logo logo
Composites consisting of calcium phosphate cements and mesoporous bioactive glasses as a 3D plottable drug delivery system. Acta biomaterialia Calcium phosphate cements (CPC) and mesoporous bioactive glasses (MBG) are two well studied biomaterial groups widely under investigation on their applicability to treat bone defects in orthopaedics and maxillofacial surgery. Recently the extrusion properties of CPC-MBG composites using a pasty CPC based on a hydrophobic carrier-liquid were studied in our group demonstrating that such composites are suitable for low temperature 3D plotting. Based on this work, we show in this study that by variation of the MBG content in the composite the degradation of the final scaffolds can be influenced. Furthermore, by modifying the cement phase and/or the MBG with therapeutically active ions like strontium, the released ion concentration can be varied over a wide range. In a second step the MBG was functionalized exploiting the high specific surface area of the glass as a carrier system for proteins like lysozyme or grow factors. We developed a protocol that allows the incorporation of protein-laden MBG in CPC pastes without impairing the extrudability of the CPC-MBG composites. Additionally, we found that released proteins from pure MBG or 3D plotted composite-scaffolds maintained their biological activity. Therefore, the combination of CPC and MBG allows the creation of a highly flexible composite system making it a promising candidate for bone tissue engineering. STATEMENT OF SIGNIFICANCE: Calcium phosphate cements and mesoporous bioactive glasses are two promising degradable biomaterials for the regenerative treatment of bone defects. The combination of both materials to a 3D printable composite enables the creation of implants with patient specific geometry. By varying the composition of the composite, the degradation behaviour can be influenced and especially the release of therapeutically active ions is tailorable over a wide range. We demonstrated this for strontium, as it has been shown to stimulate bone formation. Moreover, the bioactive glass can be used as a carrier system for drugs or growth factors and we show the successful combination of such functionalised glass particles and a cement paste without affecting the printability. 10.1016/j.actbio.2022.01.034
Treatment of long bone infection by a biodegradable bone cement releasing antibiotics in human. Journal of controlled release : official journal of the Controlled Release Society Repair of methicillin-resistant Staphylococcal (MRSA) chronic osteomyelitis and resulting bone defect is one of the major challenges in orthopaedics. Previous study has shown the effectiveness of antibiotic loaded biodegradable composite bone cement with in vitro tests and in the treatment of experimental osteomyelitis. The cement is composed of poly(lactide-co-glycolide) encapsulated antibiotic-biphasic calcium phosphate granule complex and additive antibiotic powder in gypsum binder. In this study, the cement was studied further to evaluate its in vitro biological properties (cytocompatibility, platelet activation), anti-infective, and bone regenerative potential in comparison to poly(methyl methacrylate) (PMMA) cement and parenteral therapy in 43 patients (age 5-57 years) with chronic MRSA osteomyelitis by analyzing the results of histopathology, radiographs, magnetic resonance imaging, scanning electron microscopy, and serum drug concentrations for 1 year. The composite cement showed superior cytocompatibility and coagulant activity compared to PMMA cement. Moreover, the results of different postoperative clinical and radiological examinations also proved the supremacy of composite cement over the other treatment modalities in terms of success rate, faster sepsis control and bone regeneration. Low serum antibiotic concentrations and normal serum calcium levels indicate that the calcium-rich composite cement is safe for application in human. Therefore, we conclude that the composite bone cement is a promising candidate for the treatment of chronic osteomyelitis. 10.1016/j.jconrel.2022.04.018
