Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review.
Journal of advanced research
Tissue engineering is a rapidly-growing approach to replace and repair damaged and defective tissues in the human body. Every year, a large number of people require bone replacements for skeletal defects caused by accident or disease that cannot heal on their own. In the last decades, tissue engineering of bone has attracted much attention from biomedical scientists in academic and commercial laboratories. A vast range of biocompatible advanced materials has been used to form scaffolds upon which new bone can form. Carbon nanomaterial-based scaffolds are a key example, with the advantages of being biologically compatible, mechanically stable, and commercially available. They show remarkable ability to affect bone tissue regeneration, efficient cell proliferation and osteogenic differentiation. Basically, scaffolds are templates for growth, proliferation, regeneration, adhesion, and differentiation processes of bone stem cells that play a truly critical role in bone tissue engineering. The appropriate scaffold should supply a microenvironment for bone cells that is most similar to natural bone in the human body. A variety of carbon nanomaterials, such as graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds and their derivatives that are able to act as scaffolds for bone tissue engineering, are covered in this review. Broadly, the ability of the family of carbon nanomaterial-based scaffolds and their critical role in bone tissue engineering research are discussed. The significant stimulating effects on cell growth, low cytotoxicity, efficient nutrient delivery in the scaffold microenvironment, suitable functionalized chemical structures to facilitate cell-cell communication, and improvement in cell spreading are the main advantages of carbon nanomaterial-based scaffolds for bone tissue engineering.
10.1016/j.jare.2019.03.011
Engineered M13 phage as a novel therapeutic bionanomaterial for clinical applications: From tissue regeneration to cancer therapy.
Materials today. Bio
Bacteriophages (phages) are nanostructured viruses with highly selective antibacterial properties that have gained attention beyond eliminating bacteria. Specifically, M13 phages are filamentous phages that have recently been studied in various aspects of nanomedicine due to their biological advantages and more compliant engineering capabilities over other phages. Having nanofiber-like morphology, M13 phages can reach varied target sites and self-assemble into multidimensional scaffolds in a relatively safe and stable way. In addition, genetic modification of the coat proteins enables specific display of peptides and antibodies on the phages, allowing for precise and individualized medicine. M13 phages have also been subjected to novel engineering approaches, including phage-based bionanomaterial engineering and phage-directed nanomaterial combinations that enhance the bionanomaterial properties of M13 phages. In view of these features, researchers have been able to utilize M13 phages for therapeutic applications such as drug delivery, biodetection, tissue regeneration, and targeted cancer therapy. In particular, M13 phages have been utilized as a novel bionanomaterial for precisely mimicking natural tissue environment in order to overcome the shortage in tissue and organ donors. Hence, in this review, we address the recent studies and advances of using M13 phages in the field of nanomedicine as therapeutic agents based upon their characteristics as novel bionanomaterial with biomolecules displayed. This paper also emphasizes the novel engineering approach that enhances M13 phage's bionanomaterial capabilities. Current limitations and future approaches are also discussed to provide insight in further progress for M13 phage-based clinical applications.
10.1016/j.mtbio.2023.100612
Two-Dimensional Nanomaterials for Peripheral Nerve Engineering: Recent Advances and Potential Mechanisms.
Yan Zhiwen,Chen Cheng,Rosso Gonzalo,Qian Yun,Fan Cunyi
Frontiers in bioengineering and biotechnology
Peripheral nerve tissues possess the ability to regenerate within artificial nerve scaffolds, however, despite the advance of biomaterials that support nerve regeneration, the functional nerve recovery remains unsatisfactory. Importantly, the incorporation of two-dimensional nanomaterials has shown to significantly improve the therapeutic effect of conventional nerve scaffolds. In this review, we examine whether two-dimensional nanomaterials facilitate angiogenesis and thereby promote peripheral nerve regeneration. First, we summarize the major events occurring after peripheral nerve injury. Second, we discuss that the application of two-dimensional nanomaterials for peripheral nerve regeneration strategies by facilitating the formation of new vessels. Then, we analyze the mechanism that the newly-formed capillaries directionally and metabolically support neuronal regeneration. Finally, we prospect that the two-dimensional nanomaterials should be a potential solution to long range peripheral nerve defect. To further enhance the therapeutic effects of two-dimensional nanomaterial, strategies which help remedy the energy deficiency after peripheral nerve injury could be a viable solution.
10.3389/fbioe.2021.746074
Unraveling the potential of 3D bioprinted immunomodulatory materials for regulating macrophage polarization: State-of-the-art in bone and associated tissue regeneration.
Bioactive materials
Macrophage-assisted immunomodulation is an alternative strategy in tissue engineering, wherein the interplay between pro-inflammatory and anti-inflammatory macrophage cells and body cells determines the fate of healing or inflammation. Although several reports have demonstrated that tissue regeneration depends on spatial and temporal regulation of the biophysical or biochemical microenvironment of the biomaterial, the underlying molecular mechanism behind immunomodulation is still under consideration for developing immunomodulatory scaffolds. Currently, most fabricated immunomodulatory platforms reported in the literature show regenerative capabilities of a particular tissue, for example, endogenous tissue (., bone, muscle, heart, kidney, and lungs) or exogenous tissue (., skin and eye). In this review, we briefly introduced the necessity of the 3D immunomodulatory scaffolds and nanomaterials, focusing on material properties and their interaction with macrophages for general readers. This review also provides a comprehensive summary of macrophage origin and taxonomy, their diverse functions, and various signal transduction pathways during biomaterial-macrophage interaction, which is particularly helpful for material scientists and clinicians for developing next-generation immunomodulatory scaffolds. From a clinical standpoint, we briefly discussed the role of 3D biomaterial scaffolds and/or nanomaterial composites for macrophage-assisted tissue engineering with a special focus on bone and associated tissues. Finally, a summary with expert opinion is presented to address the challenges and future necessity of 3D bioprinted immunomodulatory materials for tissue engineering.
10.1016/j.bioactmat.2023.05.014
Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review.
International journal of nanomedicine
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
10.2147/IJN.S436867
Employment of targeted nanoparticles for imaging of cellular processes in cardiovascular disease.
Current opinion in biotechnology
Cardiovascular disease (CVD) is a leading cause of global mortality, accounting for pathologies that are primarily of atherosclerotic origin and driven by specific cell populations. A need exists for effective, non-invasive methods to assess the risk of potentially fatal major adverse cardiovascular events (MACE) before occurrence and to monitor post-interventional outcomes such as tissue regeneration. Molecular imaging has widespread applications in CVD diagnostic assessment, through modalities including magnetic resonance imaging (MRI), positron emission tomography (PET), and acoustic imaging methods. However, current gold-standard small molecule contrast agents are not cell-specific, relying on non-specific uptake to facilitate imaging of biologic processes. Nanomaterials can be engineered for targeted delivery to specific cell populations, and several nanomaterial systems have been developed for pre-clinical molecular imaging. Here, we review recent advances in nanoparticle-mediated approaches for imaging of cellular processes in cardiovascular disease, focusing on efforts to detect inflammation, assess lipid accumulation, and monitor tissue regeneration.
