AI总结:
Scan me!
共25篇 平均IF=4.1 (1.6-10.2)更多分析
  • 4区Q2影响因子: 2.7
    1. Dipeptedyl peptidase-4 (DPP-4) inhibitor downregulates HMGB1/TLR4/NF-κB signaling pathway in a diabetic rat model of non-alcoholic fatty liver disease.
    期刊:Archives of physiology and biochemistry
    日期:2021-09-20
    DOI :10.1080/13813455.2021.1975758
    CONTEXT:Inflammatory and immune pathways play a crucial role in the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Sitagliptin blocks the dipeptidyl peptidase-4 (DPP-4) enzyme, mechanisms that alter inflammatory pathways and the innate immune system, and by which Sitagliptin affects the pathogenesis of NAFLD weren't previously discussed. OBJECTIVE:This study aims to understand the interaction between Sitagliptin and innate immune response in order to meliorate NAFLD. METHODS:Thirty- two Wistar male albino rats were categorised into four groups. Rats have received a standard diet or a high-fat diet either with or without Sitagliptin. Serum HMGB1, protein and mRNA expressions of hepatic TLR4 and NF-κB, inflammatory cytokines, and histopathological changes were analysed. RESULTS:An ameliorative action of Sitagliptin in NAFLD was demonstrated via decreasing HMGB1-mediated TLR4/NF-κB signalling in order to suppress inflammation and reduce insulin resistance. CONCLUSION:Sitagliptin may in fact prove to be a beneficial therapeutic intervention in NAFLD.
  • 3区Q2影响因子: 3.1
    打开PDF
    2. Association of cell death mechanisms and fibrosis in visceral white adipose tissue with pathological alterations in the liver of morbidly obese patients with NAFLD.
    作者:Leven Anna-Sophia , Gieseler Robert K , Schlattjan Martin , Schreiter Thomas , Niedergethmann Marco , Baars Theodor , Baba Hideo A , Özçürümez Mustafa K , Sowa Jan-Peter , Canbay Ali
    期刊:Adipocyte
    日期:2021-12-01
    DOI :10.1080/21623945.2021.1982164
    The role of visceral white adipose tissue (vWAT) in the progression of non-alcoholic liver disease (NAFLD) with its sub entities non-alcoholic fatty liver and steatohepatitis (NAFL; NASH) is underinvestigated. We thus explored mechanisms of fibrosis and regulated cell death in vWAT and liver tissue. In NAFLD, women displayed significantly more fibrosis in vWAT than men, and collagen 1α mRNA expression was significantly upregulated. The degrees of fibrosis in vWAT and liver tissue correlated significantly. The size of vWAT-resident adipocytes in NAFLD correlated negatively with the local degree of fibrosis. The extent of apoptosis, as measured by circulating M30, positively correlated with the degree of fibrosis in vWAT; necrosis-associated HMGB1 mRNA expression was significantly downregulated in vWAT and liver tissue; (iii) necroptosis-related RIPK-3 mRNA expression was significantly upregulated in vWAT; and autophagy-related LC3 mRNA expression was significantly downregulated in vWAT, while upregulated in the liver. Thus, the different cell death mechanisms in the vWAT in NAFLD are regulated independently while not ruling out their interaction. Fibrosis in vWAT may be associated with reduced adipocyte size and thus partially protective against NAFLD progression. ATG5: autophagy related 5; BAS: bariatric surgery; BMI: body mass index; ELISA: enzyme-linked immunosorbent assay; EtOH: ethanol; FFAs: free fatty acids; HCC: hepatocellular carcinoma; HMGB1: high-mobility group box 1 protein; IHC: immunohistochemistry; IL: interleukin; LC3: microtubule-associated proteins 1A/1B light chain 3B; M30: neoepitope K18Asp396-NE displayed on the caspase-cleaved keratin 18 fragment; M65: epitope present on both caspase-cleaved and intact keratin 18; NAFL: non-alcoholic fatty liver; NAFLD: non-alcoholic fatty liver disease; NAS: NAFLD activity score; NASH: non-alcoholic steatohepatitis; NLRP3: nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3; qRT-PCR: quantitative real-time polymerase-chain reaction; r: Pearson's correlation coefficient (r); r: Spearman's rank correlation coefficient; RIPK3: receptor-interacting serine/threonine-protein kinase 3; T2DM: type 2 diabetes mellitus (T2DM); TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling; vWAT: visceral WAT; WAT: white adipose tissue.
  • 4区Q2影响因子: 2.7
    跳转PDF
    3. Empagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis.
    期刊:Iranian journal of basic medical sciences
    日期:2019-04-01
    DOI :10.22038/ijbms.2019.31788.7651
    OBJECTIVES:Empagliflozin, a sodium-glucose cotransporter-2 (SGLT-2) inhibitor, possesses verified anti-inflammatory and anti-oxidative stress effects against diabetic nephropathy. The present investigation aims to examine empagliflozin effects on the renal levels of high mobility group box-1 (HMGB1), a potent inflammatory cytokine, and its respective receptor toll-like receptor-4 (TLR-4) in STZ-induced diabetic rats. MATERIALS AND METHODS:Empagliflozin at 10 mg/kg per os (p.o.) was administered for 4 weeks, starting 8 weeks after the induction of diabetes. Renal function, kidney inflammation, oxidative stress, and apoptosis markers as well as renal HMGB1, receptor for advanced glycation end products (RAGE), and TLR-4 levels were assessed. RESULTS:In addition to down-regulating NF-κB activity in renal cortices, empagliflozin reduced renal levels of HMGB1, RAGE, and TLR-4. It alleviated renal inflammation as indicated by diminished renal expressions of inflammatory cytokines and chemokines like tumor necrosis factor-alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) and also decreased urinary levels of interleukin-6 (IL-6) and alpha-1 acid glycoprotein (AGP). Moreover, empagliflozin ameliorated renal oxidative stress as demonstrated by decreased renal malondialdehyde (MDA) and elevated renal activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX). It also suppressed renal caspase-3, the marker of apoptosis; and furthermore, enhanced renal function noticed by the declined levels of serum urea and creatinine. CONCLUSION:These findings underline that empagliflozin is able to attenuate diabetes-related elevations in renal HMGB1 levels, an influential inflammatory cytokine released from the necrotic and activated cells, and its correspondent receptors, i.e., RAGE and TLR-4.
