logo logo
Anti-PSMA I-scFvD2B as a new immuno-PET tool for prostate cancer: preclinical proof of principle. Frigerio B,Morlino S,Luison E,Seregni E,Lorenzoni A,Satta A,Valdagni R,Bogni A,Chiesa C,Mira M,Canevari S,Alessi A,Figini M Journal of experimental & clinical cancer research : CR BACKGROUND:Prostate cancer (PCa) is the second leading cause of cancer-related death in the Western population. The use in oncology of positron emission tomography/computed tomography (PET/CT) with emerging radiopharmaceuticals promises accurate staging of primary disease, restaging of recurrent disease and detection of metastatic lesions. Prostate-specific membrane antigen (PSMA) expression, directly related to androgen-independence, metastasis and progression, renders this tumour associate antigen a good target for the development of new radiopharmaceuticals for PET. Aim of this study was to demonstrate in a preclinical in vivo model (PSMA-positive versus PSMA-negative tumours) the targeting specificity and sensitivity of the anti-PSMA single-chain variable fragment (scFv) labelled with I. METHODS:The I-labeling conditions of the antibody fragment scFvD2B were optimized and assessed for purity and immunoreactivity. The specificity of I-scFvD2B was tested in mice bearing PSMA-positive and PSMA-negative tumours to assess both ex-vivo biodistribution and immune-PET. RESULTS:The uptake fraction of I-scFvD2B was very high on PSMA positive cells (range 75-91%) and highly specific and immuno-PET at the optimal time point, defined between 15 h and 24 h, provides a specific localization of lesions bearing the target antigen of interest (PSMA positive vs PSMA negative tumors %ID/g: p = 0.0198 and p = 0.0176 respectively) yielding a median target/background ratio around 30-40. CONCLUSIONS:Preclinical in vivo results of our immuno-PET reagent are highly promising. The target to background ratio is improved notably using PET compared to SPECT previously performed. These data suggest that, upon clinical confirmation of sensitivity and specificity, our anti-PSMA I-scFvD2B may be superior to other diagnostic modalities for PCa. The possibility to combine in patients our I-scFvD2B in multi-modal systems, such as PET/CT, PET/MR and PET/SPECT/CT, will provide quantitative 3D tomographic images improving the knowledge of cancer biology and treatment. 10.1186/s13046-019-1325-6
Validity of Anti-PSMA ScFvD2B as a Theranostic Tool: A Narrative-Focused Review. Frigerio Barbara,Luison Elena,Desideri Alessandro,Iacovelli Federico,Camisaschi Chiara,Seregni Ettore C,Canevari Silvana,Figini Mariangela Biomedicines Prostate cancer (PCa) is the second leading cause of cancer among men, and its diagnosis and adequate staging are fundamental. Among the biomarkers identified in recent years for PCa management, prostate-specific-membrane-antigen (PSMA), physiologically expressed at a low level on healthy prostate and in other normal tissues and highly overexpressed in PCa, represents a reliable marker ideal for imaging and therapy. The development of anti-PSMA antibodies, such as D2B, demonstrated slow clearance of intact antibodies compared with fragments resulting in low tumor-to-blood ratios; however, the modular structural and functional nature of antibodies allowed the generation of smaller fragments, such as scFvs. In this review of the anti-PSMA antibody fragment scFvD2B, we combined further characterization of its biomolecular and tissue cross-reactivity characteristics with a comprehensive summary of what has already been performed in preclinical models to evaluate imaging and therapeutic activities. A molecular dynamics study was performed, and ScFvD2B occupied a limited conformational space, characterized by low-energy conformational basins, confirming the high stability of the protein structure. In the cross-reactivity study, the weak/absent immunoreactivity in non-tumor tissues was comparable to the PSMA expression reported in the literature. Biodistribution studies and therapeutic treatments were conducted in different animal models obtained by subcutaneous or locoregional injection of PSMA-positive-versus-negative xenografts. The maximum tumor uptake was observed for I(SPECT), I(PET), and optical imaging, which avoids kidney accumulation (compared with radiometals) and leads to an optimal tumor-to-kidney and tumor-to-background ratios. Regarding its possible use in therapy, experimental data suggested a strong and specific antitumor activity, in vitro and in vivo, obtained using CAR-T or NK-92/CAR cells expressing scFvD2B. Based on presented/reviewed data, we consider that scFvD2B, due to its versatility and robustness, seems to: (i) overcome some problems observed in other studied scFvs, very often relatively unstable and prone to form aggregates; (ii) have sufficient tumor-to-background ratios for targeting and imaging PSMA-expressing cancer; (iii) significantly redirect immune killing cells to PSMA-positive tumors when inserted in second-generation CAR-T or NK-92/CAR cells. These data suggest that our product can be considered the right reagent to fill the gap that still exists in PCa diagnosis and treatment. 10.3390/biomedicines9121870
Noninvasive Imaging of PSMA in prostate tumors with (89)Zr-Labeled huJ591 engineered antibody fragments: the faster alternatives. Viola-Villegas Nerissa Therese,Sevak Kuntal K,Carlin Sean D,Doran Michael G,Evans Henry W,Bartlett Derek W,Wu Anna M,Lewis Jason S Molecular pharmaceutics Engineered antibody fragments offer faster delivery with retained tumor specificity and rapid clearance from nontumor tissues. Here, we demonstrate that positron emission tomography (PET) based detection of prostate specific membrane antigen (PSMA) in prostatic tumor models using engineered bivalent antibodies built on single chain fragments (scFv) derived from the intact antibody, huJ591, offers similar tumor delineating properties but with the advantage of rapid targeting and imaging. (89)Zr-radiolabeled huJ591 scFv (dimeric scFv-CH3; (89)Zr-Mb) and cysteine diabodies (dimeric scFv; (89)Zr-Cys-Db) demonstrated internalization and similar Kds (∼2 nM) compared to (89)Zr-huJ591 in PSMA(+) cells. Tissue distribution assays established the specificities of both (89)Zr-Mb and (89)Zr-Cys-Db for PSMA(+) xenografts (6.2 ± 2.5% ID/g and 10.2 ± 3.4% ID/g at 12 h p.i. respectively), while minimal accumulation in PSMA(-) tumors was observed. From the PET images, (89)Zr-Mb and (89)Zr-Cys-Db exhibited faster blood clearance than the parent huJ591 while tumor-to-muscle ratios for all probes show comparable values across all time points. Ex vivo autoradiography and histology assessed the distribution of the probes within the tumor. Imaging PSMA-expressing prostate tumors with smaller antibody fragments offers rapid tumor accumulation and accelerated clearance; hence, shortened wait periods between tracer administration and high-contrast tumor imaging and lower dose-related toxicity are potentially realized. 10.1021/mp500164r