logo logo
Evidence-Based Practices for Children, Youth, and Young Adults with Autism Spectrum Disorder: A Comprehensive Review. Wong Connie,Odom Samuel L,Hume Kara A,Cox Ann W,Fettig Angel,Kucharczyk Suzanne,Brock Matthew E,Plavnick Joshua B,Fleury Veronica P,Schultz Tia R Journal of autism and developmental disorders The purpose of this study was to identify evidenced-based, focused intervention practices for children and youth with autism spectrum disorder. This study was an extension and elaboration of a previous evidence-based practice review reported by Odom et al. (Prev Sch Fail 54:275-282, 2010b, doi: 10.1080/10459881003785506 ). In the current study, a computer search initially yielded 29,105 articles, and the subsequent screening and evaluation process found 456 studies to meet inclusion and methodological criteria. From this set of research studies, the authors found 27 focused intervention practices that met the criteria for evidence-based practice (EBP). Six new EBPs were identified in this review, and one EBP from the previous review was removed. The authors discuss implications for current practices and future research. 10.1007/s10803-014-2351-z
Hepatic glucose and lipid metabolism. Jones John G Diabetologia The liver has a central role in the regulation of systemic glucose and lipid fluxes during feeding and fasting and also relies on these substrates for its own energy needs. These parallel requirements are met by coordinated control of carbohydrate and lipid fluxes into and out of the Krebs cycle, which is highly tuned to nutrient availability and heavily regulated by insulin and glucagon. During progression of type 2 diabetes, hepatic carbohydrate and lipid biosynthesis fluxes become elevated, thus contributing to hyperglycaemia and hypertriacylglycerolaemia. Over this interval there are also significant fluctuations in hepatic energy state. To date, it is not known to what extent abnormal glucose and lipid fluxes are causally linked to altered energy states. Recent evidence that the glucose-lowering effects of metformin appear to be mediated by attenuation of hepatic energy generation places an additional spotlight on the interdependence of hepatic biosynthetic and oxidative fluxes. The transition from fasting to feeding results in a significant re-direction of hepatic glucose and lipid fluxes and may also incur a temporary hepatic energy deficit. At present, it is not known to what extent these variables are additionally modified by type 2 diabetes and/or non-alcoholic fatty liver disease. Thus, there is a compelling need to measure fluxes through oxidative, gluconeogenic and lipogenic pathways and determine their relationship with hepatic energy state in both fasting and fed conditions. New magnetic resonance-based technologies allow these variables to be non-invasively studied in animal models and humans. This review summarises a presentation given at the symposium entitled 'The liver in focus' at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.1007/s00125-016-3952-1 , and by Hannele Yki-Järvinen, DOI: 10.1007/s00125-016-3944-1 ) and a commentary by the Session Chair, Michael Roden (DOI: 10.1007/s00125-016-3911-x ). 10.1007/s00125-016-3940-5
Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases. Journal of inflammation research Microglia are tissue-resident macrophages of the central nervous system (CNS). In the CNS, microglia play an important role in the monitoring and intervention of synaptic and neuron-level activities. Interventions targeting microglia have been shown to improve the prognosis of various neurological diseases. Recently, studies have observed the activation of microglia in different cardiovascular diseases. In addition, different approaches that regulate the activity of microglia have been shown to modulate the incidence and progression of cardiovascular diseases. The change in autonomic nervous system activity after neuroinflammation may be a potential intermediate link between microglia and cardiovascular diseases. Here, in this review, we will discuss recent updates on the regulatory role of microglia in hypertension, myocardial infarction and ischemia/reperfusion injury. We propose that microglia serve as neuroimmune modulators and potential targets for cardiovascular diseases. 10.2147/JIR.S350109