  • 3区Q1影响因子: 4.9
    跳转PDF
    4. Activation of Peripheral Blood Mononuclear Cells and Leptin Secretion: New Potential Role of Interleukin-2 and High Mobility Group Box (HMGB)1.
    作者:Coppola Andrea , Capuani Barbara , Pacifici Francesca , Pastore Donatella , Arriga Roberto , Bellia Alfonso , Andreadi Aikaterini , Di Daniele Nicola , Lauro Renato , Della-Morte David , Sconocchia Giuseppe , Lauro Davide
    期刊:International journal of molecular sciences
    日期:2021-07-26
    DOI :10.3390/ijms22157988
    Activation of innate immunity and low-grade inflammation contributes to hyperglycemia and an onset of Type 2 Diabetes Mellitus (T2DM). Interleukin-2 (IL-2), leptin, High Mobility Group Box-1 (HMGB-1), and increased glucose concentrations are mediators of these processes also by modulating peripheral blood mononuclear cells (PBMCs) response. The aim of this study was to investigate if HMGB-1 and IL-2 turn on PBMCs and their leptin secretion. In isolated human PBMCs and their subpopulations from healthy individuals and naïve T2DM patients, leptin release, pro-inflammatory response and Toll-like Receptors (TLRs) activation was measured. After treatment with IL-2 and HMGB1, NK (Natural Killer) have the highest amount of leptin secretion, whilst NK-T have the maximal release in basal conditions. TLR4 (TAK242) and/or TLR2 (TLR2-IgA) inhibitors decreased leptin secretion after IL-2 and HMGB1 treatment. A further non-significant increase in leptin secretion was reported in PBMCs of naive T2DM patients in response to IL-2 and HMGB-1 stimulation. Finally, hyperglycemia or hyperinsulinemia might stimulate leptin secretion from PBMCs. The amount of leptin released from PBMCs after the different treatments was enough to stimulate the secretion of IL-1β from monocytes. Targeting leptin sera levels and secretion from PBMCs could represent a new therapeutic strategy to counteract metabolic diseases such as T2DM.
  • 4区Q4影响因子: 1.6
    打开PDF
    5. Serum levels of the high-mobility group box 1 protein (HMGB1) in children with type 1 diabetes mellitus: case-control study.
    期刊:Central-European journal of immunology
    日期:2019-04-15
    DOI :10.5114/ceji.2019.84012
    INTRODUCTION:The involvement of the high-mobility group box 1 protein (HMGB1) in various autoimmune and inflammatory diseases has been documented; however, the role of this proinflammatory molecule in children with diabetes type 1 (T1DM) has not been addressed. The aim of this case-control study is to compare the serum level of HMGB1 in children with newly diagnosed T1DM (group 1) and a control group composed of healthy children. MATERIAL AND METHODS:This case-control study included 136 children: group 1 (n = 96) and a control group (n = 40). Measurements were taken from serum for the following: HMGB1, white blood cell count, C-reactive protein, glucose, haemoglobin A, and -cell autoantibodies (GADA-65, IA-2, ICA). HMGB1 was determined using enzyme-linked immunosorbent assay on a Labsystems iEMS Reader MF analyser (Labsystems Diagnostics Oy, Helsinki, Finland). RESULTS:The level (median and interquartile range) of HMGB1 was statistically higher (p < 0.001) in children with T1DM: 8.7 (5.0-9.8) µg/l, in comparison with the control group: 1.0 (0.6-1.4) µg/l. No correlation was found between HMGB1 and HbA1c in group 1, or between HMGB1 and BMI. A statistically higher percentage of positive children for autoantibodies were present in group 1 compared to the control group (p ≤ 0.001). HMGB1 serum levels were also tested and the presence of autoantibodies, and none of those antibodies correlated with the level of HMGB1. CONCLUSIONS:The higher level of HMGB1 in children with T1DM, compared to the control group, indicates that this proinflammatory molecule is a good candidate marker of inflammation in children with T1DM.
  • 3区Q1影响因子: 4
    6. circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells.