10.1016/j.copbio.2020.06.003
Smart biomaterials and their potential applications in tissue engineering.
Journal of materials chemistry. B
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
10.1039/d2tb01106a
Biomedical application of 2D nanomaterials in neuroscience.
Journal of nanobiotechnology
Two-dimensional (2D) nanomaterials, such as graphene, black phosphorus and transition metal dichalcogenides, have attracted increasing attention in biology and biomedicine. Their high mechanical stiffness, excellent electrical conductivity, optical transparency, and biocompatibility have led to rapid advances. Neuroscience is a complex field with many challenges, such as nervous system is difficult to repair and regenerate, as well as the early diagnosis and treatment of neurological diseases are also challenged. This review mainly focuses on the application of 2D nanomaterials in neuroscience. Firstly, we introduced various types of 2D nanomaterials. Secondly, due to the repairment and regeneration of nerve is an important problem in the field of neuroscience, we summarized the studies of 2D nanomaterials applied in neural repairment and regeneration based on their unique physicochemical properties and excellent biocompatibility. We also discussed the potential of 2D nanomaterial-based synaptic devices to mimic connections among neurons in the human brain due to their low-power switching capabilities and high mobility of charge carriers. In addition, we also reviewed the potential clinical application of various 2D nanomaterials in diagnosing and treating neurodegenerative diseases, neurological system disorders, as well as glioma. Finally, we discussed the challenge and future directions of 2D nanomaterials in neuroscience.
10.1186/s12951-023-01920-4
Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Using bioactive nanomaterials in clinical treatment has been widely aroused. Nanomaterials provide substantial improvements in the prevention and treatment of oral and maxillofacial diseases. This review aims to discuss new progresses in nanomaterials applied to oral and maxillofacial tissue regeneration and disease treatment, focusing on the use of nanomaterials in improving the quality of oral and maxillofacial healthcare, and discuss the perspectives of research in this arena. Details are provided on the tissue regeneration, wound healing, angiogenesis, remineralization, antitumor, and antibacterial regulation properties of nanomaterials including polymers, micelles, dendrimers, liposomes, nanocapsules, nanoparticles and nanostructured scaffolds, etc. Clinical applications of nanomaterials as nanocomposites, dental implants, mouthwashes, biomimetic dental materials, and factors that may interact with nanomaterials behaviors and bioactivities in oral cavity are addressed as well. In the last section, the clinical safety concerns of their usage as dental materials are updated, and the key knowledge gaps for future research with some recommendation are discussed. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
10.1002/wnan.1669
Metal-Organic-Framework-Engineered Enzyme-Mimetic Catalysts.
Advanced materials (Deerfield Beach, Fla.)
Nanomaterial-based enzyme-mimetic catalysts (Enz-Cats) have received considerable attention because of their optimized and enhanced catalytic performances and selectivities in diverse physiological environments compared with natural enzymes. Recently, owing to their molecular/atomic-level catalytic centers, high porosity, large surface area, high loading capacity, and homogeneous structure, metal-organic frameworks (MOFs) have emerged as one of the most promising materials in engineering Enz-Cats. Here, the recent advances in the design of MOF-engineered Enz-Cats, including their preparation methods, composite constructions, structural characterizations, and biomedical applications, are highlighted and commented upon. In particular, the performance, selectivities, essential mechanisms, and potential structure-property relations of these MOF-engineered Enz-Cats in accelerating catalytic reactions are discussed. Some potential biomedical applications of these MOF-engineered Enz-Cats are also breifly proposed. These applications include, for example, tumor therapies, bacterial disinfection, tissue regeneration, and biosensors. Finally, the future opportunities and challenges in emerging research frontiers are thoroughly discussed. Thereby, potential pathways and perspectives for designing future state-of-the-art Enz-Cats in biomedical sciences are offered.
10.1002/adma.202003065
Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
Bharadwaz Angshuman,Jayasuriya Ambalangodage C
Materials science & engineering. C, Materials for biological applications
The goal of a biomaterial is to support the bone tissue regeneration process at the defect site and eventually degrade in situ and get replaced with the newly generated bone tissue. Nanocomposite biomaterials are a relatively new class of materials that incorporate a biopolymeric and biodegradable matrix structure with bioactive and easily resorbable fillers which are nano-sized. This article is a review of a few polymeric nanocomposite biomaterials which are potential candidates for bone tissue regeneration. These nanocomposites have been broadly classified into two groups viz. natural and synthetic polymer based. Natural polymer-based nanocomposites include materials fabricated through reinforcement of nanoparticles and/or nanofibers in a natural polymer matrix. Several widely used natural biopolymers, such as chitosan (CS), collagen (Col), cellulose, silk fibroin (SF), alginate, and fucoidan, have been reviewed regarding their present investigation on the incorporation of nanomaterial, biocompatibility, and tissue regeneration. Synthetic polymer-based nanocomposites that have been covered in this review include polycaprolactone (PCL), poly (lactic-co-glycolic) acid (PLGA), polyethylene glycol (PEG), poly (lactic acid) (PLA), and polyurethane (PU) based nanocomposites. An array of nanofillers, such as nano hydroxyapatite (nHA), nano zirconia (nZr), nano silica (nSi), silver nano particles (AgNPs), nano titanium dioxide (nTiO), graphene oxide (GO), that is used widely across the bone tissue regeneration research platform are included in this review with respect to their incorporation into a natural and/or synthetic polymer matrix. The influence of nanofillers on cell viability, both in vitro and in vivo, along with cytocompatibility and new tissue generation has been encompassed in this review. Moreover, nanocomposite material characterization using some commonly used analytical techniques, such as electron microscopy, spectroscopy, diffraction patterns etc., has been highlighted in this review. Biomaterial physical properties, such as pore size, porosity, particle size, and mechanical strength which strongly influences cell attachment, proliferation, and subsequent tissue growth has been covered in this review. This review has been sculptured around a case by case basis of current research that is being undertaken in the field of bone regeneration engineering. The nanofillers induced into the polymeric matrix render important properties, such as large surface area, improved mechanical strength as well as stability, improved cell adhesion, proliferation, and cell differentiation. The selection of nanocomposites is thus crucial in the analysis of viable treatment strategies for bone tissue regeneration for specific bone defects such as craniofacial defects. The effects of growth factor incorporation on the nanocomposite for controlling new bone generation are also important during the biomaterial design phase.
