logo logo
SPECT perfusion changes during ictal automatisms with preserved responsiveness in patients with right temporal lobe epilepsy. Park Hea Ree,Seong Min Jae,Shon Young-Min,Joo Eun Yeon,Seo Dae-Won,Hong Seung Bong Epilepsy & behavior : E&B Ictal automatism with preserved responsiveness (APR) has been reported, particularly in nondominant temporal lobe epilepsy (TLE), but its pathophysiology remains poorly understood. This study sought to investigate the relationship between APRs and increased cerebral blood flow (CBF) using ictal single photon emission computed tomography (SPECT) in TLE. Forty-seven subjects with right mesial TLE (15 with and 32 without APR) were enrolled. Patients with APR (APR+) were subdivided into four groups according to degree of responsiveness during seizures. Cerebral blood flow changes during these seizures were semiquantitatively assessed by subtraction ictal SPECT coregistered to MRI (SISCOM). Hyperperfusion in temporal regions did not vary significantly between the APR+ and APR- groups. Cerebral blood flow changes in the frontal area, insula, cingulum, and occipital area were also nonsignificant. However, hyperperfusion in the ipsilateral parietal areas was more frequent in the APR- group than in the APR+ group. Furthermore, hyperperfusion of the contralateral basal ganglia showed an inclination to be more common in the APR- group, but without statistical significance. The study suggested that the involvement of the parietal association cortex during seizure may play an important role in ictal loss of consciousness in TLE. Further studies will be needed to elucidate the pathophysiology of changes in consciousness during temporal lobe seizures. 10.1016/j.yebeh.2017.12.030
Altered states of consciousness in epilepsy: a DTI study of the brain. Xie Fangfang,Xing Wu,Wang Xiaoyi,Liao Weihua,Shi Wei The International journal of neuroscience BACKGROUND:A disturbance in the level of consciousness is a classical clinical sign of several seizure types. Recent studies have shown that altered states of consciousness in seizures are associated with structural and functional changes of several brain regions. Prominent among these are the thalamus, the brain stem and the default mode network, which is part of the consciousness system. Our study used diffusion tensor imaging (DTI) to evaluate these brain regions in patients with three different types of epilepsies that are associated with altered consciousness: complex partial seizures (CPS), primary generalized tonic-clonic seizures (PGTCS) or secondary generalized tonic-clonic seizures (SGTCS). Additionally, this study further explores the probable mechanisms underlying impairment of consciousness in seizures. MATERIALS AND METHODS:Conventional MRI and DTI scanning were performed in 51 patients with epilepsy and 51 healthy volunteers. The epilepsy group was in turn subdivided into three subgroups: CPS, PGTCS or SGTCS. Each subgroup comprised 17 patients. Each subject involved in the study underwent a DTI evaluation of the brain to measure the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of nine regions of interest: the postero-superior portion of midbrain, the bilateral dorsal thalamus, the bilateral precuneus/posterior cingulate, the bilateral medial pre-frontal gyri and the bilateral supramarginalgyri. The statistical significance of the measured ADC and FA values between the experimental and control groups was analysed using the paired t-test, and one-way analysis of variance was performed for a comparative analysis between the three subgroups. RESULTS:Statistically significantly higher ADC values ( p < 0.01) were observed in the bilateral dorsal thalamus and postero-superior aspect of the midbrain in the three patient subgroups than in the control group. There were no significant changes in the ADC values ( p > 0.05) in the bilateral precuneus/posterior cingulate, bilateral medial pre-frontal gyri or bilateral supramarginalgyri in the experimental group. Among the three patient subgroups and the ADC values of corresponding brain regions, there were no statistically significant changes. Statistically significantly lower FA values ( p < 0.05) were observed in the bilateral dorsal thalamus of the patients in the three subgroups than in the control group. Significantly lowered FA values from the postero-superior aspect of the mid brain ( p < 0.01) were observed in patients with PGTCS compared with the control group. There were no significant changes in the FA values ( p > 0.05) from the bilateral precuneus/posterior cingulate, bilateral medial frontal gyri or bilateral supramarginalgyri in the experimental group. Among the three patient subgroups and the FA values of the corresponding brain regions, there were no statistically significant changes. CONCLUSION:In epileptic patients with CPS, PGTCS or SGTCS, there seems to be a long-lasting neuronal dysfunction of the bilateral dorsal thalamus and postero-superior aspect of the midbrain. The thalamus and upper brain stem are likely to play a key role in epileptic patients with impaired consciousness. 10.1080/00207454.2016.1229668
Impaired consciousness in patients with absence seizures investigated by functional MRI, EEG, and behavioural measures: a cross-sectional study. Guo Jennifer N,Kim Robert,Chen Yu,Negishi Michiro,Jhun Stephen,Weiss Sarah,Ryu Jun Hwan,Bai Xiaoxiao,Xiao Wendy,Feeney Erin,Rodriguez-Fernandez Jorge,Mistry Hetal,Crunelli Vincenzo,Crowley Michael J,Mayes Linda C,Constable R Todd,Blumenfeld Hal The Lancet. Neurology BACKGROUND:The neural underpinnings of impaired consciousness and of the variable severity of behavioural deficits from one absence seizure to the next are not well understood. We aimed to measure functional MRI (fMRI) and electroencephalography (EEG) changes in absence seizures with impaired task performance compared with seizures in which performance was spared. METHODS:In this cross-sectional study done at the Yale School of Medicine, CT, USA, we recruited patients from 59 paediatric neurology practices in the USA. We did