    作者:Chen Bin , Li Yanhua , Liu Yang , Xu Zhonggao
    期刊:Journal of cellular physiology
    日期:2019-05-13
    DOI :10.1002/jcp.28730
    Aberrant regulation in mesangial cell proliferation, extracellular matrix (ECM) accumulation, oxidative stress, and inflammation under hyperglycemic condition contributes significantly to the occurrence and development of diabetic nephropathy (DN). However, the mechanisms underlying the hyperglycemia-induced dysregulations have not been clearly elucidated. Here, we reported that high mobility group box 1 (HMGB1) was highly elevated in high glucose (HG)-treated mesangial cells, and induced the phosphorylation, nuclear translocation, and DNA binding activity of NF-κB via toll-like receptor 4 (TLR4). Function assays showed that inhibition of HMGB1 mitigated HG-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells via TLR4/NF-κB pathway. Increasing evidence has shown that circRNA, a large class of noncoding RNAs, functions by binding with miRNAs and terminating regulation of their target genes. We further investigated whether HMGB1 is involved in circRNA-miRNA-mRNA regulatory network. First, HMGB1 was identified and confirmed to be the target of miR-205, and miR-205 played a protective role against HG-induced cell injure via targeting HMGB1. Then circLRP6 was found to be upregulated in HG-treated mesangial cells, and regulate HG-induced mesangial cell injure via sponging miR-205. Besides, overexpression of miR-205 or knockdown of circLRP6 inhibited the NF-κB signaling pathway. Collectively, these data suggest that circLRP6 regulates HG-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells via sponging miR-205, upregulating HMGB1 and activating TLR4/NF-κB pathway. These findings provide a better understanding for the pathogenesis of DN.
  • 4区Q1影响因子: 3.6
    跳转PDF
    7. Restoring glucose balance: Conditional HMGB1 knockdown mitigates hyperglycemia in a Streptozotocin induced mouse model.
    期刊:Heliyon
    日期:2023-12-12
    DOI :10.1016/j.heliyon.2023.e23561
    Diabetes mellitus (DM) poses a significant global health burden, with hyperglycemia being a primary contributor to complications and high morbidity associated with this disorder. Existing glucose management strategies have shown suboptimal effectiveness, necessitating alternative approaches. In this study, we explored the role of high mobility group box 1 (HMGB1) in hyperglycemia, a protein implicated in initiating inflammation and strongly correlated with DM onset and progression. We hypothesized that HMGB1 knockdown will mitigate hyperglycemia severity and enhance glucose tolerance. To test this hypothesis, we utilized a novel inducible HMGB1 knockout (iHMGB1 KO) mouse model exhibiting systemic HMGB1 knockdown. Hyperglycemic phenotype was induced using low dose streptozotocin (STZ) injections, followed by longitudinal glucose measurements and oral glucose tolerance tests to evaluate the effect of HMGB1 knockdown on glucose metabolism. Our findings showed a substantial reduction in glucose levels and enhanced glucose tolerance in HMGB1 knockdown mice. Additionally, we performed RNA sequencing analyses, which identified potential alternations in genes and molecular pathways within the liver and skeletal muscle tissue that may account for the in vivo phenotypic changes observed in hyperglycemic mice following HMGB1 knockdown. In conclusion, our present study delivers the first direct evidence of a causal relationship between systemic HMGB1 knockdown and hyperglycemia in vivo, an association that had remained unexamined prior to this research. This discovery positions HMGB1 knockdown as a potentially efficacious therapeutic target for addressing hyperglycemia and, by extension, the DM epidemic. Furthermore, we have revealed potential underlying mechanisms, establishing the essential groundwork for subsequent in-depth mechanistic investigations focused on further elucidating and harnessing the promising therapeutic potential of HMGB1 in DM management.
  • 2区Q1影响因子: 5
    跳转PDF
    8. NUCB2/Nesfatin-1 Reduces Obesogenic Diet Induced Inflammation in Mice Subcutaneous White Adipose Tissue.
    期刊:Nutrients
    日期:2022-03-28
    DOI :10.3390/nu14071409
    BACKGROUND:Excess adipose tissue accumulation and obesity are characterised by chronic, low-grade, systemic inflammation. Nestfatin-1 is a neuropeptide derived from the precursor protein nucleobindin-2 (NUCB2), which was initially reported to exert anorexigenic effects. The present study aimed to investigate the effects of an obesogenic diet (OD; high-fat, high-sugar) in NUCB2 knockout (KO) mice and of nesfatin-1 treatment in LPS-stimulated 3T3-L1 preadipocytes. METHODS:Subcutaneous white adipose tissue (Sc-WAT) samples from wild type (WT) and NUCB2 KO mice that were fed a normal diet (ND), or the OD for 12 weeks were used for RNA and protein extraction, as well as immunohistochemistry. 3T3-L1 cells were treated with 100 nM nesfatin-1 during differentiation and stimulated with 1 µg/mL LPS for measuring the expression and secretion of pro-inflammatory mediators by qPCR, western blotting, immunofluorescence, Bioplex, and ELISA. RESULTS:Following the OD, the mRNA, protein and cellular expression of pro-inflammatory mediators (Tnfα, Il-6, Il-1β, Adgre1, Mcp1, TLR4, Hmbgb1 and NF-kB) significantly increased in the ScWAT of NUCB2 KO mice compared to ND controls. Adiponectin and Nrf2 expression significantly decreased in the ScWAT of OD-fed NUCB2 KO, without changes in the OD-fed WT mice. Furthermore, nesfatin-1 treatment in LPS-stimulated 3T3-L1 cells significantly reduced the expression and secretion of pro-inflammatory cytokines (Tnfα, Il-6, Il-1β, Mcp1) and hmgb1. CONCLUSION:An obesogenic diet can induce significant inflammation in the ScWAT of NUCB2 KO mice, involving the HMGB1, NRF2 and NF-kB pathways, while nesfatin-1 reduces the pro-inflammatory response in LPS-stimulated 3T3-L1 cells. These findings provide a novel insight into the metabolic regulation of inflammation in WAT.
