logo logo
Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Zhou Zhenghu,Wang Chuankuan,Luo Yiqi Nature communications Biodiversity on the Earth is changing at an unprecedented rate due to a variety of global change factors (GCFs). However, the effects of GCFs on microbial diversity is unclear despite that soil microorganisms play a critical role in biogeochemical cycling. Here, we synthesize 1235 GCF observations worldwide and show that microbial rare species are more sensitive to GCFs than common species, while GCFs do not always lead to a reduction in microbial diversity. GCFs-induced shifts in microbial alpha diversity can be predominately explained by the changed soil pH. In addition, GCF impacts on soil functionality are explained by microbial community structure and biomass rather than the alpha diversity. Altogether, our findings of GCF impacts on microbial diversity are fundamentally different from previous knowledge for well-studied plant and animal communities, and are crucial to policy-making for the conservation of microbial diversity hotspots under global changes. 10.1038/s41467-020-16881-7
The interplay between microbial communities and soil properties. Nature reviews. Microbiology In recent years, there has been considerable progress in determining the soil properties that influence the structure of the soil microbiome. By contrast, the effects of microorganisms on their soil habitat have received less attention with most previous studies focusing on microbial contributions to soil carbon and nitrogen dynamics. However, soil microorganisms are not only involved in nutrient cycling and organic matter transformations but also alter the soil habitat through various biochemical and biophysical mechanisms. Such microbially mediated modifications of soil properties can have local impacts on microbiome assembly with pronounced ecological ramifications. In this Review, we describe the processes by which microorganisms modify the soil environment, considering soil physics, hydrology and chemistry. We explore how microorganism-soil interactions can generate feedback loops and discuss how microbially mediated modifications of soil properties can serve as an alternative avenue for the management and manipulation of microbiomes to combat soil threats and global change. 10.1038/s41579-023-00980-5
Diversity patterns and drivers of soil microbial communities in urban and suburban park soils of Shanghai, China. PeerJ BACKGROUND:The rapid expansion of urbanization leads to significant losses of soil ecological functions. Microbes directly participate in key soil processes and play crucial roles in maintaining soil functions. However, we still have a limited understanding of underlying mechanisms shaping microbial communities and the interactions among microbial taxa in park soils. METHODS:In this study, the community variations of bacteria and fungi in urban and suburban park soils were investigated in Shanghai, China. Real-time PCR and high-throughput Illumina sequencing were used to examine the microbial abundance and community composition, respectively. RESULTS:The results showed that soil molecular biomass and fungal abundance in urban park soils were significantly higher than those in suburban park soils, while no significant difference was observed in the bacterial abundance between urban and suburban park soils. The alpha diversity of soil microbes in urban and suburban park soils was similar to each other, except for Chao1 index of fungal communities. The results of similarity analysis (ANOSIM) revealed remarkable differences in the composition of bacterial and fungal communities between urban and suburban park soils. Specifically, park soils in urban areas were enriched with the phyla Methylomirabilota and Verrucomicrobiota, while the relative abundance of Gemmatimonadota was higher in suburban park soils. Moreover, the fungal class Eurotiomycetes was also enriched in urban park soils. Compared with suburban park soils, nodes and average paths of the bacterial and fungal networks were higher in urban park soils, but the number of module hubs and connectors of the bacterial networks and negative interactions among bacterial taxa were lower. Compared with suburban park soils, Acidobacteriota bacterium and Mortierellomycota fungus played more important roles in the ecological networks of urban park soils. Soil available zinc (Zn), available nitrogen (N), pH, and total potassium (K) significantly affected fungal community composition in park soils in Shanghai. Soil available Zn was also the most important factor affecting the bacterial community composition in this study. CONCLUSION:There were significant differences in the soil molecular biomass, fungal abundance, and the community composition and co-occurrence relations of both soil bacterial and fungal communities between urban and suburban park soils. Soil available Zn played an important part in shaping the structures of both the bacterial and fungal communities in park soils in Shanghai. 10.7717/peerj.11231
