logo logo
Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Liu Hongji,Li Changwei,Qian Yong,Hu Lin,Fang Jun,Tong Wei,Nie Rongrong,Chen Qianwang,Wang Hui Biomaterials Graphene quantum dots (GQDs) are considered emerging nanomaterials for photothermal therapy (PTT) of cancer due to their good biocompatibility and rapid excretion. However, the optical absorbance of GQDs in shorter wavelengths (<1000 nm) limits their overall therapeutic efficacies as photothermal agent in the second near infrared window (1000-1700 nm, NIR-II). Herein, we report a type of GQDs with strong absorption (1070 nm) in NIR-II region that was synthesized via a one-step solvothermal treatment using phenol as single precursor by tuning the decomposition of hydrogen peroxide under a high magnetic field with an intensity of 9T. The obtained 9T-GQDs demonstrate uniform size distribution (3.6 nm), and tunable fluorescence (quantum yield, 16.67%) and high photothermal conversion efficacy (33.45%). In vitro and in vivo results indicate that 9T-GQDs could efficiently ablate tumor cells and inhibit the tumor growth under NIR-II irradiation. Moreover, the 9T-GQDs exhibited enhanced NIR imaging of tumor in living mice, suggesting the great probability of using 9T-GQDs for in vivo NIR imaging-guided PTT in the NIR-II window. 10.1016/j.biomaterials.2019.119700
Rescue of nucleus pulposus cells from an oxidative stress microenvironment via glutathione-derived carbon dots to alleviate intervertebral disc degeneration. Journal of nanobiotechnology The senescence of nucleus pulposus (NP) cells (NPCs), which is induced by the anomalous accumulation of reactive oxygen species (ROS), is a major cause of intervertebral disc degeneration (IVDD). In this research, glutathione-doped carbon dots (GSH-CDs), which are novel carbon dot antioxidant nanozymes, were successfully constructed to remove large amounts of ROS for the maintenance of NP tissue at the physical redox level. After significantly scavenging endogenous ROS via exerting antioxidant activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity, GSH-CDs with good biocompatibility have been demonstrated to effectively improve mitochondrial dysfunction and rescue NPCs from senescence, catabolism, and inflammatory factors in vivo and in vitro. In vivo imaging data and histomorphological indicators, such as the disc height index (DHI) and Pfirrmann grade, demonstrated prominent improvements in the progression of IVDD after the topical application of GSH-CDs. In summary, this study investigated the GSH-CDs nanozyme, which possesses excellent potential to inhibit the senescence of NPCs with mitochondrial lesions induced by the excessive accumulation of ROS and improve the progression of IVDD, providing potential therapeutic options for clinical treatment. 10.1186/s12951-024-02683-2
An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Lu Zhenhui,Liu Sijia,Le Yiguan,Qin Zainen,He Mingwei,Xu Fuben,Zhu Ye,Zhao Jinmin,Mao Chuanbin,Zheng Li Biomaterials Collagen has been widely used for cartilage repair, but its low stiffness and rapid degradation disfavor chondrogenesis. Here we conjugated biocompatible carbon dot nanoparticles (CD NPs) onto collagen through a natural product crosslinker (genipin) to prepare an injectable hydrogel (termed collagen-genipin-CD nanoparticles, CGN). The CGN hydrogel showed increased stiffness due to the cross-linking effect of genipin and the presence of CD NPs, and could produce a moderate amount of reactive oxygen species (ROS) by photodynamic therapy (PDT). Both the stiffness enhancement and ROS generation resulted in improved chondrogenic differentiation of bone marrow-derived stem cells (BMSCs) and the subsequent enhanced cartilage regeneration for cartilage defect repair. Specifically, the CGN hydrogel presented a 21-fold higher compression modulus and a 39.3% lower degradation rate than the pure collagen hydrogel. A combination of both PDT and CGN hydrogel increased the BMSCs proliferation by 50.3%, upregulated their expression of cartilage-specific genes by multiple folds, and enhanced GAG secretion by 205.1% on day 21. This combination also accelerated the cartilage regeneration within as short as 8 weeks. The stiffness enhancement and ROS generation synergistically contributed to chondrogenic differentiation by regulating the TGF-β/SMAD and mTOR signaling pathway, respectively. The combination of CD-modified hydrogel injection and PDT treatment represents a new strategy for minimally invasive repair of cartilage defects. 10.1016/j.biomaterials.2019.05.001