  • 3区Q2影响因子: 4.1
    打开PDF
    9. Adiponectin Ameliorates Hyperglycemia-Induced Retinal Endothelial Dysfunction, Highlighting Pathways, Regulators, and Networks.
    期刊:Journal of inflammation research
    日期:2022-05-27
    DOI :10.2147/JIR.S358594
    Background:The pathophysiology of diabetic retinopathy (DR) is multifaced. A low level of circulating adiponectin (APN) in type 2 diabetes is associated with microvasculature complications, and its role in the evolution of DR is complex. Aim:This study is designed to explore the potential impact of APN in the pathogenesis of DR, linking the changes in cellular and biological processes with the pathways, networks, and regulators involved in its actions. Methods:Human microvascular retinal endothelial cells (HMRECs) were exposed to 30mM glucose (HG) and treated with globular adiponectin (30μg/mL) for 24 hours. The cells were evaluated for reactive oxidative stress (ROS) and apoptosis. RT-PCR profile arrays were utilized to evaluate the profile of genes involved in endothelial functions, angiogenesis, extracellular matrix, and adhesion molecules for hyperglycemic HMRECs treated with adiponectin. In addition, the barrier function, leukocyte migration, and angiogenesis were evaluated. The differential expressed genes (DEGs) were outlined, and bioinformatic analysis was applied. Results:Adiponectin suppresses ROS production and apoptosis in HMRECs under HG conditions. Adiponectin improved migration and barrier functions in hyperglycemic cells. The bioinformatic analysis highlighted that the signaling pathways of integrin, HMGB1, and p38 AMPK, are mainly involved in the actions of APN on HMRECs. APN significantly affects molecular functions, including the adhesion of cells, chemotaxis, migration of WBCs, and angiogenesis. STAT3, NFKB, IKBKB, and mir-8 are the top upstream regulators, which affect the expressions of the genes of the data set, while TNF and TGFB1 are the top regulators. Conclusion:Adiponectin significantly counteracts hyperglycemia at various cellular and molecular levels, reducing its impact on the pathophysiological progression towards DR in vitro using HMRECs. Adiponectin ameliorates inflammatory response, oxidative stress, and endothelial barrier dysfunction using a causal network of NFBk complex, TNF, and HMGB1 and integrin pathways.
  • 4区Q3影响因子: 2.2
    10. The blockade of cytoplasmic HMGB1 modulates the autophagy/apoptosis checkpoint in stressed islet beta cells.
    期刊:Biochemical and biophysical research communications
    日期:2020-11-05
    DOI :10.1016/j.bbrc.2020.10.038
    High mobility group (HMGB1) is an alarmin known to be harmful to pancreatic beta cells and associated with diabetes mellitus pathogenesis and pancreatic islet graft failure. It has been long thought that the suppression of HMGB1 molecule is beneficial to the beta cells. However, recent studies have indicated that cytoplasmic HMGB1 (cHMGB1) could function as a modulator to relieve cells from apoptotic stress by autophagy induction. Particularly, pancreatic beta cells have been known to utilize the autophagy-to-apoptosis switch when exposed to hypoxia or lipotoxicity. This study aimed to investigate the beta cells under hypoxic and lipotoxic stress while utilizing a small molecule inhibitor of HMGB1, inflachromene (ICM) which can suppress cHMGB1 accumulation. It was revealed that under cellular stress, blockade of cHMGB1 accumulation decreased the viability of islet grafts, primary islets and MIN6 cells. MIN6 cells under cHMGB1 blockade along with lipotoxic stress showed decreased autophagic flux and increased apoptosis. Moreover, cHMGB1 blockade in HFD-fed mice produced unfavorable outcomes on their glucose tolerance. In sum, these results suggested the role of cHMGB1 within beta cell autophagy/apoptosis checkpoint. Given the importance of autophagy in beta cells under apoptotic stresses, this study might provide further insights regarding HMGB1 and diabetes.
  • 4区Q4影响因子: 1.7
    11. High mobility group box 1 and Dickkopf-related protein 1 as biomarkers of glucose toxicity, atherogenicity, and lower β cell function in patients with type 2 diabetes mellitus.
    期刊:Growth factors (Chur, Switzerland)
    日期:2022-09-27
    DOI :10.1080/08977194.2022.2126317
    Type 2 diabetes mellitus (T2DM) is associated with increased atherogenicity and inflammatory responses, which may be related to high mobility group box 1 (HMGB1) and Dickkopf-related protein 1 (DKK1). The role of HMGB1 and DKK1 in T2DM is examined in association with lipid and insulin profiles. Serum HMGB1 and DKK1 were measured in T2DM with and without hypertension and compared with controls. The results showed that HMGB1 and DKK1 are higher in T2DM irrespective of hypertension. A large part of the variance in the β-cell index and glucose toxicity was explained by the combined effects of HMGB1 and DKK1. In conclusion, both HMGB1 and DKK1 may contribute to increased atherogenicity in T2DM. Moreover, both biomarkers may cause more deficits in β-cell function and increase glucose toxicity leading to the development of more inflammation and diabetic complications. HMGB1 and the Wnt pathways are other drug targets in treating T2DM.
