Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.
Sato Toshiro,Stange Daniel E,Ferrante Marc,Vries Robert G J,Van Es Johan H,Van den Brink Stieneke,Van Houdt Winan J,Pronk Apollo,Van Gorp Joost,Siersema Peter D,Clevers Hans
Gastroenterology
BACKGROUND & AIMS:We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that contain all differentiated types of cells. We have adapted the culture conditions to grow similar epithelial organoids from mouse colon and human small intestine and colon. METHODS:Based on the mouse small intestinal culture system, we optimized the mouse and human colon culture systems. RESULTS:Addition of Wnt3A to the combination of growth factors applied to mouse colon crypts allowed them to expand indefinitely. Addition of nicotinamide, along with a small molecule inhibitor of Alk and an inhibitor of p38, were required for long-term culture of human small intestine and colon tissues. The culture system also allowed growth of mouse Apc-deficient adenomas, human colorectal cancer cells, and human metaplastic epithelia from regions of Barrett's esophagus. CONCLUSIONS:We developed a technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract. These tools might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia. Studies of these cultures indicate that there is no inherent restriction in the replicative potential of adult stem cells (or a Hayflick limit) ex vivo.
10.1053/j.gastro.2011.07.050
Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing.
Crespo Miguel,Vilar Eduardo,Tsai Su-Yi,Chang Kyle,Amin Sadaf,Srinivasan Tara,Zhang Tuo,Pipalia Nina H,Chen Huanhuan Joyce,Witherspoon Mavee,Gordillo Miriam,Xiang Jenny Zhaoying,Maxfield Frederick R,Lipkin Steven,Evans Todd,Chen Shuibing
Nature medicine
With the goal of modeling human disease of the large intestine, we sought to develop an effective protocol for deriving colonic organoids (COs) from differentiated human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs). Extensive gene and immunohistochemical profiling confirmed that the derived COs represent colon rather than small intestine, containing stem cells, transit-amplifying cells, and the expected spectrum of differentiated cells, including goblet and endocrine cells. We applied this strategy to iPSCs derived from patients with familial adenomatous polyposis (FAP-iPSCs) harboring germline mutations in the WNT-signaling-pathway-regulator gene encoding APC, and we generated COs that exhibit enhanced WNT activity and increased epithelial cell proliferation, which we used as a platform for drug testing. Two potential compounds, XAV939 and rapamycin, decreased proliferation in FAP-COs, but also affected cell proliferation in wild-type COs, which thus limits their therapeutic application. By contrast, we found that geneticin, a ribosome-binding antibiotic with translational 'read-through' activity, efficiently targeted abnormal WNT activity and restored normal proliferation specifically in APC-mutant FAP-COs. These studies provide an efficient strategy for deriving human COs, which can be used in disease modeling and drug discovery for colorectal disease.
10.1038/nm.4355
Establishment and Culture of Human Intestinal Organoids Derived from Adult Stem Cells.
Current protocols in immunology
Human intestinal organoids derived from adult stem cells are miniature ex vivo versions of the human intestinal epithelium. Intestinal organoids are useful tools for the study of intestinal physiology as well as many disease conditions. These organoids present numerous advantages compared to immortalized cell lines, but working with them requires dedicated techniques. The protocols described in this article provide a basic guide to establishment and maintenance of human intestinal organoids derived from small intestine and colon biopsies. Additionally, this article provides an overview of several downstream applications of human intestinal organoids. © 2020 The Authors. Basic Protocol 1: Establishment of human small intestine and colon organoid cultures from fresh biopsies Basic Protocol 2: Mechanical splitting, passage, and expansion of human intestinal organoids Alternate Protocol: Differentiation of human intestinal organoids Basic Protocol 3: Cryopreservation and thawing of human intestinal organoids Basic Protocol 4: Immunofluorescence staining of human intestinal organoids Basic Protocol 5: Generation of single-cell clonal intestinal organoid cultures Support Protocol 1: Production of Wnt3A conditioned medium Support Protocol 2: Production of Rspo1 conditioned medium Support Protocol 3: Extraction of RNA from intestinal organoid cultures.
10.1002/cpim.106