Hybridizing gellan/alginate and thixotropic magnesium phosphate-based hydrogel scaffolds for enhanced osteochondral repair. Materials today. Bio Osteochondral defects include the damage of cartilage and subchondral bone, which are still clinical challenges. The general replacements are difficult to simultaneously repair cartilage and subchondral bone due to their various requirements. Moreover, appropriate printable bioactive materials were needed for 3D bioprinting personalized scaffolds for osteochondral repairing. Herein, the novel hydrogel was developed by hybridizing the alginate sodium (SA) and gellan gum (GG) with the inorganic thixotropic magnesium phosphate-based gel (TMP-BG) in the pre-crosslinking of Mg to enhance osteochondral repairing. SA-GG/TMP-BG hybrid hydrogels possessed controllable rheological, injectable, mechanical properties and porosities by tuning their ratio. The shear-thinning of SA-GG/TMP-BG was responsible for its excellent injectability. SA-GG/TMP-BG hybrid hydrogels displayed good cell compatibility, on which MG-63 and BMSCs cells attached and spread well with the high proliferation and up-regulated osteogenic genes. In addition, the inorganic TMP-BG gel hybridized with SA-GG hydrogel released Mg was conducive to recruiting BMSCs and promoting the osteogenic and chondrogenic differentiation of BMSCs. Histological results confirmed that SA-GG/TMP6040 significantly promoted the osteogenesis of subchondral bone and then further facilitated the cartilage repairing after being implanted in osteochondral defects of rabbits for 6 and 12 weeks. Our finding revealed that the inorganic TMP-BG endowed the excellent osteogenic activity of the hybrid hydrogels, which played a key role in successful osteochondral repairing. The newly SA-GG/TMP-BG hybrid hydrogels appeared to be promising materials for osteochondral repairing and the further 3D bioprinting. 10.1016/j.mtbio.2022.100261
Degradation of 3D-printed magnesium phosphate ceramics and a prognosis on their bone regeneration potential. Bioactive materials Regenerative bone implants promote new bone formation and ideally degrade simultaneously to osteogenesis. Although clinically established calcium phosphate bone grafts provide excellent osseointegration and osteoconductive efficacy, they are limited in terms of bioresorption. Magnesium phosphate (MP) based ceramics are a promising alternative, because they are biocompatible, mechanically extremely stable, and degrade much faster than calcium phosphates under physiological conditions. Bioresorption of an implant material can include both chemical dissolution as well as cellular resorption. We investigated the bioresorption of 3D powder printed struvite and newberyite based MP ceramics by a direct human osteoclast culture approach. The osteoclast response and cellular resorption was evaluated by means of fluorescence and TRAP staining, determination of osteoclast activities (CA II and TRAP), SEM imaging as well as by quantification of the ion release during cell culture. Furthermore, the bioactivity of the materials was investigated via SBF immersion, whereas hydroxyapatite precipitates were analyzed by SEM and EDX measurements. This bioactive coating was resorbed by osteoclasts. In contrast, only chemical dissolution contributed to bioresorption of MP, while no cellular resorption of the materials was observed. Based on our results, we expect an increased bone regeneration effect of MP compared to calcium phosphate based bone grafts and complete chemical degradation within a maximum of 1.5-3.1 years. 10.1016/j.bioactmat.2022.04.015
Accelerated bone regeneration through rational design of magnesium phosphate cements. Acta biomaterialia Results of several studies during past years suggested that magnesium phosphate cements (MPCs) not only show excellent biocompatibility and osteoconductivity, but they also provide improved regeneration capacity due to higher solubility compared to calcium phosphates. These findings also highlighted that chemical similarity of bone substitutes to the natural bone tissue is not a determinant factor in the success of regenerative strategies. The aim of this study was to further improve the degradation speed of MPCs for a fast bone ingrowth within a few months. We confirmed our hypothesis, that decreasing the powder-liquid ratio (PLR) of cement results in an increased content of highly soluble phases such as struvite (MgNHPO⋅6HO) as well as K-struvite (MgKPO⋅6HO). Promising compositions with a low PLR of 1 g ml were implanted in partially-loaded tibia defects in sheep. Both cements were partially degraded and replaced by bone tissue after 4 months. The degradation