logo logo
Deficiency in DDR1 Induces Pulmonary Hypertension and Impaired Alveolar Development. American journal of respiratory cell and molecular biology Pulmonary hypertension (PH) is a multifaceted condition characterized by elevated pulmonary arterial pressure, which can result in right ventricular dysfunction and failure. Disorders of lung development can present with secondary PH, which is a leading cause of mortality in infants with bronchopulmonary dysplasia (BPD). DDR1 (discoidin domain receptor 1) is a collagen-binding receptor that regulates tissue fibrosis and inflammation and controls cellular growth and migration. However, the roles of DDR1 in lung development or the pathogenesis of PH are unknown. Studying mice with a DDR1 deletion (), we have noted 35% mortality between 1 and 4 months of age, and we demonstrate that DDR1 deficiency results in reduced right ventricular contractility and muscularization of distal pulmonary arteries, consistent with PH. Pathology analysis revealed enlarged alveolar spaces in mice by Postnatal Day 7, consistent with impaired alveolar development. Gene expression analysis showed that mice have reduced concentrations of alveologenesis factors and epithelial-to-mesenchymal transition markers. Mechanistic studies confirmed that DDR1 mediated epithelial-to-mesenchymal transition, migration, and growth of alveolar epithelial cells. Taken together, these data suggest that DDR1 plays important roles mediating alveolarization during lung development. Our studies also describe a new model of spontaneous PH and bronchopulmonary dysplasia in mice. 10.1165/rcmb.2022-0124OC
Matrix stiffness exacerbates the proinflammatory responses of vascular smooth muscle cell through the DDR1-DNMT1 mechanotransduction axis. Wang Jin,Xie Si-An,Li Ning,Zhang Tao,Yao Weijuan,Zhao Hucheng,Pang Wei,Han Lili,Liu Jiayu,Zhou Jing Bioactive materials Vascular smooth muscle cell (vSMC) is highly plastic as its phenotype can change in response to mechanical cues inherent to the extracellular matrix (ECM). VSMC may be activated from its quiescent contractile phenotype to a proinflammatory phenotype, whereby the cell secretes chemotactic and inflammatory cytokines, e.g. MCP1 and IL6, to functionally regulate monocyte and macrophage infiltration during the development of various vascular diseases including arteriosclerosis. Here, by culturing vSMCs on polyacrylamide (PA) substrates with variable elastic moduli, we discovered a role of discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase that binds collagens, in mediating the mechanical regulation of vSMC gene expression, phenotype, and proinflammatory responses. We found that ECM stiffness induced DDR1 phosphorylation, oligomerization, and endocytosis to repress the expression of DNA methyltransferase 1 (DNMT1), very likely in a collagen-independent manner. The DDR1-to-DNMT1 signaling was sequentially mediated by the extracellular signal-regulated kinases (ERKs) and p53 pathways. ECM stiffness primed vSMC to a proinflammatory phenotype and this regulation was diminished by DDR1 inhibition. In agreement with the in vitro findings, increased DDR1 phosphorylation was observed in human arterial stiffening. DDR1 inhibition in mouse attenuated the acute injury or adenine diet-induced vascular stiffening and inflammation. Furthermore, mouse vasculature with SMC-specific deletion of Dnmt1 exhibited proinflammatory and stiffening phenotypes. Our study demonstrates a role of SMC DDR1 in perceiving the mechanical microenvironments and down-regulating expression of DNMT1 to result in vascular pathologies and has potential implications for optimization of engineering artificial vascular grafts and vascular networks. 10.1016/j.bioactmat.2022.01.012
Liquid-Liquid Phase Separation of DDR1 Counteracts the Hippo Pathway to Orchestrate Arterial Stiffening. Circulation research BACKGROUND:The Hippo-YAP (yes-associated protein) signaling pathway is modulated in response to various environmental cues. Activation of YAP in vascular smooth muscle cells conveys the extracellular matrix stiffness-induced changes in vascular smooth muscle cells phenotype and behavior. Recent studies have established a mechanoreceptive role of receptor tyrosine kinase DDR1 (discoidin domain receptor 1) in vascular smooth muscle cells. METHODS:We conduced 5/6 nephrectomy in vascular smooth muscle cells-specific Ddr1-knockout mice, accompanied by pharmacological inhibition of the Hippo pathway kinase LATS1 (large tumor suppressor 1), to investigate DDR1 in YAP activation. We utilized polyacrylamide gels of varying stiffness or the DDR1 ligand, type I collagen, to stimulate the cells. We employed multiple molecular biological techniques to explore the role of DDR1 in controlling the Hippo pathway and to determine the mechanistic basis by which DDR1 exerts this effect. RESULTS:We identified the requirement for DDR1 in stiffness/collagen-induced YAP activation. We uncovered that DDR1 underwent stiffness/collagen binding-stimulated liquid-liquid phase separation and co-condensed with LATS1 to inactivate LATS1. Mutagenesis experiments revealed that the transmembrane domain is responsible for DDR1 droplet formation. Purified DDR1 N-terminal and transmembrane domain was sufficient to drive its reversible condensation. Depletion of the DDR1 C-terminus led to failure in co-condensation with LATS1. Interaction between the DDR1 C-terminus and LATS1 competitively inhibited binding of MOB1 (Mps one binder 1) to LATS1 and thus the subsequent phosphorylation of LATS1. Introduction of the single-point mutants, histidine-745-proline and histidine-902-proline, to DDR1 on the C-terminus abolished the co-condensation. In mouse models, YAP activity was positively correlated with collagen I expression and arterial stiffness. LATS1 inhibition reactivated the YAP signaling in Ddr1-deficient vessels and abrogated the arterial softening effect of Ddr1 deficiency. CONCLUSIONS:These findings identify DDR1 as a mediator of YAP activation by mechanical and chemical stimuli and demonstrate that DDR1 regulates LATS1 phosphorylation in an liquid-liquid phase separation-dependent manner. 10.1161/CIRCRESAHA.122.322113