Plasma-Enabled Graphene Quantum Dot Hydrogel-Magnesium Composites as Bioactive Scaffolds for In Vivo Bone Defect Repair. ACS applied materials & interfaces Bioactive and mechanically stable metal-based scaffolds are commonly used for bone defect repair. However, conventional metal-based scaffolds induce nonuniform cell growth, limiting damaged tissue restoration. Here, we develop a plasma nanotechnology-enhanced graphene quantum dot (GQD) hydrogel-magnesium (Mg) composite scaffold for functional bone defect repair by integrating a bioresource-derived nitrogen-doped GQD (NGQD) hydrogel into the Mg ZK60 alloy. Each scaffold component brings major synergistic advantages over the current alloy-based state of the art, including (1) mechanical support of the cortical bone and calcium deposition by the released Mg during degradation; (2) enhanced uptake, migration, and distribution of osteoblasts by the porous hydrogel; and (3) improved osteoblast adhesion and proliferation, osteogenesis, and mineralization by the NGQDs in the hydrogel. Through an in vivo study, the hybrid scaffold with the much enhanced osteogenic ability induced by the above synergy promotes a more rapid, uniform, and directional bone growth across the hydrogel channel, compared with the control Mg-based scaffold. This work provides insights into the design of multifunctional hybrid scaffolds, which can be applied in other areas well beyond the demonstrated bone defect repair. 10.1021/acsami.3c05297
Rescuing Nucleus Pulposus Cells from ROS Toxic Microenvironment via Mitochondria-Targeted Carbon Dot-Supported Prussian Blue to Alleviate Intervertebral Disc Degeneration. Advanced healthcare materials Intervertebral disc degeneration (IVDD) is invariably accompanied by excessive accumulation of reactive oxygen species (ROS), resulting in progressive deterioration of mitochondrial function and senescence in nucleus pulposus cells (NPCs). Significantly, the main ROS production site in non-immune cells is mitochondria, suggesting mitochondria is a feasible therapeutic target to reverse IVDD. Triphenylphosphine (TPP), which is known as mitochondrial-tropic ligands, is utilized to modify carbon dot-supported Prussian blue (CD-PB) to scavenge superfluous intro-cellular ROS and maintain NPCs at normal redox levels. CD-PB-TPP can effectively escape from lysosomal phagocytosis, permitting efficient mitochondrial targeting. After strikingly lessening the ROS in mitochondria via exerting antioxidant enzyme-like activities, such as superoxide dismutase, and catalase, CD-PB-TPP rescues damaged mitochondrial function and NPCs from senescence, catabolism, and inflammatory reaction in vitro. Imaging evaluation and tissue morphology assessment in vivo suggest that disc height index, mean grey values of nucleus pulposus tissue, and histological morphology are significantly improved in the IVDD model after CD-PB-TPP is locally performed. In conclusion, this study demonstrates that ROS-induced mitochondrial dysfunction and senescence of NPCs leads to IVDD and the CD-PB-TPP possesses enormous potential to rescue this pathological process through efficient removal of ROS via targeting mitochondria, supplying a neoteric strategy for IVDD treatment. 10.1002/adhm.202303206
Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization. Shafiei Shervin,Omidi Meisam,Nasehi Fatemeh,Golzar Hossein,Mohammadrezaei Dorsa,Rezai Rad Maryam,Khojasteh Arash Materials science & engineering. C, Materials for biological applications Recent exciting findings of the particular properties of Carbon dot (CDs) have shed light on potential biomedical applications of CDs-containing composites. While CDs so far have been widely used as biosensors and bioimaging agents, in the present study for the first time, we evaluate the osteoconductivity of CDs in poly (ε-caprolactone) (PCL)/polyvinyl alcohol (PVA) [PCL/PVA] nanofibrous scaffolds. Moreover, further studies were performed to evaluate egg shell-derived calcium phosphate (TCP3) and its cellular responses, biocompatibility and in vitro osteogenesis. Scaffolds were fabricated by simultaneous electrospinning of PCL with three different types of calcium phosphate, PVA and CDs. Fabricated scaffolds were characterized by Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), contact angle measurement and degradation assessment. SEM, the methyl thiazolyl tetrazolium (MTT) assay, and alkaline phosphatase (ALP) activity test were performed to evaluate cell morphology, proliferation and osteogenic differentiation, respectively. The results demonstrated that while the addition of just 1 wt% CDs and TCP3 individually into PCL/PVA nanocomposite enhanced ALP activity and cell proliferation rate (p < 0.05), the synergetic effect of CDs/TCP3 led to highest osteogenic differentiation and proliferation rate compared to other scaffolds (p < 0.05). Hence, CDs and PCL/PVA-TCP3 could serve as a potential candidate for bone tissue regeneration. 10.1016/j.msec.2019.03.003
Multifunctional bone substitute using carbon dot and 3D printed calcium-deficient hydroxyapatite scaffolds for osteoclast inhibition and fluorescence imaging. Acta biomaterialia Multifunctional bone substitute materials (BSM) have gained considerable attention with the exponential increase in aging populations. The development of hybrid materials for diagnosis and therapy of bone-related diseases and dysfunctions, especially, has been a significant challenge in the biological and the biomedical field, due to the shortage of agents with specificity and selectivity toward bone. In this study, a hybrid material, referred as Alen-CDs@CDHA, fabricated from alendronate-conjugated carbon dots (Alen-CDs) and calcium-deficient hydroxyapatite (CDHA, the mineral component of bones) scaffolds is offered as a novel multifunctional BSM for in vivo osteoclasts deactivation and fluorescence imaging. The fluorescent Alen-CDs were hydrothermally prepared using phytic acid as carbon source, followed by conjugating alendronate, for controlled alendronate release and fluorescent imaging under acidic conditions. As-prepared fluorescent Alen-CDs were consecutively immobilized on surfaces of CDHA scaffolds, exhibiting high affinity by bisphosphonate group, easily fabricated from α-tricalcium phosphate (α-TCP) paste using three-dimensional (3D) printing system. The resultant Alen-CDs@CDHA caused a significant decrease (> 50%) in viability of osteoclasts at 7 days after in vitro treatment. Furthermore, when Alen-CDs@CDHA was implanted in balb/c nude mice for in vivo evaluation, we found Alen-CDs@CDHA to be suitable for bone imaging through fluorescence signals, without necrosis or inflammatory symptoms in the epidermal tissues. Thus, these observations offer new opportunities for a novel and revolutionary use of Alen-CDs@CDHA as highly specific multifunctional BSM for bone diagnosis and imaging, and as bone-specific drug delivery materials, eventually providing anti-osteoclastogenic treatments solution for degenerative bone disorders. STATEMENT OF SIGNIFICANCE: Alen-CDs@CDHA significantly reduced the viability of osteoclasts and fluorescently imaged in vivo after transplantation, releasing drug via pH modulation. The development of fluorescence materials for bone imaging remains still a major challenge in the biomedical field owing to the shortage of selectivity and specificity. The results could lead to improvements in bone treatment strategies, as it could reduce the invasiveness of procedures and the associated negative outcomes, and increase the precision of strategies. Further, we believe that this study will be of interest to the readership of your journal as clearly focuses on the advancement of a biomaterial, where we have engineered a substance to substitute bone and integrate with a living system. 10.1016/j.actbio.2023.01.028