10.1016/j.msec.2020.110698
2D Nanomaterials for Tissue Engineering and Regenerative Nanomedicines: Recent Advances and Future Challenges.
Zheng Yuanyuan,Hong Xiangqian,Wang Jiantao,Feng Longbao,Fan Taojian,Guo Rui,Zhang Han
Advanced healthcare materials
Regenerative medicine has become one of the hottest research topics in medical science that provides a promising way for repairing tissue defects in the human body. Due to their excellent physicochemical properties, the application of 2D nanomaterials in regenerative medicine has gradually developed and has been attracting a wide range of research interests in recent years. In particular, graphene and its derivatives, black phosphorus, and transition metal dichalcogenides are applied in all the aspects of tissue engineering to replace or restore tissues. This review focuses on the latest advances in the application of 2D-nanomaterial-based hydrogels, nanosheets, or scaffolds that are engineered to repair skin, bone, and cartilage tissues. Reviews on other applications, including cardiac muscle regeneration, skeletal muscle repair, nerve regeneration, brain disease treatment, and spinal cord healing are also provided. The challenges and prospects of applications of 2D nanomaterials in regenerative medicine are discussed.
10.1002/adhm.202001743
Nanomaterial scaffolds to regenerate musculoskeletal tissue: signals from within for neovessel formation.
Wang Zuyong,Wen Feng,Lim Poon Nian,Zhang Qinyuan,Konishi Toshiisa,Wang Dong,Teoh Swee Hin,Thian Eng San
Drug discovery today
Current treatments for musculoskeletal disease and injury are restricted with the usage of autografts and allografts. Tissue engineering that applies the principles of biology and engineering to develop functional substitutes has potential promise of therapeutic regeneration for musculoskeletal tissues. However, engineering sizable tissues needs a vascular network to supply cells with nutrients, oxygen and signals after implantation. For this purpose, recent developments on therapeutic nanomaterials have been explored in delivering different vessel-inductive growth factors, small biomolecules and ions for scalable engineering into vascularizable scaffolds. Here, we provide an overview on the current efforts, and propose future perspectives for precise regulation on vascularization processes and musculoskeletal tissue functionality.
10.1016/j.drudis.2017.03.010
Advances on Graphene-Based Nanomaterials and Mesenchymal Stem Cell-Derived Exosomes Applied in Cutaneous Wound Healing.
International journal of nanomedicine
Graphene is a new type of carbon nanomaterial discovered after fullerene and carbon nanotube. Due to the excellent biological properties such as biocompatibility, cell proliferation stimulating, and antibacterial properties, graphene and its derivatives have become emerging candidates for the development of novel cutaneous wound dressings and composite scaffolds. On the other hand, pre-clinical research on exosomes derived from mesenchymal stem cells (MSC-Exos) has been intensified for cell-free treatment in wound healing and cutaneous regeneration, via ameliorating the damaged microenvironment of the wound site. Here, we provide a comprehensive understanding of the latest studies and observations on the various effects of graphene-based nanomaterials (GBNs) and MSC-Exos during the cutaneous wound repair process, as well as the putative mechanisms thereof. In addition, we propose the possible forward directions of GBNs and MSC-Exos applications, expecting to promote the clinical transformation.
10.2147/IJN.S300326
Nanomaterial Additives for Fabrication of Stimuli-Responsive Skeletal Muscle Tissue Engineering Constructs.
Advanced healthcare materials
Volumetric muscle loss necessitates novel tissue engineering strategies for skeletal muscle repair, which have traditionally involved cells and extracellular matrix-mimicking scaffolds and have thus far been unable to successfully restore physiologically relevant function. However, the incorporation of various nanomaterial additives with unique physicochemical properties into scaffolds has recently been explored as a means of fabricating constructs that are responsive to electrical, magnetic, and photothermal stimulation. Herein, several classes of nanomaterials that are used to mediate external stimulation to tissue engineered skeletal muscle are reviewed and the impact of these stimuli-responsive biomaterials on cell growth and differentiation and in vivo muscle repair is discussed. The degradation kinetics and biocompatibilities of these nanomaterial additives are also briefly examined and their potential for incorporation into clinically translatable skeletal muscle tissue engineering strategies is considered. Overall, these nanomaterial additives have proven efficacious and incorporation in tissue engineering scaffolds has resulted in enhanced functional skeletal muscle regeneration.
10.1002/adhm.202000730
Effective Modulation of Inflammation and Oxidative Stress for Enhanced Regeneration of Intervertebral Discs Using 3D Porous Hybrid Protein Nanoscaffold.
Advanced materials (Deerfield Beach, Fla.)
Degeneration of fibrocartilaginous tissues is often associated with complex pro-inflammatory factors. These include reactive oxygen species (ROS), cell-free nucleic acids (cf-NAs), and epigenetic changes in immune cells. To effectively control this complex inflammatory signaling, it developed an all-in-one nanoscaffold-based 3D porous hybrid protein (3D-PHP) self-therapeutic strategy for treating intervertebral disc (IVD) degeneration. The 3D-PHP nanoscaffold is synthesized by introducing a novel nanomaterial-templated protein assembly (NTPA) strategy. 3D-PHP nanoscaffolds that avoid covalent modification of proteins demonstrate inflammatory stimuli-responsive drug release, disc-mimetic stiffness, and excellent biodegradability. Enzyme-like 2D nanosheets incorporated into nanoscaffolds further enabled robust scavenging of ROS and cf-NAs, reducing inflammation and enhancing the survival of disc cells under inflammatory stress in vitro. Implantation of 3D-PHP nanoscaffolds loaded with bromodomain extraterminal inhibitor (BETi) into a rat nucleotomy disc injury model effectively suppressed inflammation in vivo, thus promoting restoration of the extracellular matrix (ECM). The resulting regeneration of disc tissue facilitated long-term pain reduction. Therefore, self-therapeutic and epigenetic modulator-encapsulated hybrid protein nanoscaffold shows great promise as a novel approach to restore dysregulated inflammatory signaling and treat degenerative fibrocartilaginous diseases, including disc injuries, providing hope and relief to patients worldwide.
10.1002/adma.202303021
Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy.