speed of the K-struvite cement was significantly higher compared to the struvite cement, initially resulting in the formation of a cell-rich resorption zone at the surface of some implants, as determined by histology. Overall, both MPCs investigated in this study seem to be promising as an alternative to the clinically well-established, but slowly degrading calcium phosphate cements, depending on defect size and desired degradation rate. Whereas the K-struvite cement might require further modification towards a slower resorption and reduced inflammatory response in vivo, the struvite cement appears promising for the treatment of bone defects due to its continuous degradation with simultaneous new bone formation. STATEMENT OF SIGNIFICANCE: Cold setting bone cements are used for the treatment of bone defects that exceed a critical size and cannot heal on their own. They are applied pasty into the bone defect and harden afterwards so that the shape adapts to the individual defect. Magnesium phosphates such as magnesium ammonium phosphate hexahydrate (struvite) belong to a new class of these cold setting bone cements. They degrade much faster than the clinically established calcium phosphates. In this study, a magnesium phosphate that has hardly been investigated so far was implanted into partially-loaded defects in sheeps: Potassium magnesium phosphate hexahydrate. This showed even faster resorption compared to the struvite cement: after 4 months, 63% of the cement was already degraded. 10.1016/j.actbio.2022.04.019
Carboxymethyl chitosan-alginate enhances bone repair effects of magnesium phosphate bone cement by activating the FAK-Wnt pathway. Bioactive materials There is a continuing need for artificial bone substitutes for bone repair and reconstruction, Magnesium phosphate bone cement (MPC) has exceptional degradable properties and exhibits promising biocompatibility. However, its mechanical strength needs improved and its low osteo-inductive potential limits its therapeutic application in bone regeneration. We functionally modified MPC by using a polymeric carboxymethyl chitosan-sodium alginate (CMCS/SA) gel network. This had the advantages of: improved compressive strength, ease of handling, and an optimized interface for bioactive bone in-growth. The new composites with 2% CMCS/SA showed the most favorable physicochemical properties, including mechanical strength, wash-out resistance, setting time, injectable time and heat release. Biologically, the composite promoted the attachment and proliferation of osteoblast cells. It was also found to induce osteogenic differentiation , as verified by expression of osteogenic markers. In terms of molecular mechanisms, data showed that new bone cement activated the Wnt pathway through inhibition of the phosphorylation of β-catenin, which is dependent on focal adhesion kinase. Through micro-computed tomography and histological analysis, we found that the MPC-CMCS/SA scaffolds, compared with MPC alone, showed increased bone regeneration in a rat calvarial defect model. Overall, our study suggested that the novel composite had potential to help repair critical bone defects in clinical practice. 10.1016/j.bioactmat.2022.06.017
Nanofiber-induced hierarchically-porous magnesium phosphate bone cements accelerate bone regeneration by inhibiting Notch signaling. Bioactive materials Magnesium phosphate bone cements (MPC) have been recognized as a viable alternative for bone defect repair due to their high mechanical strength and biodegradability. However, their poor porosity and permeability limit osteogenic cell ingrowth and vascularization, which is critical for bone regeneration. In the current study, we constructed a novel hierarchically-porous magnesium phosphate bone cement by incorporating extracellular matrix (ECM)-mimicking electrospun silk fibroin (SF) nanofibers. The SF-embedded MPC (SM) exhibited a heterogeneous and hierarchical structure, which effectively facilitated the rapid infiltration of oxygen and nutrients as well as cell ingrowth. Besides, the SF fibers improved the mechanical properties of MPC and neutralized the highly alkaline environment caused by excess magnesium oxide. Bone marrow stem cells (BMSCs) adhered excellently on SM, as illustrated by formation of more pseudopodia. CCK8 assay showed that SM promoted early proliferation of BMSCs. Our study also verified that SM increased