  • 3区Q2影响因子: 2.7
    12. RAGE silencing deters CML-AGE induced inflammation and TLR4 expression in endothelial cells.
    作者:Ramya Ravi , Coral Karunakaran , Bharathidevi Subramaniam Rajesh
    期刊:Experimental eye research
    日期:2021-02-25
    DOI :10.1016/j.exer.2021.108519
    The N-(carboxymethyl)lysine (CML), the predominant advanced glycation end products (AGEs) in diabetes and its RAGE induced cytokine release has been well explored. But the CML mediated multiple AGEs receptor expression is still not understood and the role played by RAGE silencing in modulating CML generated pro-inflammatory cytokines in micro and macrovascular endothelial cells is yet to be studied. HUVEC and HREC cells were exposed with CML for 24 h. RAGE, AGER1, AGER2, Gal-3, TLR4, TLR2, CD36, FEEL-1, FEEL-2, and chemokine HMGB1 were quantified by either qPCR/western blotting. The receptor's expression was also determined in control vs diabetic retina. Expression of pro-inflammatory genes, ROS, and mitochondrial membrane potential change were assessed using ELISA, DCFDA, and JC-1 method respectively. RAGE expression was silenced either by Si-RAGE or neutralising antibody with anti-RAGE and expression of other AGE receptors, adaptors, and signalling pathway were studied compared with Si-Control. CML activated RAGE, TLR4, HMGB1(p < 0.001) and Gal-3 (p < 0.05) expression in both micro and macro vascular cells. Cadaveric diabetic retinal tissues also showed increased expression of RAGE, TLR4 and HMGB1 (p < 0.05). RAGE silencing significantly reduced TLR4, HMGB1 (p < 0.05) expression and inhibited the phosphorylation of NFκB and ERK1/2 in both these cells. The TLR4 adaptors MyD88 and TIRAP (p < 0.05) showed down regulation on RAGE silencing. This study shows CML induces AGE receptors expression as observed in diabetic retina and RAGE silencing down regulated TLR4 signalling and cytokine release by partly modulating TLR4 adaptors which needs further validation. From this study we speculate targeting the TLR4 adaptors like MyD88 and TIRAP can be a potential therapeutic target for reducing diabetic induced vascular complications.
  • 4区Q3影响因子: 2.1
    13. Clinical significance of high mobility group box 1/toll-like receptor 4 in obese diabetic patients.
    期刊:Endocrine journal
    日期:2021-10-15
    DOI :10.1507/endocrj.EJ21-0381
    High mobility group box 1 (HMGB1) is an alarmin that may link to obesity and type 2 diabetes mellitus (T2DM). The present study analyzed the correlation between HMGB1/ Toll-like receptor 4 (TLR4) and certain biochemical parameters in obese (OB) diabetic patients. 40 normal glucose tolerant subjects (NGT) and 40 patients with newly diagnosed T2DM were enrolled. All patients were further divided into non-obese NGT (NGT-NOB), obese NGT (NGT-OB), non-obese T2DM (T2DM-NOB) and obese T2DM (T2DM-OB) groups according to body mass index (BMI).The levels of HMGB1 in serum were quantified using ELISA, whereas the mRNA expression levels of TLR4 in peripheral blood mononuclear cells were assessed using reverse transcription-quantitative PCR. The results suggested that the levels of HMGB1 and TLR4 were higher in NGT-OB and T2DM-NOB groups compared with those in NGT-NOB group. Similarly, the levels of these two markers were higher in T2DM-OB group compared with those in NGT-OB group. Correlation analysis indicated that the levels of HMGB1 and TLR4 were positively correlated with triglyceride (TG), fasting plasma glucose (FPG) levels and BMI, whereas a negative correlation between HMGB1 and high density lipoprotein (HDL) was noted. Linear regression analysis suggested that HMGB1 was associated with FPG and TG levels, whereas TLR4 was strongly associated with TG levels and BMI. The results demonstrated that the expression levels of HMGB1 and TLR4 in patients with T2DM or obesity were increased, which were associated with glycolipid metabolism disorders. Therefore, the HMGB1/TLR4 may serve a role in inflammatory process associated with obesity and T2DM.
  • 2区Q2影响因子: 5.2
    跳转PDF
    14. High Mobility Group Box 1: Biological Functions and Relevance in Oxidative Stress Related Chronic Diseases.
    期刊:Cells
    日期:2022-03-01
    DOI :10.3390/cells11050849
    In the early 1970s, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and named high-mobility group (HMG) proteins. High-mobility group box 1 (HMGB1) is the most studied HMG protein that detects and coordinates cellular stress response. The biological function of HMGB1 depends on its subcellular localization and expression. It plays a critical role in the nucleus and cytoplasm as DNA chaperone, chromosome gatekeeper, autophagy maintainer, and protector from apoptotic cell death. HMGB1 also functions as an extracellular alarmin acting as a damage-associated molecular pattern molecule (DAMP). Recent findings describe HMGB1 as a sophisticated signal of danger, with a pleiotropic function, which is useful as a clinical biomarker for several disorders. HMGB1 has emerged as a mediator in acute and chronic inflammation. Furthermore, HMGB1 targeting can induce beneficial effects on oxidative stress related diseases. This review focus on HMGB1 redox status, localization, mechanisms of release, binding with receptors, and its activities in different oxidative stress-related chronic diseases. Since a growing number of reports show the key role of HMGB1 in socially relevant pathological conditions, to our knowledge, for the first time, here we analyze the scientific literature, evaluating the number of publications focusing on HMGB1 in humans and animal models, per year, from 2006 to 2021 and the number of records published, yearly, per disease and category (studies on humans and animal models).
  • 4区Q2影响因子: 3.2
    15. Targeting receptors of advanced glycation end products (RAGE): Preventing diabetes induced cancer and diabetic complications.