Acta pharmaceutica Sinica. B
The field of two-dimensional (2D) nanomaterial-based cancer immunotherapy combines research from multiple subdisciplines of material science, nano-chemistry, in particular nano-biological interactions, immunology, and medicinal chemistry. Most importantly, the "biological identity" of nanomaterials governed by bio-molecular corona in terms of bimolecular types, relative abundance, and conformation at the nanomaterial surface is now believed to influence blood circulation time, bio-distribution, immune response, cellular uptake, and intracellular trafficking. A better understanding of nano-bio interactions can improve utilization of 2D nano-architectures for cancer immunotherapy and immunotheranostics, allowing them to be adapted or modified to treat other immune dysregulation syndromes including autoimmune diseases or inflammation, infection, tissue regeneration, and transplantation. The manuscript reviews the biological interactions and immunotherapeutic applications of 2D nanomaterials, including understanding their interactions with biological molecules of the immune system, summarizes and prospects the applications of 2D nanomaterials in cancer immunotherapy.
10.1016/j.apsb.2021.05.004
Recent advances in nanomaterials for the treatment of spinal cord injury.
Materials today. Bio
Spinal cord injuries (SCIs) are devastating. In SCIs, a powerful traumatic force impacting the spinal cord results in the permanent loss of nerve function below the injury level, leaving the patient paralyzed and wheelchair-bound for the remainder of his/her life. Unfortunately, clinical treatment that depends on surgical decompression appears to be unable to handle damaged nerves, and high-dose methylprednisolone-based therapy is also associated with problems, such as infection, gastrointestinal bleeding, femoral head necrosis, obesity, and hyperglycemia. Nanomaterials have opened new avenues for SCI treatment. Among them, performance-based nanomaterials derived from a variety of materials facilitate improvements in the microenvironment of traumatic injury and, in some cases, promote neuron regeneration. Nanoparticulate drug delivery systems enable the optimization of drug effects and drug bioavailability, thus contributing to the development of novel treatments. The improved efficiency and accuracy of gene delivery will also benefit the exploration of SCI mechanisms and the understanding of key genes and signaling pathways. Herein, we reviewed different types of nanomaterials applied to the treatment of SCI and summarized their functions and advantages to provide new perspectives for future clinical therapies.
10.1016/j.mtbio.2022.100524
Magnetic Nanomaterials for Advanced Regenerative Medicine: The Promise and Challenges.
Liu Xiao-Li,Chen Shizhu,Zhang Huan,Zhou Jin,Fan Hai-Ming,Liang Xing-Jie
Advanced materials (Deerfield Beach, Fla.)
The recent emergence of numerous nanotechnologies is expected to facilitate the development of regenerative medicine, which is a tissue regeneration technique based on the replacement/repair of diseased tissue or organs to restore the function of lost, damaged, and aging cells in the human body. In particular, the unique magnetic properties and specific dimensions of magnetic nanomaterials make them promising innovative components capable of significantly advancing the field of tissue regeneration. Their potential applications in tissue regeneration are the focus here, beginning with the fundamentals of magnetic nanomaterials. How nanomaterials-both those that are intrinsically magnetic and those that respond to an externally applied magnetic field-can enhance the efficiency of tissue regeneration is also described. Applications including magnetically controlled cargo delivery and release, real-time visualization and tracking of transplanted cells, magnetic regulation of cell proliferation/differentiation, and magnetic activation of targeted ion channels and signal pathways involved in regeneration are highlighted, and comments on the perspectives and challenges in magnetic nanomaterial-based tissue regeneration are given.
10.1002/adma.201804922
Recent advances in nanotherapeutic strategies for spinal cord injury repair.
Advanced drug delivery reviews
Spinal cord injury (SCI) is a devastating and complicated condition with no cure available. The initial mechanical trauma is followed by a secondary injury characterized by inflammatory cell infiltration and inhibitory glial scar formation. Due to the limitations posed by the blood-spinal cord barrier, systemic delivery of therapeutics is challenging. Recent development of various nanoscale strategies provides exciting and promising new means of treating SCI by crossing the blood-spinal cord barrier and delivering therapeutics. As such, we discuss different nanomaterial fabrication methods and provide an overview of recent studies where nanomaterials were developed to modulate inflammatory signals, target inhibitory factors in the lesion, and promote axonal regeneration after SCI. We also review emerging areas of research such as optogenetics, immunotherapy and CRISPR-mediated genome editing where nanomaterials can provide synergistic effects in developing novel SCI therapy regimens, as well as current efforts and barriers to clinical translation of nanomaterials.
10.1016/j.addr.2018.12.011
Recent advances in inorganic nanomaterials for wound-healing applications.
Nethi Susheel Kumar,Das Sourav,Patra Chitta Ranjan,Mukherjee Sudip
Biomaterials science
Chronic wounds have emerged as a major cause of mortality, especially in patients with diabetes and other pathologies. Statistics indicate that chronic wounds affect around 6.5 million patients annually, with wound care and management incurring huge economic costs. Growing incidence of chronic wounds and associated pathologies along with the limitations of current therapies have established a strong need for novel and innovative approaches to accelerate wound healing. Conventionally, chronic wounds are addressed using various FDA-approved silver-based formulations and other biomaterials. However, the toxicity associated with these conventional approaches, along with the increased frequency of chronic wound cases, makes the development of alternative therapies for effective wound healing necessary. Recently, researchers have investigated the design and development of nanoparticles, especially inorganic metal nanoparticles, as promising candidates for addressing various pathological conditions, including wound healing. Several research groups, including ours, have designed numerous metal nanoparticles (including silver, gold, zinc oxide, cerium oxide, terbium hydroxide, silica, titanium oxide, copper) and demonstrated their wound-healing properties using in vitro and in vivo models. The rise of nanotechnology-based platforms in wound healing is evidenced by the tremendous impact and number of publications observed in recent years, which has emphasized the robust potential of inorganic nanomedicine for addressing wounds. Therefore, the importance of these inorganic nanomaterial-based interventions for wound-healing applications needs to be emphasized to inform and encourage scientists and young researchers globally to engage with this expanding area of biology and medicine. In this review article, we mainly focus on highlighting the role of inorganic nanomaterials and nanomaterial-based approaches for wound healing and tissue regeneration, along with their mechanistic properties, clinical status, challenges, and future directions.
10.1039/c9bm00423h
Electroactive nanomaterials in the peripheral nerve regeneration.
Yao Xiangyun,Qian Yun,Fan Cunyi
Journal of materials chemistry. B
Severe peripheral nerve injuries are threatening the life quality of human beings. Current clinical treatments contain some limitations and therefore extensive research and efforts are geared towards tissue engineering approaches and development. The biophysical and biochemical characteristics of nanomaterials are highly focused on as critical elements in the design and fabrication of regenerative scaffolds. Recent studies indicate that the electrical properties and nanostructure of biomaterials can significantly affect the progress of nerve repair. More importantly, these studies also demonstrate the fact that electroactive nanomaterials have substantial implications for regulating the viability and fate of primary supporting cells in nerve regeneration. In this review, we summarize the current knowledge of electroconductive and piezoelectric nanomaterials. We exemplify typical cellular responses through cell-material interfaces, and the nanomaterial-induced microenvironment rebalance in terms of several key factors, immune responses, angiogenesis and oxidative stress. This work highlights the mechanism and application of electroactive nanomaterials to the development of regenerative scaffolds for peripheral nerve tissue engineering.
