments. Taxifolin is a bioactive catechol-type flavonoid present in various plants, such as herbs, and it exhibits pleiotropic effects including anti-oxidant and anti-glycation activities. Recently, we have demonstrated that taxifolin inhibits Aβ fibril formation in vitro and have further shown that it improves cerebral blood flow, facilitating Aβ clearance in the brain and suppressing cognitive decline in a mouse model of CAA. These findings suggest the novel therapeutic potentials of taxifolin for CAA. Furthermore, recent extensive studies have reported several novel aspects of taxifolin supporting its potential as a therapeutic drug for AD and metabolic diseases with a high risk for dementia as well as for CAA. In this review, we have summarized the recent advances in taxifolin research based on in vitro, in vivo, and in silico approaches. Furthermore, we have discussed future research directions on the potential of taxifolin for use in novel therapeutic strategies for CAA, AD, and metabolic diseases with an increased risk for dementia. 10.3390/ijms20092139
Pharmacological basis and new insights of taxifolin: A comprehensive review. Das Abhijit,Baidya Ratna,Chakraborty Tania,Samanta Akash Kumar,Roy Souvik Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie The pharmacological characteristics of phytochemicals have prompted a lot of interest in their application in disease management. Due to the high incidence of cancer related mortality and morbidity throughout the world; experiments have concentrated on identifying the anticancer potential of natural substances. Many phytochemicals such as flavonoids and their derivatives produced from food offer a variety of new anti-cancer agents which prevent the cancer progression. Taxifolin, a unique bioactive flavonoid, is a dietary component that has grabbed the interest of dietitians and medicinal chemists due to its wide range of health benefits. It is a powerful antioxidant with a well-documented effect in the prevention of several malignancies in humans. Taxifolin has shown promising inhibitory activity against inflammation, malignancies, microbial infection, oxidative stress, cardiovascular disease, and liver disease. Anti-cancer activity has been shown to be relatively significant than other activities investigated in vitro and in vivo with a little or no side effects to the normal healthy cells. In summary this review offers the synopsis of recent breakthroughs in the use of taxifolin as a cancer treatment, as well as mechanisms of action. However, to develop a medicine for human usage, more study on pharmacokinetic profile, profound molecular mechanisms, and drug safety criteria should be conducted utilizing well-designed randomized clinical trials. 10.1016/j.biopha.2021.112004
New Perspectives of Taxifolin in Neurodegenerative Diseases. Current neuropharmacology Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral amyloid angiopathy (CAA), and Huntington's disease (HD) are characterized by cognitive and motor dysfunctions and neurodegeneration. These diseases have become more severe over time and cannot be cured currently. Until now, most treatments for these diseases are only used to relieve the symptoms. Taxifolin (TAX), 3,5,7,3,4-pentahydroxy flavanone, also named dihydroquercetin, is a compound derived primarily from and . TAX has been confirmed to exhibit various pharmacological activities, including anti-inflammation, anti-cancer, anti-virus, and regulation of oxidative stress effects. In the central nervous system, TAX has been demonstrated to inhibit Aβ fibril formation, protect neurons and improve cerebral blood flow, cognitive ability, and dyskinesia. At present, TAX is only applied as a health additive in clinical practice. This review aimed to summarize the application of TAX in neurodegenerative diseases and the underlying neuroprotective mechanisms, such as suppressing inflammation, attenuating oxidative stress, preventing Aβ protein formation, maintaining dopamine levels, and thus reducing neuronal loss. 10.2174/1570159X21666230203101107
An insight into the health-promoting effects of taxifolin (dihydroquercetin). Sunil Christudas,Xu Baojun Phytochemistry Taxifolin (3,5,7,3,4-pentahydroxy flavanone or dihydroquercetin) is a flavonoid commonly found in onion, milk thistle, French maritime pine bark and Douglas fir bark. It is also used in various commercial preparations like Legalon™, Pycnogenol, and Venoruton. This review focuses on taxifolin's biological activities and related molecular mechanisms. Published literatures were gathered from the scientific databases like PubMed, SciFinder, ScienceDirect, Wiley Online Library, Google Scholar, and Web of Science up to January 2019. Taxifolin showed promising pharmacological activities in the management of inflammation, tumors, microbial infections, oxidative stress, cardiovascular, and liver disorders. The anti-cancer activity was more prominent than other activities evaluated using different in vitro and in vivo models. Further research on the pharmacokinetics, in-depth molecular mechanisms, and safety profile using well-designed randomized clinical studies are suggested to develop a drug for human use. 10.1016/j.phytochem.2019.112066
Taxifolin attenuates neuroinflammation and microglial pyroptosis via the PI3K/Akt signaling pathway after spinal cord injury. International immunopharmacology Spinal cord injury (SCI) is a severe injury characterized by neuroinflammation and oxidative stress. Taxifolin is exhibits anti-inflammatory and antioxidative activities in neurologic diseases. However, the roles and mechanisms of taxifolin in neuroinflammation and microglial pyroptosis after SCI remain unclear. The present study aims to investigate the effect of taxifolin on SCI and its potential underlying mechanisms in in vivo and in vitro models. In this study, taxifolin markedly reduced microglial activation mediated oxidative stress, and inhibited the expression of pyroptosis-related proteins (NLRP3, GSDMD, ASC, and Caspase-1) and inflammatory cytokines (IL-1β and IL-18) after SCI, as shown by immunofluorescence staining and western blot assays. In addition, taxifolin promoted axonal regeneration and improved functional recovery after SCI. In vitro studies showed that taxifolin attenuated the activation of microglia and oxidative stress after lipopolysaccharide (LPS) + adenosine-triphosphate (ATP) stimulation in BV2 cells. We also observed that taxifolin inhibited the pyroptosis-related proteins and reduced the release of inflammatory cytokines. Moreover, to explore how taxifolin exerts its effects on microglial pyroptosis and axonal regeneration of neurons, we performed an in vitro study in BV-2 cells and PC12 cells co-culture. The results revealed that taxifolin facilitated axonal regeneration of PC12 cells in co-culture with LPS + ATP-induced BV-2 cells. Mechanistically, taxifolin regulated microglial pyroptosis via the PI3K/AKT signaling pathway. Taken together, these results suggest that taxifolin alleviates neuroinflammation and microglial pyroptosis through the PI3K/AKT signaling pathway after SCI, and promotes axonal regeneration and improves functional recovery, suggesting that taxifolin may represent a potential therapeutic agent for SCI. 10.1016/j.intimp.2022.109616