    作者:Chhipa Abu Sufiyan , Borse Swapnil P , Baksi Ruma , Lalotra Sunali , Nivsarkar Manish
    期刊:Pathology, research and practice
    日期:2019-09-19
    DOI :10.1016/j.prp.2019.152643
    Cancer and diabetes are the two major disorders that affect a large proportion of the world's population. Results from multiple epidemiological studies have concluded that diabetes and cancer are linked, and diabetic patients live at much higher risks of developing cancer and diabetic complications at the later phase of disease. Inflammation is the central pathway that mediates both diabetic complications as well as cancer. Receptor of advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor that induces the inflammatory responses by binding with multiple ligands. RAGE and its ligands are upregulated in diabetes, inflammation and cancer. Advanced glycation end products (AGEs), high mobility group box protein-1 (HMGB1) and S100 proteins are the major RAGE ligands that contribute to these consequences and an increased release of RAGE ligands during diabetic conditions can be a possible mechanism leading to diabetic complications and cancer. Moreover, further release of RAGE ligands from cancer cells can be a possible mechanism behind the worsening of diabetic complications in diabetic cancer patients. Inhibition of RAGE signaling can prevent diabetic complications and cancer in diabetic patients and can be helpful in the management of worsening diabetic complications and cancer in diabetic cancer patients. Curcumin, Quercetin and Withaferin A are known to inhibit multiple molecular pathways that are involved in RAGE signaling. The combined effects of these molecules can be explored to achieve the complete inhibition of RAGE signaling in diabetic patients.
  • 3区Q2影响因子: 4.6
    跳转PDF
    16. Therapeutic Potential of Targeting the HMGB1/RAGE Axis in Inflammatory Diseases.
    期刊:Molecules (Basel, Switzerland)
    日期:2022-10-27
    DOI :10.3390/molecules27217311
    High mobility group box 1 (HMGB1) is a nuclear protein that can interact with a receptor for advanced glycation end-products (RAGE; a multi-ligand immunoglobulin receptor) and mediates the inflammatory pathways that lead to various pathological conditions, such as cancer, diabetes, neurodegenerative disorders, and cardiovascular diseases. Blocking the HMGB1/RAGE axis could be an effective therapeutic approach to treat these inflammatory conditions, which has been successfully employed by various research groups recently. In this article, we critically review the structural insights and functional mechanism of HMGB1 and RAGE to mediate inflammatory processes. More importantly, current perspectives of recent therapeutic approaches utilized to inhibit the communication between HMGB1 and RAGE using small molecules are also summarized along with their clinical progression to treat various inflammatory disorders. Encouraging results are reported by investigators focusing on HMGB1/RAGE signaling leading to the identification of compounds that could be useful in further clinical studies. We highlight the current gaps in our knowledge and future directions for the therapeutic potential of targeting key molecules in HMGB1/RAGE signaling in the pathophysiology of inflammatory diseases.
  • 3区Q1影响因子: 4.6
    跳转PDF
    17. Editorial: Autophagy and hypoxia-inducible factor in diabetes.
    期刊:Frontiers in endocrinology
    日期:2023-12-18
    DOI :10.3389/fendo.2023.1349432
  • 2区Q1影响因子: 6.4
    跳转PDF
    18. HMGB1 and Toll-like receptors: potential therapeutic targets in autoimmune diseases.
    期刊:Molecular medicine (Cambridge, Mass.)
    日期:2023-09-04
    DOI :10.1186/s10020-023-00717-3
    HMGB1, a nucleoprotein, is expressed in almost all eukaryotic cells. During cell activation and cell death, HMGB1 can function as an alarm protein (alarmin) or damage-associated molecular pattern (DAMP) and mediate early inflammatory and immune response when it is translocated to the extracellular space. The binding of extracellular HMGB1 to Toll-like receptors (TLRs), such as TLR2 and TLR4 transforms HMGB1 into a pro-inflammatory cytokine, contributing to the occurrence and development of autoimmune diseases. TLRs, which are members of a family of pattern recognition receptors, can bind to endogenous DAMPs and activate the innate immune response. Additionally, TLRs are key signaling molecules mediating the immune response and play a critical role in the host defense against pathogens and the maintenance of immune balance. HMGB1 and TLRs are reported to be upregulated in several autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and autoimmune thyroid disease. The expression levels of HMGB1 and some TLRs are upregulated in tissues of patients with autoimmune diseases and animal models of autoimmune diseases. The suppression of HMGB1 and TLRs inhibits the progression of inflammation in animal models. Thus, HMGB1 and TLRs are indispensable biomarkers and important therapeutic targets for autoimmune diseases. This review provides comprehensive strategies for treating or preventing autoimmune diseases discovered in recent years.
  • 3区Q1影响因子: 4.6
    跳转PDF
    19. The relationship between HMGB1 and autophagy in the pathogenesis of diabetes and its complications.
    期刊:Frontiers in endocrinology
    日期:2023-03-29
    DOI :10.3389/fendo.2023.1141516
    Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels and has become the third leading threat to human health after cancer and cardiovascular disease. Recent studies have shown that autophagy is closely associated with diabetes. Under normal physiological conditions, autophagy promotes cellular homeostasis, reduces damage to healthy tissues and has bidirectional effects on regulating diabetes. However, under pathological conditions, unregulated autophagy activation leads to cell death and may contribute to the progression of diabetes. Therefore, restoring normal autophagy may be a key strategy to treat diabetes. High-mobility group box 1 protein (HMGB1) is a chromatin protein that is mainly present in the nucleus and can be actively secreted or passively released from necrotic, apoptotic, and inflammatory cells. HMGB1 can induce autophagy by activating various pathways. Studies have shown that HMGB1 plays an important role in insulin resistance and diabetes. In this review, we will introduce the biological and structural characteristics of HMGB1 and summarize the existing knowledge on the relationship between HMGB1, autophagy, diabetes, and diabetic complications. We will also summarize potential therapeutic strategies that may be useful for the prevention and treatment of diabetes and its complications.