10.1039/d1tb00686j
Bioactive 2D nanomaterials for neural repair and regeneration.
Advanced drug delivery reviews
Biomaterials have provided promising strategies towards improving the functions of injured tissues of the nervous system. Recently, 2D nanomaterials, such as graphene, layered double hydroxides (LDHs), and black phosphorous, which are characterized by ultrathin film structures, have attracted much attention in the fields of neural repair and regeneration. 2D nanomaterials have extraordinary physicochemical properties and excellent biological activities, such as a large surface-area-to-thickness ratio, high levels of adhesion, and adjustable flexibility. In addition, they can be designed to have superior biocompatibility and electrical or nano-carrier properties. To date, many 2D nanomaterials have been used for synaptic modulation, neuroinflammatory reduction, stem cell fate regulation, and injured neural cell/tissue repair. In this review, we discuss the advances in 2D nanomaterial technology towards novel neurological applications and the mechanisms underlying their unique features. In addition, the future outlook of functional 2D nanomaterials towards addressing the difficult issues of neuropathy has been explored to introduce a promising strategy towards repairing and regenerating the injured nervous system.
10.1016/j.addr.2022.114379
Zeolitic imidazolate frameworks: From bactericidal properties to tissue regeneration.
Journal of controlled release : official journal of the Controlled Release Society
Zeolitic imidazolate frameworks (ZIFs), as a very well-known subset of metal-organic frameworks (MOFs), have attracted considerable attention in biomedicine due to their unique structural features such as tunable pore size, high surface area, high thermal stability, biodegradability, and biocompatibility. Moreover, it is possible to load a wide variety of therapeutic agents, drugs, and biomolecules into ZIF structures during the fabrication process owing to the ZIFs' porous structure and concise synthesis methods under mild conditions. This review focuses on the most recent advances in the bioinspiration of ZIFs and ZIF-integrated nanocomposites in boosting antibacterial efficiencies and regenerative medicine capabilities. The first part summarizes the various synthesis routes and physicochemical properties of ZIFs, including size, morphology, surface, and pore size. The recent advancements in the antibacterial aspects of using ZIFs and ZIF-integrated nanocomposites as carriers for antibacterial agents and drug cargo are elaborated. Moreover, the antibacterial mechanisms based on the factors affecting the antibacterial properties of ZIFs such as oxidative stress, internal and external triggers, the effect of metal ions, and their associated combined therapies, are discussed. The recent trends of ZIFs and their composites in tissue regeneration, especially bone regeneration and wound healing, are also reviewed with in-depth perspectives. Finally, the biological safety aspects of ZIFs, the latest reports about their toxicity, and the future prospects of these materials in regenerative medicine have been discussed.
10.1016/j.jconrel.2023.06.002
Metal-organic frameworks functionalized biomaterials for promoting bone repair.
Materials today. Bio
Bone defects induced by bone trauma, tumors and osteoarthritis greatly affect the life quality and health of patients. The biomaterials with numerous advantages are becoming the most preferred options for repairing bone defects and treating orthopedic diseases. However, their repairing effects remains unsatisfactory, especially in bone defects suffering from tumor, inflammation, and/or bacterial infection. There are several strategies to functionalize biomaterials, but a more general and efficient method is essential for accomplishing the functionalization of biomaterials. Possessing high specific surface, high porosity, controlled degradability and variable composition, metal-organic frameworks (MOFs) materials are inherently advantageous for functionalizing biomaterials, with tremendous improvements having been achieved. This review summarizes recent progresses in MOFs functionalized biomaterials for promoting bone repair and therapeutic effects. In specific, by utilizing various properties of diverse MOFs materials, integrated MOFs functionalized biomaterials achieve enhanced bone regeneration, antibacterial, anti-inflammatory and anti-tumor functions. Finally, the summary and prospects of on the development of MOFs-functionalized biomaterials for promoting bone repair were discussed.
10.1016/j.mtbio.2023.100717
Zinc-Based Biomaterials for Regeneration and Therapy.
Trends in biotechnology
Zinc has been described as the 'calcium of the twenty-first century'. Zinc-based degradable biomaterials have recently emerged thanks to their intrinsic physiological relevance, biocompatibility, biodegradability, and pro-regeneration properties. Zinc-based biomaterials mainly include: metallic zinc alloys, zinc ceramic nanomaterials, and zinc metal-organic frameworks (MOFs). Metallic zinc implants degrade at a desirable rate, matching the healing pace of local tissues, and stimulating remodeling and formation of new tissues. Zinc ceramic nanomaterials are also beneficial for tissue engineering and therapy thanks to their nanostructures and antibacterial properties. MOFs have large surface areas and are easily functionalized, making them ideal for drug delivery and cancer therapy. This review highlights recent developments in zinc-based biomaterials, discusses obstacles to overcome, and pinpoints directions for future research.
10.1016/j.tibtech.2018.10.009
Graphene oxide as a scaffold for bone regeneration.
Holt Brian D,Wright Zoe M,Arnold Anne M,Sydlik Stefanie A
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Graphene oxide (GO), the oxidized form of graphene, holds great potential as a component of biomedical devices, deriving utility from its ability to support a broad range of chemical functionalities and its exceptional mechanical, electronic, and thermal properties. GO composites can be tuned chemically to be biomimetic, and mechanically to be stiff yet strong. These unique properties make GO-based materials promising candidates as a scaffold for bone regeneration. However, questions still exist as to the compatibility and long-term toxicity of nanocarbon materials. Unlike other nanocarbons, GO is meta-stable, water dispersible, and autodegrades in water on the timescale of months to humic acid-like materials, the degradation products of all organic matter. Thus, GO offers better prospects for biological compatibility over other nanocarbons. Recently, many publications have demonstrated enhanced osteogenic performance of GO-containing composites. Ongoing work toward surface modification or coating strategies could be useful to minimize the inflammatory response and improve compatibility of GO as a component of medical devices. Furthermore, biomimetic modifications could offer mechanical and chemical environments that encourage osteogenesis. So long as care is given to assure their safety, GO-based materials may be poised to become the next generation scaffold for bone regeneration. WIREs Nanomed Nanobiotechnol 2017, 9:e1437. doi: 10.1002/wnan.1437 For further resources related to this article, please visit the WIREs website.
10.1002/wnan.1437
Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects.
