A nanotheranostics with hypoxia-switchable fluorescence and photothermal effect for hypoxia imaging-guided immunosuppressive tumor microenvironment modulation.
Journal of colloid and interface science
Modulating the immunosuppressive tumor immune microenvironment (TIME) is considered a promising strategy for cancer treatment. However, effectively modulating the immunosuppressive TIME within hypoxic zones remains a significant challenge. In this work, we developed a hypoxia-responsive amphiphilic drug carrier using boron-dipyrromethene (BODIPY) dye-modified chitosan (CsB), and then fabricated a hypoxia-targeted nanotheranostic system, named CsBPNs, through self-assembly of CsB and pexidartinib (5-((5-Chloro-1H-pyrrolo[2,3-b]pyridin-3-yl)methyl)-N-((6-(trifluoromethyl)pyridin-3-yl)methyl), PLX3397), an immunotherapeutic drug targeting tumor-associated macrophages (TAMs), for synergistic photothermal/immunotherapy and hypoxia imaging. CsBPNs demonstrated uniform size, good stability, and hypoxia-switchable fluorescence and photothermal effects, enabling deep penetration and hypoxia imaging capacities in three-dimensional tumor cell spheres and tumor tissues. In vitro and in vivo experiments showed that CsBPNs under laser irradiation promoted TAMs repolarization, reversed the immunosuppressive TIME, and enhanced the therapeutic outcome of PLX3397 in solid tumors by facilitating deep delivery into hypoxic regions and synergistic photothermal therapy. This work provides a new strategy for detecting and modulating the immunosuppressive TIME in hypoxic zones, potentially enabling more precise and effective photo-immunotherapy in the future.
10.1016/j.jcis.2024.09.133
Facile Synthesis of Fe-Based Metal-Quinone Networks for Mutually Enhanced Mild Photothermal Therapy and Ferroptosis.
Angewandte Chemie (International ed. in English)
Mild photothermal therapy (MPTT) has emerged as a promising therapeutic modality for attenuating thermal damage to the normal tissues surrounding tumors, while the heat-induced upregulation of heat shock proteins (HSPs) greatly compromises the curative efficacy of MPTT by increasing cellular thermo-tolerance. Ferroptosis has been identified to suppress the overexpression of HSPs by the accumulation of lipid peroxides and reactive oxygen species (ROS), but is greatly restricted by overexpressed glutathione (GSH) in tumor microenvironment and undesirable ROS generation efficiency. Herein, a synergistic strategy based on the mutual enhancement of MPTT and ferroptosis is proposed for cleaving HSPs to recover tumor cell sensitivity. A facile method for fabricating a series of Fe-based metal-quinone networks (MQNs) by coordinated assembly is proposed and the representative FTP MQNs possess high photothermal conversion efficiency (69.3%). Upon 808 nm laser irradiation, FTP MQNs not only trigger effective MPTT to induce apoptosis but more significantly, potentiate Fenton reaction and marked GSH consumption to boost ferroptosis, and the reinforced ferroptosis effect in turn can alleviate the thermal resistance by declining the HSP70 defense and reducing ATP levels. This study provides a valuable rationale for constructing a large library of MQNs for achieving mutual enhancement of MPTT and ferroptosis.
10.1002/anie.202414879
An Engineered Nanocomplex with Photodynamic and Photothermal Synergistic Properties for Cancer Treatment.
Varon Eli,Blumrosen Gaddi,Sinvani Moshe,Haimov Elina,Polani Shlomi,Natan Michal,Shoval Irit,Jacob Avi,Atkins Ayelet,Zitoun David,Shefi Orit
International journal of molecular sciences
Photodynamic therapy (PDT) and photothermal therapy (PTT) are promising therapeutic methods for cancer treatment; however, as single modality therapies, either PDT or PTT is still limited in its success rate. A dual application of both PDT and PTT, in a combined protocol, has gained immense interest. In this study, gold nanoparticles (AuNPs) were conjugated with a PDT agent, meso-tetrahydroxyphenylchlorin (mTHPC) photosensitizer, designed as nanotherapeutic agents that can activate a dual photodynamic/photothermal therapy in SH-SY5Y human neuroblastoma cells. The AuNP-mTHPC complex is biocompatible, soluble, and photostable. PDT efficiency is high because of immediate reactive oxygen species (ROS) production upon mTHPC activation by the 650-nm laser, which decreased mitochondrial membrane potential (ψ). Likewise, the AuNP-mTHPC complex is used as a photoabsorbing (PTA) agent for PTT, due to efficient plasmon absorption and excellent photothermal conversion characteristics of AuNPs under laser irradiation at 532 nm. Under the laser irradiation of a PDT/PTT combination, a twofold phototoxicity outcome follows, compared to PDT-only or PTT-only treatment. This indicates that PDT and PTT have synergistic effects together as a combined therapeutic method. Our study aimed at applying the AuNP-mTHPC approach as a potential treatment of cancer in the biomedical field.
10.3390/ijms23042286
Friends against the Foe: Synergistic Photothermal and Photodynamic Therapy against Bacterial Infections.
Pharmaceutics
Multidrug-resistant (MDR) bacteria are rapidly emerging, coupled with the failure of current antibiotic therapy; thus, new alternatives for effectively treating infections caused by MDR bacteria are required. Hyperthermia-mediated photothermal therapy (PTT) and reactive oxygen species (ROS)-mediated photodynamic therapy (PDT) have attracted extensive attention as antibacterial therapies owing to advantages such as low invasiveness, low toxicity, and low likelihood of causing bacterial resistance. However, both strategies have notable drawbacks, including the high temperature requirements of PTT and the weak ability of PDT-derived ROS to penetrate target cells. To overcome these limitations, a combination of PTT and PDT has been used against MDR bacteria. In this review, we discuss the unique benefits and limitations of PTT and PDT against MDR bacteria. The mechanisms underlying the synergistic effects of the PTT-PDT combination are also discussed. Furthermore, we introduced advancements in antibacterial methods using nano-based PTT and PDT agents to treat infections caused by MDR bacteria. Finally, we highlight the existing challenges and future perspectives of synergistic PTT-PDT combination therapy against infections caused by MDR bacteria. We believe that this review will encourage synergistic PTT- and PDT-based antibacterial research and can be referenced for future clinical applications.
10.3390/pharmaceutics15041116
Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine.
ACS nano
Tumoricidal photodynamic (PDT) and photothermal (PTT) therapies harness light to eliminate cancer cells with spatiotemporal precision by either generating reactive oxygen species or increasing temperature. Great strides have been made in understanding biological effects of PDT and PTT at the cellular, vascular and tumor microenvironmental levels, as well as translating both modalities in the clinic. Emerging evidence suggests that PDT and PTT may synergize due to their different mechanisms of action, and their nonoverlapping toxicity profiles make such combination potentially efficacious. Moreover, PDT/PTT combinations have gained momentum in recent years due to the development of multimodal nanoplatforms that simultaneously incorporate photodynamically- and photothermally active agents. In this review, we discuss how combining PDT and PTT can address the limitations of each modality alone and enhance treatment safety and efficacy. We provide an overview of recent literature featuring dual PDT/PTT nanoparticles and analyze the strengths and limitations of various nanoparticle design strategies. We also detail how treatment sequence and dose may affect cellular states, tumor pathophysiology and drug delivery, ultimately shaping the treatment response. Lastly, we analyze common experimental design pitfalls that complicate preclinical assessment of PDT/PTT combinations and propose rational guidelines to elucidate the mechanisms underlying PDT/PTT interactions.
10.1021/acsnano.3c00891