  • 3区Q1影响因子: 4.7
    打开PDF
    20. HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose.
    作者:Wu You , Zhao Ying , Yang Han-Ze , Wang Yan-Jun , Chen Yan
    期刊:Bioscience reports
    日期:2021-02-26
    DOI :10.1042/BSR20202924
    Ferroptosis, a novel type of programmed cell death, is involved in inflammation and oxidation of various human diseases, including diabetic kidney disease. The present study explored the role of high-mobility group box-1 (HMGB1) on the regulation of ferroptosis in mesangial cells in response to high glucose. Compared with healthy control, levels of serum ferritin, lactate dehydrogenase (LDH), reactive oxygen species (ROS), malonaldehyde (MDA), and HMGB1 were significantly elevated in diabetic nephropathy (DN) patients, accompanied with deregulated ferroptosis-related molecules, including long-chain acyl-CoA synthetase 4 (ACSL4), prostaglandin-endoperoxide synthase 2 (PTGS2), NADPH oxidase 1 (NOX1), and glutathione peroxidase 4 (GPX4). In vitro assay revealed that erastin and high glucose both induced ferroptosis in mesangial cells. Suppression of HMGB1 restored cellular proliferation, prevented ROS and LDH generation, decreased ACSL4, PTGS2, and NOX1, and increased GPX4 levels in mesangial cells. Furthermore, nuclear factor E2-related factor 2 (Nrf2) was decreased in DN patients and high glucose-mediated translocation of HMGB1 in mesangial cells. Knockdown of HMGB1 suppressed high glucose-induced activation of TLR4/NF-κB axis and promoted Nrf2 expression as well as its downstream targets including HO-1, NQO-1, GCLC, and GCLM. Collectively, these findings suggest that HMGB1 regulates glucose-induced ferroptosis via Nrf2 pathway in mesangial cells.
  • 1区Q1影响因子: 10.2
    跳转PDF
    21. Extracellular HMGB1 exacerbates autoimmune progression and recurrence of type 1 diabetes by impairing regulatory T cell stability.
    作者:Zhang Jing , Chen Longmin , Wang Faxi , Zou Yuan , Li Jingyi , Luo Jiahui , Khan Faheem , Sun Fei , Li Yang , Liu Jing , Chen Zhishui , Zhang Shu , Xiong Fei , Yu Qilin , Li Jinxiu , Huang Kun , Adam Bao-Ling , Zhou Zhiguang , Eizirik Decio L , Yang Ping , Wang Cong-Yi
    期刊:Diabetologia
    日期:2020-02-19
    DOI :10.1007/s00125-020-05105-8
    AIMS/HYPOTHESIS:High-mobility group box 1 (HMGB1), an evolutionarily conserved chromosomal protein, was rediscovered to be a 'danger signal' (alarmin) that alerts the immune system once released extracellularly. Therefore, it has been recognised contributing to the pathogenesis of autoimmune diabetes, but its exact impact on the initiation and progression of type 1 diabetes, as well as the related molecular mechanisms, are yet to be fully characterised. METHODS:In the current report, we employed NOD mice as a model to dissect the impact of blocking HMGB1 on the prevention, treatment and reversal of type 1 diabetes. To study the mechanism involved, we extensively examined the characteristics of regulatory T cells (Tregs) and their related signalling pathways upon HMGB1 stimulation. Furthermore, we investigated the relevance of our data to human autoimmune diabetes. RESULTS:Neutralising HMGB1 both delayed diabetes onset and, of particular relevance, reversed diabetes in 13 out of 20 new-onset diabetic NOD mice. Consistently, blockade of HMGB1 prevented islet isografts from autoimmune attack in diabetic NOD mice. Using transgenic reporter mice that carry a Foxp3 lineage reporter construct, we found that administration of HMGB1 impairs Treg stability and function. Mechanistic studies revealed that HMGB1 activates receptor for AGE (RAGE) and toll-like receptor (TLR)4 to enhance phosphatidylinositol 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) signalling, thereby impairing Treg stability and functionality. Indeed, high circulating levels of HMGB1 in human participants with type 1 diabetes contribute to Treg instability, suggesting that blockade of HMGB1 could be an effective therapy against type 1 diabetes in clinical settings. CONCLUSIONS/INTERPRETATION:The present data support the possibility that HMGB1 could be a viable therapeutic target to prevent the initiation, progression and recurrence of autoimmunity in the setting of type 1 diabetes.
  • 2区Q1影响因子: 5.9
    跳转PDF
    22. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols.
    期刊:Frontiers in immunology
    日期:2023-07-21
    DOI :10.3389/fimmu.2023.1185317
    Diabetic nephropathy (DN) often leads to end-stage renal disease. Oxidative stress demonstrates a crucial act in the onset and progression of DN, which triggers various pathological processes while promoting the activation of inflammation and forming a vicious oxidative stress-inflammation cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, renal tubular atrophy, and proteinuria. Conventional treatments for DN have limited efficacy. Polyphenols, as antioxidants, are widely used in DN with multiple targets and fewer adverse effects. This review reveals the oxidative stress and oxidative stress-associated inflammation in DN that led to pathological damage to renal cells, including podocytes, endothelial cells, mesangial cells, and renal tubular epithelial cells. It demonstrates the potent antioxidant and anti-inflammatory properties by targeting Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of polyphenols, including quercetin, resveratrol, curcumin, and phenolic acid. However, there remains a long way to a comprehensive understanding of molecular mechanisms and applications for the clinical therapy of polyphenols.