International journal of nanomedicine
During continuous innovation in the preparation, characterization and application of various bone repair materials for several decades, nanomaterials have exhibited many unique advantages. As a kind of representative two-dimensional nanomaterials, graphene and its derivatives (GDs) such as graphene oxide and reduced graphene oxide have shown promising potential for the application in bone repair based on their excellent mechanical properties, electrical conductivity, large specific surface area (SSA) and atomic structure stability. Herein, we reviewed the updated application of them in bone repair in order to present, as comprehensively, as possible, their specific advantages, challenges and current solutions. Firstly, how their advantages have been utilized in bone repair materials with improved bone formation ability was discussed. Especially, the effects of further functionalization or modification were emphasized. Then, the signaling pathways involved in GDs-induced osteogenic differentiation of stem cells and immunomodulatory mechanism of GDs-induced bone regeneration were discussed. On the other hand, their applications as contrast agents in the field of bone repair were summarized. In addition, we also reviewed the progress and related principles of the effects of GDs parameters on cytotoxicity and residues. At last, the future research was prospected.
10.2147/IJN.S271917
Guiding osteogenesis of mesenchymal stem cells using carbon-based nanomaterials.
Nano convergence
In the field of regenerative medicine, stem cells are highly promising due to their innate ability to generate multiple types of cells that could replace/repair damaged parts of human organs and tissues. It has been reported that both in vitro and in vivo function/survival of stem cells could significantly be improved by utilizing functional materials such as biodegradable polymers, metal composites, nanopatterns and nanohybrid particles. Of various biocompatible materials available for use in stem cell-based therapy and research, carbon-based materials-including fullerenes graphene/graphene oxide and carbon nanotubes-have been found to possess unique physicochemical characteristics that contribute to the effective guidance of stem cell differentiation into specific lineages. In this review, we discuss a number of previous reports that investigated the use of carbon-based materials to control stem cell behavior, with a particular focus on their immense potential to guide the osteogenesis of mesenchymal stem cells (MSCs). We hope that this review will provide information on the full potential of using various carbon-based materials in stem cell-mediated regenerative therapy, particularly for bone regeneration and repair.
10.1186/s40580-017-0096-z
An overview of graphene-based hydroxyapatite composites for orthopedic applications.
Bioactive materials
Hydroxyapatite (HA) is an attractive bioceramic for hard tissue repair and regeneration due to its physicochemical similarities to natural apatite. However, its low fracture toughness, poor tensile strength and weak wear resistance become major obstacles for potential clinical applications. One promising method to tackle with these problems is exploiting graphene and its derivatives (graphene oxide and reduced graphene oxide) as nanoscale reinforcement fillers to fabricate graphene-based hydroxyapatite composites in the form of powders, coatings and scaffolds. The last few years witnessed increasing numbers of studies on the preparation, mechanical and biological evaluations of these novel materials. Herein, various preparation techniques, mechanical behaviors and toughen mechanism, the in vivo biocompatible analysis, antibacterial properties of the graphene-based HA composites are presented in this review.
10.1016/j.bioactmat.2018.01.001
Electrically conductive carbon-based (bio)-nanomaterials for cardiac tissue engineering.
Bioengineering & translational medicine
A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.
10.1002/btm2.10347
Carbon nanomaterials and its applications in pharmaceuticals: A brief review.
Sridharan Rajalakshmi,Monisha B,Kumar P Senthil,Gayathri K Veena
Chemosphere
Nanotechnology for the past decade has made tremendous improvement and diverse applications in various sector. Among the nanomaterials synthesized, carbon allotropes are advantageous due to its easy functionalization, conductivity, surface area and electrical activity. Hence, they are termed as "Wonder materials". Allotropes such as carbon nanotubes, graphene, graphene oxide, fullerens, and carbon dots has paved its importance in the pharmaceuticals. They are coated in the biomedical devices, applied in the therapeutics and diagnosis. These are also used in the treatment of cancer and they possess anti-microbial and antiviral activity. Carbon nanomaterials possess several applications from biosensors to remediation of pollutants. Detection of hazardous compounds in food, pharmaceutical products, gene and drug delivery. They are also used in tissue regeneration and gene therapy. Application of carbon allotropes in the current scenario provides a wide scope in future with improvisations in building electrochemical biosensors. Its selectivity, sensitivity and cost-effectiveness prove it to be better alternative compared to other nanomaterials. The review focuses on the carbon allotropes used in pharmaceuticals, biosensors, pollutants detection and treatment were discussed in detail.
10.1016/j.chemosphere.2022.133731
Graphene nanoribbons: A promising nanomaterial for biomedical applications.
Johnson Asha P,Gangadharappa H V,Pramod K
Journal of controlled release : official journal of the Controlled Release Society
Graphene nanoribbons (GNRs) are narrow lengthened strips of single-layer graphene. Among the graphene family of nanomaterials, GNRs are remarkable materials due to their attractive physical, chemical, electrical, mechanical, thermal, and optical properties. They have an ultra-high surface area. Graphene-oxide nanoribbons (GONRs), the oxygenated derivative of GNRs, offer more possibilities in the biomedicine due to their amphiphilic nature. Noncovalent and covalent modifications of these are possible for advanced biomedical applications. This review describes the properties, synthesis, surface modifications, and toxicities of GNRs, along with their biomedical applications. Their applications in drug delivery, anticancer therapy, sensing, antimicrobial therapy, imaging, gene therapy, photothermal therapy, management of spinal cord injury, bone regeneration, etc. are reviewed.
10.1016/j.jconrel.2020.06.034
Graphene Oxide: A Promising Material for Regenerative Medicine and Tissue Engineering.
Maleki Masomeh,Zarezadeh Reza,Nouri Mohammad,Sadigh Aydin Raei,Pouremamali Farhad,Asemi Zatollah,Kafil Hossein Samadi,Alemi Forough,Yousefi Bahman
Biomolecular concepts
Regenerative medicine and tissue engineering have been considered pioneer fields in the life sciences, with an ultimate goal of restoring or switching lost or impaired body parts. Graphene oxide (GO) is the product of graphene oxidation and presents a great opportunity to make substantial progress in the field of regenerative medicine; for example, it supports the possibility of creating a cellular niche for stem cells on a nanoparticle surface. GO creates a fascinating structure for regulating stem cell behavior, as it can potentially applied to the noninvasive chase of stem cells , the liberation of active biological factors from stem cell-containing delivery systems, and the intracellular delivery of factors such as growth factors, DNA, or synthetic proteins in order to modulate stem cell differentiation and proliferation. Due to the interesting physicochemical properties of GO and its possible usage in tissue engineering approaches, the present review aims to elaborate on the ways in which GO can improve current regenerative strategies. In this respect, the applicability of GO to the repair and regeneration of various tissues and organs, including cardiac muscle, skeletal muscle, and nervous, bone, cartilage, adipose, and skin tissues, is discussed.