Enumerating soil biodiversity. Proceedings of the National Academy of Sciences of the United States of America Soil is an immense habitat for diverse organisms across the tree of life, but just how many organisms live in soil is surprisingly unknown. Previous efforts to enumerate soil biodiversity consider only certain types of organisms (e.g., animals) or report values for diverse groups without partitioning species that live in soil versus other habitats. Here, we reviewed the biodiversity literature to show that soil is likely home to 59 ± 15% of the species on Earth. We therefore estimate an approximately two times greater soil biodiversity than previous estimates, and we include representatives from the simplest (microbial) to most complex (mammals) organisms. Enchytraeidae have the greatest percentage of species in soil (98.6%), followed by fungi (90%), Plantae (85.5%), and Isoptera (84.2%). Our results demonstrate that soil is the most biodiverse singular habitat. By using this estimate of soil biodiversity, we can more accurately and quantitatively advocate for soil organismal conservation and restoration as a central goal of the Anthropocene. 10.1073/pnas.2304663120
Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International journal of environmental research and public health Agriculture is a multifarious interface between plants and associated microorganisms. In contemporary agriculture, emphasis is being given to environmentally friendly approaches, particularly in developing countries, to enhance sustainability of the system with the least negative effects on produce quality and quantity. Modern agricultural practices such as extensive tillage, the use of harmful agrochemicals, mono-cropping, etc. have been found to influence soil microbial community structure and soil sustainability. On the other hand, the question of feeding the ever-growing global population while ensuring system sustainability largely remains unanswered. Agriculturally important microorganisms are envisaged to play important roles in various measures to raise a healthy and remunerative crop, including integrated nutrient management, as well as disease and pest management to cut down agrochemicals without compromising the agricultural production. These beneficial microorganisms seem to have every potential to provide an alternative opportunity to overcome the ill effects of various components of traditional agriculture being practiced by and large. Despite an increased awareness of the importance of organically produced food, farmers in developing countries still tend to apply inorganic chemical fertilizers and toxic chemical pesticides beyond the recommended doses. Nutrient uptake enhancement, biocontrol of pests and diseases using microbial inoculants may replace/reduce agrochemicals in agricultural production system. The present review aims to examine and discuss the shift in microbial population structure due to current agricultural practices and focuses on the development of a sustainable agricultural system employing the tremendous untapped potential of the microbial world. 10.3390/ijerph19053141
From Microbes to Microbiomes: Applications for Plant Health and Sustainable Agriculture. Phytopathology Plant-microbe interaction research has had a transformative trajectory, from individual microbial isolate studies to comprehensive analyses of plant microbiomes within the broader phytobiome framework. Acknowledging the indispensable role of plant microbiomes in shaping plant health, agriculture, and ecosystem resilience, we underscore the urgent need for sustainable crop production strategies in the face of contemporary challenges. We discuss how the synergies between advancements in 'omics technologies and artificial intelligence can help advance the profound potential of plant microbiomes. Furthermore, we propose a multifaceted approach encompassing translational considerations, transdisciplinary research initiatives, public-private partnerships, regulatory policy development, and pragmatic expectations for the practical application of plant microbiome knowledge across diverse agricultural landscapes. We advocate for strategic collaboration and intentional transdisciplinary efforts to unlock the benefits offered by plant microbiomes and address pressing global issues in food security. By emphasizing a nuanced understanding of plant microbiome complexities and fostering realistic expectations, we encourage the scientific community to navigate the transformative journey from discoveries in the laboratory to field applications. As companies specializing in agricultural microbes and microbiomes undergo shifts, we highlight the necessity of understanding how to approach sustainable agriculture with site-specific management solutions. While cautioning against overpromising, we underscore the excitement of exploring the many impacts of microbiome-plant interactions. We emphasize the importance of collaborative endeavors with societal partners to accelerate our collective capacity to harness the diverse and yet-to-be-discovered beneficial activities of plant microbiomes. 10.1094/PHYTO-02-24-0054-KC
A chlorophyll synthase widely co-opted by phytoplankton. Science (New York, N.Y.) Marine and terrestrial photosynthesis exhibit a schism in the accessory chlorophyll (Chl) that complements the function of Chl : Chl for green plants versus Chl for most eukaryotic phytoplankton. The enzymes that mediate Chl biosynthesis have long remained elusive. In this work, we identified the CHLC dioxygenase (Phatr3_J43737) from the marine diatom as the Chl synthase. The mutants lacked Chl , instead accumulating its precursors, and exhibited growth defects. In vitro, recombinant CHLC protein converted these precursors into Chl , thereby confirming its identity. Phylogenetic evidence demonstrates conserved use of CHLC across phyla but also the existence of distinct Chl synthases in different algal groups. Our study addresses a long-outstanding question with implications for both contemporary and ancient marine photosynthesis. 10.1126/science.adg7921