  • 4区Q3影响因子: 2.8
    23. Expatiating the molecular approaches of HMGB1 in diabetes mellitus: Highlighting signalling pathways via RAGE and TLRs.
    作者:Behl Tapan , Sharma Eshita , Sehgal Aayush , Kaur Ishnoor , Kumar Arun , Arora Rashmi , Pal Giridhari , Kakkar Munish , Kumar Ravinder , Bungau Simona
    期刊:Molecular biology reports
    日期:2021-01-21
    DOI :10.1007/s11033-020-06130-x
    Diabetes mellitus (DM) has become one of the major healthcare challenges worldwide in the recent times and inflammation being one of its key pathogenic process/mechanism affect several body parts including the peripheral and central nervous system. High-mobility group box 1 (HMGB1) is one of the major non-histone proteins that plays a key role in triggering the inflammatory response. Upon its release into the extracellular milieu, HMGB1 acts as an "alarmin" for the immune system to initiate tissue repair as a component of the host defense system. Furthermore, HMGB1 along with its downstream receptors like Toll-like receptors (TLRs) and receptors for advanced glycation end products (RAGE) serve as the suitable target for DM. The forthcoming research in the field of diabetes would potentially focus on the development of alternative approaches to target the centre of inflammation that is primarily mediated by HMGB1 to improve diabetic-related complications. This review covers the therapeutic actions of HMGB1 protein, which acts by activating the RAGE and TLR molecules to constitute a functional tripod system, in turn activating NF-κB pathway that contributes to the production of mediators for pro-inflammatory cytokines associated with DM. The interaction between TLR2 and TLR4 with ligands present in the host and the activation of RAGE stimulates various immune and metabolic responses that contribute to diabetes. This review emphasizes to elucidate the role of HMGB1 in the initiation and progression of DM and control over the inflammatory tripod as a promising therapeutic approach in the management of DM.
  • 3区Q1影响因子: 5.1
    24. HMGB1/TLR4 promotes apoptosis and reduces autophagy of hippocampal neurons in diabetes combined with OSA.
    作者:Guo Xiangyu , Shi Yu , Du Ping , Wang Jiahui , Han Yelei , Sun Bei , Feng Jing
    期刊:Life sciences
    日期:2019-10-31
    DOI :10.1016/j.lfs.2019.117020
    AIMS:Obstructive sleep apnea (OSA) combined with type 2 diabetes (T2DM) may lead to cognitive dysfunction. We previously reported that cognitive impairment is exacerbated in KKAy mice exposed to intermittent hypoxia (IH), during which the DNA binding protein HMGB1 mediates hippocampal neuronal apoptosis by maintaining microglia-associated neuroinflammation, but the underlying mechanism remains largely unknown. MATERIALS AND METHODS:We performed immunofluorescence, Western blotting, and immunohistochemistry experiments in mouse hippocampal tissues and HT22 cells. KKAy type 2 diabetes model mice and normal C57BL/6J mice were exposed to IH or intermittent normoxia. HT22 cells were cultured in high glucose medium and exposed to IH or intermittent normoxia. We transfected HMGB1 siRNA into HT22 cells and then treated them with high glucose combined with intermittent hypoxia. KEY FINDINGS:In conclusion, IH aggravated apoptosis and autophagy defects in T2DM mice, and increased the protein expression of HMGB1 and TLR4. This was also confirmed in HG + IH-treated hippocampal HT22 cells. HMGB1 siRNA can significantly reduce the protein expression of HMGB1 and TLR4, reverse neuronal apoptosis and enhance autophagy. SIGNIFICANCE:We believe that HMGB1 is a key factor in the regulation of hippocampal neuronal apoptosis and autophagy defects in T2DM combined with OSA. Targeting HMGB1/TLR4 signaling as a novel approach may delay or prevent the increased apoptosis and decreased autophagy induced by T2DM combined with OSA, and may ultimately improve cognitive dysfunction.
  • 2区Q1影响因子: 7.5
    25. HMGB1 signaling pathway in diabetes-related dementia: Blood-brain barrier breakdown, brain insulin resistance, and Aβ accumulation.
    期刊:Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
    日期:2022-04-09
    DOI :10.1016/j.biopha.2022.112933
    Diabetes contributes to the onset of various diseases, including cancer and cardiovascular and neurodegenerative diseases. Recent studies have highlighted the similarities and relationship between diabetes and dementia as an important issue for treating diabetes-related cognitive deficits. Diabetes-related dementia exhibits several features, including blood-brain barrier disruption, brain insulin resistance, and Aβ over-accumulation. High-mobility group box1 (HMGB1) is a protein known to regulate gene transcription and cellular mechanisms by binding to DNA or chromatin via receptor for advanced glycation end-products (RAGE) and toll-like receptor 4 (TLR4). Recent studies have demonstrated that the interplay between HMGB1, RAGE, and TLR4 can impact both neuropathology and diabetic alterations. Herein, we review the recent research regarding the roles of HMGB1-RAGE-TLR4 axis in diabetes-related dementia from several perspectives and emphasize the importance of the influence of HMGB1 in diabetes-related dementia.
logo logo
$!{favoriteKeywords}