Exploring the pharmacological effects and potential targets of paeoniflorin on the endometriosis of cold coagulation and blood stasis model rats by ultra-performance liquid chromatography tandem mass spectrometry with a pattern recognition approach.
RSC advances
This study was employed to explore the potential biomarkers of endometriosis of cold coagulation and blood stasis (ECB) model rats and the effective mechanism of action of paeoniflorin (PF). The serum metabolomics approach was carried out using the UPLC-MS technique with a pattern recognition approach to prove the possible biomarkers of the ECB model rats and the perturbed pathways. Subsequently, the mechanism of PF treatment of this disease model was elucidated. The results revealed that the serum metabolism profiles in two groups were also separated significantly. Moreover, 8 biomarkers were found in the positive mode, and 5 biomarkers were found in the negative mode. Totally, 13 biomarkers participated in the metabolism of phenylalanine, arachidonic acid, . After treatment with PF, 10 biomarkers were regulated. Among the 10 biomarkers, 4 were statistically significant: l-phenylalanine, l-tryptophan, LysoPC (18:4(6,9,12,15)), and LysoPC (16:1(9)). We initially confirmed that PF could significantly regulate the metabolic expression of multiple metabolic pathways in the ECB model rats. For the first time, this study explored the mechanism of action of PF treatment based on the metabolic pathways of the organism and demonstrated the potential of the metabolomics techniques for the study of drug action mechanisms.
10.1039/c9ra03525g
UPLC-Q-TOF/MS Based Plasma Metabolomics for Identification of Paeonol's Metabolic Target in Endometriosis.
Molecules (Basel, Switzerland)
Endometriosis is a common gynecological illness in women of reproductive age that significantly decreases life quality and fertility. Paeonol has been shown to play an important part in endometriosis treatments. Understanding the mechanism is critical for treating endometriosis. In this study, autologous transplantation combined with a 28 day ice water bath was used to create a rat model of endometriosis with cold clotting and blood stagnation. The levels of estradiol and progesterone in plasma were detected by ELISA, and the pathological changes of ectopic endometrial tissue were examined by H&E staining, which proved the efficacy of paeonol. For metabolomic analysis of plasma samples, UPLC-Q/TOF-MS was combined with multivariate statistical analysis to identify the influence of paeonol on small molecule metabolites relevant to endometriosis. Finally, the key targets were screened using a combination of network pharmacology and molecular docking approaches. The results showed that the pathological indexes of rats were improved and returned to normal levels after treatment with paeonol, which was the basis for confirming the efficacy of paeonol. Metabolomics results identified 13 potential biomarkers, and paeonol callbacks 7 of them, involving six metabolic pathways. Finally, four key genes were found for paeonol therapy of endometriosis, and the results of molecular docking revealed a significant interaction between paeonol and the four key genes. This study was successful in establishing a rat model of endometriosis with cold coagulation and blood stagnation. GCH1, RPL8, PKLR, and MAOA were the key targets of paeonol in the treatment of endometriosis. It is also demonstrated that metabolomic techniques give the potential and environment for comprehensively understanding drug onset processes.
10.3390/molecules28020653
Paeoniae Radix Rubra: A Review of Ethnopharmacology, Phytochemistry, Pharmacological Activities, Therapeutic Mechanism for Blood Stasis Syndrome, and Quality Control.
Chemistry & biodiversity
Paeoniae Radix Rubra (PRR) known as Chishao, in China, is the dried root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, with a history of over 2000 years in traditional Chinese medicine, is employed to clear heat, cool the blood, dispel blood stasis, and alleviate pain. Phytochemical investigations identified 264 compounds that contained monoterpenes and their glycosides, sesquiterpenes, triterpenes, steroids, flavonoids, lignans, tannins, volatile oils, and other compounds. It has been reported to have different pharmacological activities, including cardiovascular-protective, antidepressive, neuroprotective, antitumor, hepatoprotective, and anti-inflammatory effects. This study offers a comprehensive review covering ethnopharmacology, phytochemistry, pharmacological activities, therapeutic mechanism for blood stasis syndrome, and quality control of PRR. The comprehensive analysis aims to achieve a thorough understanding of its effects and serves as a foundation for future research and development.
