logo logo
Protective effects of salvianolic acid B against hydrogen peroxide‑induced apoptosis of human umbilical vein endothelial cells and underlying mechanisms. Gao Shan,Li Shiqin,Li Qin,Zhang Fuyong,Sun Mengqi,Wan Zilin,Wang Shurong International journal of molecular medicine Salvianolic acid B (Sal B) is a water‑soluble active component of Danshen and has anti‑atherosclerotic effects. The present study aimed to evaluate the cytoprotective effects of Sal B against hydrogen peroxide (H2O2)‑induced oxidative stress damage in human umbilical vein endothelial cells (HUVECs) and investigate the underlying mechanisms. It was revealed that Sal B protected the cells from H2O2‑induced damage, as indicated by MTT results showing enhanced cell viability and by flow cytometric analysis showing reduced apoptosis of cells challenged with H2O2. Furthermore, as an underlying mechanism, the enhancement of autophagy was indicated to be accountable for the decrease in apoptosis, as Sal B caused the upregulation of light chain 3‑Ⅱ and Beclin‑1, and downregulation of p62 under H2O2‑induced oxidative stress. Finally, Sal B increased the phosphorylation of AMP kinase (AMPK) and decreased the phosphorylation of mammalian target of rapamycin (mTOR), but had no effect on the phosphorylation of AKT. In conclusion, the present study revealed that Sal B protects HUVECs from oxidative stress, at least partially by promoting autophagy via activation of the AMPK pathway and downregulation of the mTOR pathway. 10.3892/ijmm.2019.4227
Melatonin attenuates inflammation-related venous endothelial cells apoptosis through modulating the MST1-MIEF1 pathway. Lu Kai,Liu Xiaoping,Guo Wei Journal of cellular physiology Chronic venous disease (CVD) is a prevalent and potentially debilitating condition that affects millions of individuals. An excessive endothelial inflammatory response is reportedly involved in the development of CVD. In this study, we explored the effect and mechanism of melatonin on venous endothelial damage induced by tumor necrosis factor α (TNF-α). Our data demonstrated that inflammation injury triggered mitochondrial dysfunction, activated reactive oxygen species-related oxidative damage, inhibited mitochondrial potential and ultimately initiated caspase-involved cellular death. Interestingly, melatonin preserved inflammation-attacked mitochondrial performance and thus increased cell survival under TNF-α. Cellular experiments illustrated that inflammation injury promoted the levels of mammalian sterile 20-like kinase 1 (MST1) and mitochondrial elongation factor 1 (MIEF1); active MST1-MIEF1 pathway disturbed mitochondria-related energy production, leading to mitochondria-induced cell damage. Interestingly, melatonin effectively suppressed MST1-MIEF1 axis and thus improved cell survival ratio under TNF-α-mediated inflammation injury. Reactivation of MST1-MIEF1 pathway attenuated melatonin-related endothelial protective actions. Herein, our results illuminate that melatonin is an effective approach to attenuate inflammation-related venous endothelial cell damage through handling the MST1-MIEF1 signaling pathway. 10.1002/jcp.28935