10.1515/bmc-2020-0017
Multi-functional silica-based mesoporous materials for simultaneous delivery of biologically active ions and therapeutic biomolecules.
Zhu Hui,Zheng Kai,Boccaccini Aldo R
Acta biomaterialia
Mesoporous silica-based materials, especially mesoporous bioactive glasses (MBGs), are being highly considered for biomedical applications, including drug delivery and tissue engineering, not only because of their bioactivity and biocompatibility but also due to their tunable composition and potential use as drug delivery carriers owing to their controllable nanoporous structure. Numerous researches have reported that MBGs can be doped with various therapeutic ions (strontium, copper, magnesium, zinc, lithium, silver, etc.) and loaded with specific biomolecules (e.g., therapeutic drugs, antibiotics, growth factors) achieving controllable loading and release kinetics. Therefore, co-delivery of ions and biomolecules using a single MBG carrier is highly interesting as this approach provides synergistic effects toward improved therapeutic outcomes in comparison to the strategy of sole drug or ion delivery. In this review, we discuss the state-of-the-art in the field of mesoporous silica-based materials used for co-delivery of ions and therapeutic drugs with osteogenesis/cementogenesis, angiogenesis, antibacterial and anticancer properties. The analysis of the literature reveals that specially designed mesoporous nanocarriers can release multiple ions and drugs at therapeutically safe and relevant levels, achieving the desired biological effects (in vivo, in vitro) for specific biomedical applications. It is expected that this review on the ion/drug co-delivery concept using MBG carriers will shed light on the advantages of such co-delivery systems for clinical use. Areas for future research directions are identified and discussed. STATEMENT OF SIGNIFICANCE: Many studies in literature focus on the potential of single drug or ion delivery by mesoporous silica-based materials, exploiting the bioactivity, biocompatibility, tunable composition and controllable nanoporosity of these materials. Recenlty, studies have adopted the "dual-delivery" concept, by designing multi-functional mesoporous silica-based systems which are capable to deliver both biologically active ions and biomolecules (growth factors, drugs) simultaneously in order to achieve synergy of their complementary therapeutic activities. This review summarizes the state of the art in the field, with focus on osteogenesis/cementogenesis, angiogenesis, antibacterial and anticancer properties, and discusses the challenges and prospects for further progress in this area, expecting to generate broader interest in the technology for applications in disease treatment and regenerative medicine.
10.1016/j.actbio.2021.05.007
Nanostructured bioactive glasses: A bird's eye view on cancer therapy.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Bioactive glasses (BGs) arewell known for their successful applications in tissue engineering and regenerative medicine. Recent experimental studies have shown their potential usability in oncology, either alone or in combination with other biocompatible materials, such as biopolymers. Direct contact with BG particles has been found to cause toxicity and death in specific cancer cells (bone-derived neoplastic stromal cells) in vitro. Nanostructured BGs (NBGs) can be doped with anticancer elements, such as gallium, to enhance their toxic effects against tumor cells. However, the molecular mechanisms and intracellular targets for anticancer compositions of NBGs require further clarification. NBGs have been successfully evaluated for use in various well-established cancer treatment strategies, including cancer hyperthermia, phototherapy, and anticancer drug delivery. Existing results indicate that NBGs not only enhance cancer cell death, but can also participate in the regeneration of lost healthy tissues. However, the application of NBGs in oncology is still in its early stages, and numerous unanswered questions must be addressed. For example, the impact of the composition, biodegradation, size, and morphology of NBGs on their anticancer efficacy should be defined for each type of cancer and treatment strategy. Moreover, it should be more clearly assessed whether NBGs can shrink tumors, slow/stop cancer progression, or cure cancer completely. In this regard, the use of computational studies (in silico methods) is highly recommended to design the most effective glass formulations for cancer therapy approaches and to predict, to some extent, the relevant properties, efficacy, and outcomes. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
10.1002/wnan.1905
Mesoporous bioactive glasses for bone healing and biomolecules delivery.
Lalzawmliana V,Anand Akrity,Roy Mangal,Kundu Biswanath,Nandi Samit Kumar
Materials science & engineering. C, Materials for biological applications
Impact of bone diseases and injury is increasing at an enormous rate during the past decades due to increase in road traffic accidents and other injuries. Bioactive glasses have excellent biocompatibility and osteoconductivity that makes it suitable for bone regeneration. Researches and studies conducted on several bioactive glasses gives an insight on the need of multi-disciplinary approaches involving various scientific fields to attain its full potential. Of late, a next generation bioactive glass called as mesoporous bioactive glass (MBG) has been developed with higher specific surface area and control over mesoporous structure that presents a new material for bone regeneration. A brief discussion and overview on the potential use of MBG as a suitable material for bone tissue regeneration and biomolecule delivery is included. Additionally, possible control of the structural and functional property based on composition and fabrication techniques are also covered. According to recent researches, MBG-implant interaction with bone forming cells for cellular growth and differentiation as well as its effect on delivery of growth factor, both in vitro and in vivo, are optimistic; yet, the complete efficacy of this material is still to be explored. Hence, in this article we will review the current development and its applications for bone tissue engineering (TE).
10.1016/j.msec.2019.110180
Copper-containing bioactive glasses and glass-ceramics: From tissue regeneration to cancer therapeutic strategies.
Kargozar Saeid,Mozafari Masoud,Ghodrat Sara,Fiume Elisa,Baino Francesco
Materials science & engineering. C, Materials for biological applications
Copper is one of the most used therapeutic metallic elements in biomedicine, ranging from antibacterial approaches to cancer theranostics. This element could be easily incorporated into different types of biomaterials; specifically, copper-doped bioactive glasses (BGs) provide great opportunities for biomedical engineers and clinicians as regards their excellent biocompatibility and regenerative potential. Although copper-incorporated BGs are mostly used in bone tissue engineering, accelerated soft tissue healing is achievable, too, with interesting potentials in wound treatment and skin repair. Copper can modulate the physico-chemical properties of BGs (e.g., reactivity with bio-fluids) and improve their therapeutic potential. Improving cell proliferation, promoting angiogenesis, reducing or even prohibiting bacterial growth are counted as prominent biological features of copper-doped BGs. Recent studies have also suggested the suitability of copper-doped BGs in cancer photothermal therapy (PTT). However, more research is needed to determine the extent to which copper-doped BGs are actually applicable for tissue engineering and regenerative medicine strategies in the clinic. Moreover, copper-doped BGs in combination with polymers may be considered in the future to produce relatively soft, pliable composites and printable inks for use in biofabrication.
10.1016/j.msec.2020.111741
Glass-ceramics for cancer treatment: So close, or yet so far?