the expression of OPN, RUNX2 and BMP2, suggesting enhanced osteogenic differentiation of BMSCs. We screened for osteogenesis-related pathways, including FAK signaing, Wnt signaling and Notch signaling, and found that SM aided in the process of bone regeneration by suppressing the Notch signaling pathway, proved by the downregulation of NICD1, Hes1 and Hey2. In addition, using a bone defect model of rat calvaria, the study revealed that SM exhibited enhanced osteogenesis, bone ingrowth and vascularization compared with MPC alone. No adverse effect was found after implantation of SM . Overall, our novel SM exhibited promising prospects for the treatment of critical-sized bone defects. 10.1016/j.bioactmat.2024.03.021
An Injectable Magnesium-Based Cement Stimulated with NIR for Drug-Controlled Release and Osteogenic Potential. Advanced healthcare materials Magnesium phosphate bone cement (MPC) has gained widespread usage in orthopedic implantation due to its fast-setting and high initial strength benefits. However, the simultaneous attainment of drug-controlled release and osteogenic potential in MPC remains a significant challenge. Herein, a strategy to create a smart injectable cement system using nanocontainers and chondroitin sulfate is proposed. It employs nanocontainers containing alendronate-loaded mesoporous silica nanoparticles, which are surface-modified with polypyrrole to control drug release in response to near-infrared (NIR) stimulation. The alendronate-incorporated cement (ACMPC) exhibits improved compressive strength (70.6 ± 5.9 MPa), prolonged setting time (913 s), and exceptional injectability (96.5% of injection rate and 242 s of injection time). It also shows the capability to prevent degradation, thus preserving mechanical properties. Under NIR irradiation, the cement shows good antibacterial properties due to the combined impact of hyperthermia, reactive oxygen species, and alendronate. Furthermore, the ACMPC (NIR) group displays good biocompatibility and osteogenesis capabilities, which also lead to an increase in alkaline phosphatase activity, extracellular matrix mineralization, and the upregulation of osteogenic genes. This research has significant implications for developing multifunctional biomaterials and clinical applications. 10.1002/adhm.202400207
Magnesium malate-modified calcium phosphate bone cement promotes the repair of vertebral bone defects in minipigs via regulating CGRP. Journal of nanobiotechnology Active artificial bone substitutes are crucial in bone repair and reconstruction. Calcium phosphate bone cement (CPC) is known for its biocompatibility, degradability, and ability to fill various shaped bone defects. However, its low osteoinductive capacity limits bone regeneration applications. Effectively integrating osteoinductive magnesium ions with CPC remains a challenge. Herein, we developed magnesium malate-modified CPC (MCPC). Incorporating 5% magnesium malate significantly enhances the compressive strength of CPC to (6.18 ± 0.49) MPa, reduces setting time and improves disintegration resistance. In vitro, MCPC steadily releases magnesium ions, promoting the proliferation of MC3T3-E1 cells without causing significant apoptosis, proving its biocompatibility. Molecularly, magnesium malate prompts macrophages to release prostaglandin E2 (PGE2) and synergistically stimulates dorsal root ganglion (DRG) neurons to synthesize and release calcitonin gene-related peptide (CGRP). The CGRP released by DRG neurons enhances the expression of the key osteogenic transcription factor Runt-related transcription factor-2 (RUNX2) in MC3T3-E1 cells, promoting osteogenesis. In vivo experiments using minipig vertebral bone defect model showed MCPC significantly increases the bone volume fraction, bone density, new bone formation, and proportion of mature bone in the defect area compared to CPC. Additionally, MCPC group exhibited significantly higher levels of osteogenesis and angiogenesis markers compared to CPC group, with no inflammation or necrosis observed in the hearts, livers, or kidneys, indicating its good biocompatibility. In conclusion, MCPC participates in the repair of bone defects in the complex post-fracture microenvironment through interactions among macrophages, DRG neurons, and osteoblasts. This demonstrates its significant potential for clinical application in bone defect repair. 10.1186/s12951-024-02595-1