The changing landscape of atherosclerosis.
Nature
Emerging evidence has spurred a considerable evolution of concepts relating to atherosclerosis, and has called into question many previous notions. Here I review this evidence, and discuss its implications for understanding of atherosclerosis. The risk of developing atherosclerosis is no longer concentrated in Western countries, and it is instead involved in the majority of deaths worldwide. Atherosclerosis now affects younger people, and more women and individuals from a diverse range of ethnic backgrounds, than was formerly the case. The risk factor profile has shifted as levels of low-density lipoprotein (LDL) cholesterol, blood pressure and smoking have decreased. Recent research has challenged the protective effects of high-density lipoprotein, and now focuses on triglyceride-rich lipoproteins in addition to low-density lipoprotein as causal in atherosclerosis. Non-traditional drivers of atherosclerosis-such as disturbed sleep, physical inactivity, the microbiome, air pollution and environmental stress-have also gained attention. Inflammatory pathways and leukocytes link traditional and emerging risk factors alike to the altered behaviour of arterial wall cells. Probing the pathogenesis of atherosclerosis has highlighted the role of the bone marrow: somatic mutations in stem cells can cause clonal haematopoiesis, which represents a previously unrecognized but common and potent age-related contributor to the risk of developing cardiovascular disease. Characterizations of the mechanisms that underpin thrombotic complications of atherosclerosis have evolved beyond the 'vulnerable plaque' concept. These advances in our understanding of the biology of atherosclerosis have opened avenues to therapeutic interventions that promise to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
10.1038/s41586-021-03392-8
Atherosclerosis.
Libby Peter,Buring Julie E,Badimon Lina,Hansson Göran K,Deanfield John,Bittencourt Márcio Sommer,Tokgözoğlu Lale,Lewis Eldrin F
Nature reviews. Disease primers
Atherosclerosis, the formation of fibrofatty lesions in the artery wall, causes much morbidity and mortality worldwide, including most myocardial infarctions and many strokes, as well as disabling peripheral artery disease. Development of atherosclerotic lesions probably requires low-density lipoprotein, a particle that carries cholesterol through the blood. Other risk factors for atherosclerosis and its thrombotic complications include hypertension, cigarette smoking and diabetes mellitus. Increasing evidence also points to a role of the immune system, as emerging risk factors include inflammation and clonal haematopoiesis. Studies of the cell and molecular biology of atherogenesis have provided considerable insight into the mechanisms that link all these risk factors to atheroma development and the clinical manifestations of this disease. An array of diagnostic techniques, both invasive (such as selective coronary arteriography) and noninvasive (such as blood biomarkers, stress testing, CT and nuclear scanning), permit assessment of cardiovascular disease risk and targeting of therapies. An expanding armamentarium of therapies that can modify risk factors and confer clinical benefit is available; however, we face considerable challenge in providing equitable access to these treatments and in maximizing adherence. Yet, the clinical application of the fruits of research has advanced preventive strategies, enhanced clinical outcomes in affected individuals, and improved their quality of life. Rapidly accelerating knowledge and continued research promise to provide further progress in combating this common chronic disease.
10.1038/s41572-019-0106-z
Atherosclerosis: Recent developments.
Cell
Atherosclerosis is an inflammatory disease of the large arteries that is the major cause of cardiovascular disease (CVD) and stroke. Here, we review the current understanding of the molecular, cellular, genetic, and environmental contributions to atherosclerosis, from both individual pathway and systems perspectives. We place an emphasis on recent developments, some of which have yielded unexpected biology, including previously unknown heterogeneity of inflammatory and smooth muscle cells in atherosclerotic lesions, roles for senescence and clonal hematopoiesis, and links to the gut microbiome.
10.1016/j.cell.2022.04.004
Efferocytosis in atherosclerosis.
Nature reviews. Cardiology
Cardiovascular disease is the leading cause of death worldwide, and it commonly results from atherosclerotic plaque progression. One of the increasingly recognized drivers of atherosclerosis is dysfunctional efferocytosis, a homeostatic mechanism responsible for the clearance of dead cells and the resolution of inflammation. In atherosclerosis, the capacity of phagocytes to participate in efferocytosis is hampered, leading to the accumulation of apoptotic and necrotic tissue within the plaque, which results in enlargement of the necrotic core, increased luminal stenosis and plaque inflammation, and predisposition to plaque rupture or erosion. In this Review, we describe the different forms of programmed cell death that can occur in the atherosclerotic plaque and highlight the efferocytic machinery that is normally implicated in cardiovascular physiology. We then discuss the mechanisms by which efferocytosis fails in atherosclerosis and other cardiovascular and cardiometabolic diseases, including myocardial infarction and diabetes mellitus, and discuss therapeutic approaches that might reverse this pathological process.
10.1038/s41569-024-01037-7
Silencing ARL11 relieved atherosclerotic inflammation and lipid deposition via retraining JAK2/STAT1 pathway.
Atherosclerosis
BACKGROUND AND AIMS:Atherosclerosis (AS), an arterial vasculature disease, is characterized by abnormal lipid accumulation and inflammatory response. ADP ribosylation factor like GTPase 11 (ARL11) is linked to multifarious processes in cells. This study aims to clarify the underlying mechanism of ARL11 in AS. METHODS:ApoE mice fed with high-fat diet were used as mouse model of AS. Gene expression in AS was determined by mRNA-sequencing. ARL11 expression was detected by real-time PCR, Western blot and immunofluorescence. M1 polarization of macrophages was indicated by TNF-α and IL-6 levels as detected with ELISA, and iNOS expression determined by real-time PCR and Western blot. The role of ARL11 during AS was explored through loss-of-function analysis. RESULTS:There were 1301 upregulated and 1110 downregulated genes during AS. These differentially expressed genes (DEGs) were mainly enriched in pathways and terms which are involved in inflammation. Moreover, Arl11 was highly expressed in AS models. Downregulation of Arl11 decreased lipid deposition and atherosclerotic plaques in the aortas of AS mice, and declined inflammatory cytokines and M1 polarization of macrophages induced by IFN-γ. Furthermore, ARL11 interacted with JAK2 and p-JAK2 and modulated their degradation, thus inhibiting the activation of JAK2/STAT1 pathway. CONCLUSIONS:ARL11 promoted the development of AS via interacting with JAK2 and activating JAK2/STAT1 pathway. Thus, silencing ARL11 may prevent the process of AS and be a novel way to treat AS.
10.1016/j.atherosclerosis.2024.118564