logo logo
Lack of SIRP-alpha reduces lung cancer growth in mice by promoting anti-tumour ability of macrophages and neutrophils. Cell proliferation OBJECTIVES:Signal regulatory protein-alpha (SIRPα) is a transmembrane glycoprotein specifically expressed on myeloid cells. Blockade of SIRPα/CD47 interaction is effective in combinational therapy of some cancers. This study aimed to explore into the role and underlying molecular mechanisms of SIRPα in lung cancer growth. MATERIALS AND METHODS:A mouse model with lung cancer in wild-type (WT) and SIRPα-knockout mouse (KO) mice was established by subcutaneous injection of Lewis murine lung cancer cells (LLC). Circulating monocytes and neutrophils were depleted in mice by intraperitoneal administration of clodronate liposomes and anti-Ly6G antibody, respectively. Phenotypes and phagocytosis of macrophages and neutrophils were analysed by flow cytometry. Transwell assay was used to analyse LLC cells migration and invasion. RESULTS:Lack of SIRPα inhibited LLC cells growth in KO mice, associated with reduced infiltrating PD-1 CD8 T cells and production of IL-6 from infiltrating macrophages and neutrophils in tumour tissues. Depletion of circulating monocytes and neutrophils reduced LLC cells growth in WT mice, which was abolished in KO mice. Studies in vitro showed that lack of SIRPα increased M1/M2 ratio, and reduced LLC cell migration and invasion via attenuated IL-6 secretion. Lack of SIRPα expression in neutrophils effectively increased the cytotoxic activity to LLC cells in vitro. CONCLUSIONS:Lack of SIRPα suppressed lung cancer cell growth in mice, dependent on circulating macrophages and neutrophils, in association with improved phagocytosis and reduced IL-6 expression. 10.1111/cpr.13361
Inhibiting mtDNA-STING-NLRP3/IL-1β axis-mediated neutrophil infiltration protects neurons in Alzheimer's disease. Cell proliferation Neutrophil is a pathophysiological character in Alzheimer's disease. The pathogen for neutrophil activation in cerebral tissue is the accumulated amyloid protein. In our present study, neutrophils infiltrate into the cerebra in two models (transgenic model APP/PS1 and stereotactic injection model) and promote neuron apoptosis, releasing their cellular constituents, including mitochondria and mitochondrial DNA (mtDNA). We found that both Aβ and mtDNA could provoke neutrophil infiltration into the cerebra, and they had synergistic effects when they presented together. This neutrophillic neuroinflammation upregulates expressions of STING, NLRP3 and IL-1β. These inflammatory cytokines with mtDNA constitute the mtDNA-STING-NLRP3/IL-1β axis, which is the prerequisite for neutrophil infiltration. When any factor in this pathway is depleted, the migration of neutrophils into cerebral tissue is ceased, with neurons and cognitive function being protected. Thus, we provide a novel perspective to alleviate the progression of Alzheimer's disease. 10.1111/cpr.13529
Neutrophil extracellular traps aggravate intestinal epithelial necroptosis in ischaemia-reperfusion by regulating TLR4/RIPK3/FUNDC1-required mitophagy. Cell proliferation Neutrophil extracellular trap (NET) has been confirmed to be related to gut barrier injury during intestinal ischaemia-reperfusion (II/R). However, the specific molecular regulatory mechanism of NETs in II/R-induced intestinal barrier damage has yet to be fully elucidated. Here, we reported increased NETs infiltration accompanied by elevated inflammatory cytokines, cellular necroptosis and tight junction disruption in the intestine of human II/R patients. Meanwhile, NETs aggravated Caco-2 intestinal epithelial cell necroptosis, impairing the monolayer barrier in vitro. Moreover, Pad4-deficient mice were used further to validate the role of NETs in II/R-induced intestinal injury. In contrast, NET inhibition via Pad4 deficiency alleviated intestinal inflammation, attenuated cellular necroptosis, improved intestinal permeability, and enhanced tight junction protein expression. Notably, NETs prevented FUN14 domain-containing 1 (FUNDC1)-required mitophagy activation in intestinal epithelial cells, and stimulating mitophagy attenuated NET-associated mitochondrial dysfunction, cellular necroptosis, and intestinal damage. Mechanistically, silencing Toll-like receptor 4 (TLR4) or receptor-interacting protein kinase 3 (RIPK3) via shRNA relieved mitophagy limitation, restored mitochondrial function and reduced NET-induced necroptosis in Caco-2 cells, whereas this protective effect was reversed by TLR4 or RIPK3 overexpression. The regulation of TLR4/RIPK3/FUNDC1-required mitophagy by NETs can potentially induce intestinal epithelium necroptosis. 10.1111/cpr.13538