Miola Marta,Pakzad Yousef,Banijamali Sara,Kargozar Saeid,Vitale-Brovarone Chiara,Yazdanpanah Abolfazl,Bretcanu Oana,Ramedani Arash,Vernè Enrica,Mozafari Masoud
Acta biomaterialia
After years of research on the ability of glass-ceramics in bone regeneration, this family of biomaterials has shown revolutionary potentials in a couple of emerging applications such as cancer treatment. Although glass-ceramics have not yet reached their actual potential in cancer therapy, the relevant research activity is significantly growing in this field. It has been projected that this idea and the advent of magnetic bioactive glass-ceramics and mesoporous bioactive glasses could result in major future developments in the field of cancer. Undoubtedly, this strategy needs further developments to better answer the critical questions essential for clinical usage. This review aims to address the existing research developments on glass-ceramics for cancer treatment, starting with the current status and moving to future advances. STATEMENT OF SIGNIFICANCE: Although glass-ceramics have not yet reached their potential in cancer therapy, research activity is significantly growing. It has been speculated that this idea and the advent of modern glass-ceramics could result in significant future advances. Undoubtedly, this strategy needs further investigations and many critical questions have to be answered before it can be successfully applied for cancer treatment. This paper reviews the current state-of-the-art, starting with current products and moving onto recent developments in this field. According to our knowledge, there is a lack of a systematic review on the importance and developments of magnetic bioactive glass-ceramics and mesoporous bioactive glasses for cancer treatment, and it is expected that this review will be of interest to those working in this area.
10.1016/j.actbio.2018.11.013
Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue.
Fernandes João S,Gentile Piergiorgio,Pires Ricardo A,Reis Rui L,Hatton Paul V
Acta biomaterialia
Bioactive glasses (BGs) and related glass-ceramic biomaterials have been used in bone tissue repair for over 30years. Previous work in this field was comprehensively reviewed including by their inventor Larry Hench, and the key features and properties of BGs are well understood. More recently, attention has focused on their modification to further enhance the osteogenic behaviour, or further compositional changes that may introduce additional properties, such as antimicrobial activity. Evidence is emerging that BGs and related glass-ceramics may be modified in such a way as to simultaneously introduce more than one desirable property. The aim of this review is therefore to consider the evidence that these more recent inorganic modifications to glass and glass-ceramic biomaterials are effective, and whether or not these new compositions represent sufficiently versatile systems to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic and dental surgery. Indeed, a number of classical glass compositions exhibited antimicrobial activity, however the structural design and the addition of specific ions, i.e. Ag, Cu, and Sr, are able to impart a multifunctional character to these systems, through the combination of, for example, bioactivity with bactericidal activity. STATEMENT OF SIGNIFICANCE:In this review we demonstrate the multifunctional potential of bioactive glasses and related glass-ceramics as biomaterials for orthopaedic and craniofacial/dental applications. Therefore, it considers the evidence that the more recent inorganic modifications to glass and glass-ceramic biomaterials are able to impart antimicrobial properties alongside the more classical bone bonding and osteoconduction. These properties are attracting a special attention nowadays that bacterial infections are an increasing challenge in orthopaedics. We also focus the manuscript on the versatility of these systems as a basis to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic, craniofacial and dental surgery.
10.1016/j.actbio.2017.06.046
Bioactive glass-based fibrous wound dressings.
Burns & trauma
Since the discovery of silicate bioactive glass (BG) by Larry Hench in 1969, different classes of BGs have been researched over decades mainly for bone regeneration. More recently, validating the beneficial influence of BGs with tailored compositions on angiogenesis, immunogenicity and bacterial infection, the applicability of BGs has been extended to soft tissue repair and wound healing. Particularly, fibrous wound dressings comprising BG particle reinforced polymer nanofibers and cotton-candy-like BG fibers have been proven to be successful for wound healing applications. Such fibrous dressing materials imitate the physical structure of skin's extracellular matrix and release biologically active ions e.g. regenerative, pro-angiogenic and antibacterial ions, e.g. borate, copper, zinc, etc., that can provoke cellular activities to regenerate the lost skin tissue and to induce new vessels formation, while keeping an anti-infection environment. In the current review, we discuss different BG fibrous materials meant for wound healing applications and cover the relevant literature in the past decade. The production methods for BG-containing fibers are explained and as fibrous wound dressing materials, their wound healing and bactericidal mechanisms, depending on the ions they release, are discussed. The present gaps in this research area are highlighted and new strategies to address them are suggested.
10.1093/burnst/tkac038
Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.
El-Rashidy Aiah A,Roether Judith A,Harhaus Leila,Kneser Ulrich,Boccaccini Aldo R
Acta biomaterialia
Large bone defects resulting from fractures and disease are a medical concern, being often unable to heal spontaneously by the body's repair mechanisms. Bone tissue engineering (BTE) is a promising approach for treating bone defects through providing a template to guide osseous regeneration. 3D scaffolds with microstructure mimicking host bone are necessary in common BTE strategies. Bioactive glasses (BGs) attract researchers' attention as BTE scaffolds as they are osteoconductive and osteoinductive in certain formulations. In vivo animal models allow understanding and evaluation of materials' performance in the complex physiological environment, being an inevitable step before clinical trials. The aim of this paper is to review for the first time published research investigating the in vivo osseous regenerative capacity of 3D BG scaffolds in bone defect animal models, to better understand and evaluate the progress and future outlook of the use of such scaffolds in BTE. The literature analysis reveals that the regenerative capacity of BG scaffolds depends on several factors; including BG composition, fabrication method, scaffold microstructure and pore characteristics, in addition to scaffold pretreatment and whether or not the scaffolds are loaded with growth factors. In addition, animal species selected, defect size and implantation time affect the scaffold in vivo behavior and outcomes. The review of the literature also makes clear the difficulty encountered to compare different types of bioactive glass scaffolds in their bone forming ability. Even considering such limitations of the current state-of-the-art, results generated from animal bone defect models provide an essential source of information to guide the design of BG scaffolds in future. STATEMENT OF SIGNIFICANCE:Bioactive glasses are at the centre of increasing research efforts in bone tissue engineering as the number of research groups around the world carrying out research on this type of biomaterials continues to increase. However, there are no previous reviews in literature which specifically cover investigations of the performance of bioactive glass scaffolds in bone defect animal models. This is the topic of the present review, in which we have analysed comprehensively all available literature in the field. The review thus fills a gap in the biomaterials literature providing a broad platform of information for researchers interested in bioactive glasses in general and specifically in the outcomes of in vivo models. Bioactive glass scaffolds of different compositions tested in relevant bone defect models are covered.
10.1016/j.actbio.2017.08.030