10.1002/cbdv.202401119
Chinmedomics strategy for elucidating the effects and effective constituents of Danggui Buxue Decoction in treating blood deficiency syndrome.
Frontiers in molecular biosciences
Introduction:Danggui Buxue Decoction (DBD) is a clinically proven, effective, classical traditional Chinese medicine (TCM) formula for treating blood deficiency syndrome (BDS). However, its effects and effective constituents in the treatment of BDS remain unclear, limiting precise clinical therapy and quality control. This study aimed to accurately evaluate the effects of DBD and identify its effective constituents and quality markers. Methods:BDS was induced in rats by a combined injection of acetylphenylhydrazine and cyclophosphamide, and the efficacy of DBD against BDS was evaluated based on body weight, body temperature, energy metabolism, general status, visceral indices, histopathology, biochemical markers, and metabolomics. The effects of DBD on urinary and serum biomarkers of BDS were investigated, and the associated metabolic pathways were analyzed via metabolomics. Guided by Chinmedomics, the effective constituents and quality markers of DBD were identified by analyzing the dynamic links between metabolic biomarkers and effective constituents . Results:DBD improved energy metabolism, restored peripheral blood and serum biochemical indices, and meliorated tissue damage in rats with BDS. Correlation analyses between biochemical indices and biomarkers showed that 15(S)-HPETE, LTB4, and taurine were core biomakers and that arachidonic acid, taurine, and hypotaurine metabolism were core metabolic pathways regulated by DBD. Calycosin-7-glucoside, coumarin, ferulic acid sulfate, cycloastragenol, (Z)-ligustilide + O, astragaloside IV, acetylastragaloside I, and linoleic acid were identified as effective constituents improving the hematopoietic function of the rats in the BDS model. Additionally, calycosin-7-glucoside, ferulic acid, ligustilide, and astragaloside IV were identified as quality markers of DBD. Conclusion:The hematopoietic function of DBD was confirmed through analysis of energy metabolism, biochemical markers, histopathology, and metabolomics. Moreover, by elucidating effective constituents of DBD in BDS treatment, quality markers were confirmed using a Chinmedomics strategy. These results strengthen the quality management of DBD and will facilitate drug innovation.
10.3389/fmolb.2024.1376345
Bibliometric analysis of global endometriosis research, 2002 to 2021: A review.
Medicine
Endometriosis is a common disease of reproductive-age women and an important cause of dysmenorrhea and infertility. Information on endometriosis is complex and there is a lack of summarization of available results. The study aims to evaluate the overall distribution of publications related to endometriosis to provide a foundation for further research. The Web of Science Core Collection was searched for articles published in the field of endometriosis. Our survey revealed the structure, hotspots, and development trends of endometriosis-related research and publications.
10.1097/MD.0000000000035723
Urine metabolomics.
Zhang Aihua,Sun Hui,Wu Xiuhong,Wang Xijun
Clinica chimica acta; international journal of clinical chemistry
Metabolomics is a powerful technique for the discovery of novel biomarkers and elucidation of biochemical pathways to improve diagnosis, prognosis and therapy. An advantage of this approach is its ability to assess global metabolic profiles to enhance pathologic characterization. Urine is an ideal bio-medium for disease study because it is readily available, easily obtained and less complex than other body fluids. Ease of collection allows for serial sampling to monitor disease and therapeutic response. Because of this potential, this paper will review urine metabolomic analysis, discuss its significance in the post-genomic era and highlight the specific roles of endogenous small molecule metabolites in this emerging field.
10.1016/j.cca.2012.08.016