simultaneous EEG, fMRI, and behavioural testing in patients aged 6-19 years with childhood or juvenile absence epilepsy, and with an EEG with typical 3-4 Hz bilateral spike-wave discharges and normal background. The main outcomes were fMRI and EEG amplitudes in seizures with impaired versus spared behavioural responses analysed by t test. We also examined the timing of fMRI and EEG changes in seizures with impaired behavioural responses compared with seizures with spared responses. FINDINGS:93 patients were enrolled between Jan 1, 2005, and Sept 1, 2013; we recorded 1032 seizures in 39 patients. fMRI changes during seizures occurred sequentially in three functional brain networks. In the default mode network, fMRI amplitude was 0·57% (SD 0·26) for seizures with impaired and 0·40% (0·16) for seizures with spared behavioural responses (mean difference 0·17%, 95% CI 0·11-0·23; p<0·0001). In the task-positive network, fMRI amplitude was 0·53% (SD 0·29) for seizures with impaired and 0·39% (0·15) for seizures with spared behavioral responses (mean difference 0·14%, 95% CI 0·08-0·21; p<0·0001). In the sensorimotor-thalamic network, fMRI amplitude was 0·41% (0·25) for seizures with impaired and 0·34% (0·14) for seizures with spared behavioural responses (mean difference 0·07%, 95% CI 0·01-0·13; p=0·02). Mean fractional EEG power in the frontal leads was 50·4 (SD 15·2) for seizures with impaired and 24·8 (6·5) for seizures with spared behavioural responses (mean difference 25·6, 95% CI 21·0-30·3); middle leads 35·4 (6·5) for seizures with impaired, 13·3 (3·4) for seizures with spared behavioural responses (mean difference 22·1, 95% CI 20·0-24·1); posterior leads 41·6 (5·3) for seizures with impaired, 24·6 (8·6) for seizures with spared behavioural responses (mean difference 17·0, 95% CI 14·4-19·7); p<0·0001 for all comparisons. Mean seizure duration was longer for seizures with impaired behaviour at 7·9 s (SD 6·6), compared with 3·8 s (3·0) for seizures with spared behaviour (mean difference 4·1 s, 95% CI 3·0-5·3; p<0·0001). However, larger amplitude fMRI and EEG signals occurred at the outset or even preceding seizures with behavioural impairment. INTERPRETATION:Impaired consciousness in absence seizures is related to the intensity of physiological changes in established networks affecting widespread regions of the brain. Increased EEG and fMRI amplitude occurs at the onset of seizures associated with behavioural impairment. These finding suggest that a vulnerable state might exist at the initiation of some absence seizures leading them to have more severe physiological changes and altered consciousness than other absence seizures. FUNDING:National Institutes of Health, National Institute of Neurological Disorders and Stroke, National Center for Advancing Translational Science, the Loughridge Williams Foundation, and the Betsy and Jonathan Blattmachr Family. 10.1016/S1474-4422(16)30295-2
Impaired consciousness in temporal lobe seizures: role of cortical slow activity. Englot Dario J,Yang Li,Hamid Hamada,Danielson Nathan,Bai Xiaoxiao,Marfeo Anthony,Yu Lissa,Gordon Aliza,Purcaro Michael J,Motelow Joshua E,Agarwal Ravi,Ellens Damien J,Golomb Julie D,Shamy Michel C F,Zhang Heping,Carlson Chad,Doyle Werner,Devinsky Orrin,Vives Kenneth,Spencer Dennis D,Spencer Susan S,Schevon Catherine,Zaveri Hitten P,Blumenfeld Hal Brain : a journal of neurology Impaired consciousness requires altered cortical function. This can occur either directly from disorders that impair widespread bilateral regions of the cortex or indirectly through effects on subcortical arousal systems. It has therefore long been puzzling why focal temporal lobe seizures so often impair consciousness. Early work suggested that altered consciousness may occur with bilateral or dominant temporal lobe seizure involvement. However, other bilateral temporal lobe disorders do not impair consciousness. More recent work supports a 'network inhibition hypothesis' in which temporal lobe seizures disrupt brainstem-diencephalic arousal systems, leading indirectly to depressed cortical function and impaired consciousness. Indeed, prior studies show subcortical involvement in temporal lobe seizures and bilateral frontoparietal slow wave activity on intracranial electroencephalography. However, the relationships between frontoparietal slow waves and impaired consciousness and between cortical slowing and fast seizure activity have not been directly investigated. We analysed intracranial electroencephalography recordings during 63 partial seizures in 26 patients with surgically confirmed mesial temporal lobe epilepsy. Behavioural responsiveness was determined based on blinded review of video during seizures and classified as impaired (complex-partial seizures) or unimpaired (simple-partial seizures). We observed significantly increased delta-range 1-2 Hz slow wave activity in the bilateral frontal and parietal neocortices during complex-partial compared with simple-partial seizures. In addition, we confirmed prior work suggesting that propagation of unilateral mesial temporal fast seizure activity to the bilateral temporal lobes was significantly greater in complex-partial than in simple-partial seizures. Interestingly, we found that the signal power of frontoparietal slow wave activity was significantly correlated with the temporal lobe fast seizure activity in each hemisphere. Finally, we observed that complex-partial seizures were somewhat more common with onset in the language-dominant temporal lobe. These findings provide direct evidence for cortical dysfunction in the form of bilateral frontoparietal slow waves associated with impaired consciousness in temporal lobe seizures. We hypothesize that bilateral temporal lobe seizures may exert a powerful inhibitory effect on subcortical arousal systems. Further investigations will be needed to fully determine the role of cortical-subcortical networks in ictal neocortical dysfunction and may reveal treatments to prevent this important negative consequence of temporal lobe epilepsy. 10.1093/brain/awq316