logo logo
Fuling-Zexie formula attenuates hyperuricemia-induced nephropathy and inhibits JAK2/STAT3 signaling and NLRP3 inflammasome activation in mice. Journal of ethnopharmacology ETHNOPHARMACOLOGICAL RELEVANCE:Fuling-Zexie (FZ) formula, a traditional Chinese herbal prescription composed of Poria cocos (Schwan.) Wolf. (Poria), Pueraria lobate (Willd.) Howe. (Puerariae Lobatae Radix), Alisma orientale (Sam.) Julep. (Alismatis Rhizoma), and Atractylodes lancea (Thunb.) Dc. (Atractylodis Rhizoma), has been clinically used to ameliorate hyperuricemia (HUA) and its associated renal injury. AIM OF STUDY:This study aims to explore the action and mechanism of FZ on renal inflammation and dysfunction caused by HUA. MATERIALS AND METHODS:FZ was orally administered to rapid HUA mouse induced by potassium oxonate (PO) and hypoxanthine (HX) for 7 days. Serum levels of uric acid (UA), creatinine (CRE), blood urea nitrogen (BUN), xanthine oxidase (XOD), adenosine deaminase (ADA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urine levels of UA, CRE and urinary albumin were determined by biochemical assays. Serum levels of interleukin (IL)-1β and IL-6 were tested by ELISA. Hematoxylin-eosin and Masson staining were used to examine kidney and liver histopathological alterations. The expressions of renal glucose transporter 9 (GLUT9), ATP-binding cassette subfamily G member 2 (ABCG2), organic anion transporter 1 (OAT1), phospho-janus kinase 2 (p-JAK2), p-signal transducer and activator of transcription 3 (p-STAT3), suppression of cytokine signaling 3 (SOCS3), NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and cleaved-cysteinyl aspartate specific proteinase-1 (cleaved-Cas-1) were detected by western blots. The potential protein targets and pathways of FZ intervention on HUA were predicted by network pharmacology. The constituents in FZ aqueous extract were analyzed by UPLC-MS. RESULTS:FZ reduced serum UA, CRE, BUN, and urinary albumin and increased urine UA, CRE levels in HUA mice. In addition, the treatment with FZ to HUA mice inhibited the elevated serum levels of XOD and ADA, and regulated renal urate transports including OAT1, GLUT9 and ABCG2. FZ also attenuated kidney inflammation and fibrosis and downregulated the expressions of IL-1β, p-JAK2, p-STAT3, SOCS3, IL-6, NLRP3, ASC, and cleaved-Cas-1. Thirteen compounds were identified in the FG, including L-phenylalanine, D-tryptophan, 3'-hydroxypuerarin, Puerarin, 3'-Methoxy Puerarin, Daidzin, Pueroside A, formononetin-8-C- [xylosyl (1→6)]-glucoside, Ononin, Alisol I 23-acetate, 16-oxo-alisol A, Alisol C and Alisol A. CONCLUSION:FZ inhibits serum UA generation and promotes urine UA excretion as well as attenuates kidney inflammation and fibrosis in HUA mouse with nephropathy. The underlying mechanism of its action may be associated with suppression of the JAK2/STAT3 signaling pathway and NLRP3 inflammasome activation. This formula may offer a novel source for developing anti-HUA drugs. 10.1016/j.jep.2023.117262
Crosstalk between tubular epithelial cells and glomerular endothelial cells in diabetic kidney disease. Cell proliferation In recent years, although the development of clinical therapy for diabetic kidney disease (DKD) has made great progress, the progression of DKD still cannot be controlled. Therefore, further study of the pathogenesis of DKD and improvements in DKD treatment are crucial for prognosis. Traditional studies have shown that podocyte injury plays an important role in this process. Recently, it has been found that glomerulotubular balance and tubuloglomerular feedback (TGF) may be involved in the progression of DKD. Glomerulotubular balance is the specific gravity absorption of the glomerular ultrafiltrate by the proximal tubules, which absorbs only 65% to 70% of the ultrafiltrate. This ensures that the urine volume will not change much regardless of whether the glomerular filtration rate (GFR) increases or decreases. TGF is one of the significant mechanisms of renal blood flow and self-regulation of GFR, but how they participate in the development of DKD in the pathological state and the specific mechanism is not clear. Injury to tubular epithelial cells (TECs) is the key link in DKD. Additionally, injury to glomerular endothelial cells (GECs) plays a key role in the early occurrence and development of DKD. However, TECs and GECs are close to each other in anatomical position and can crosstalk with each other, which may affect the development of DKD. Therefore, the purpose of this review was to summarize the current knowledge on the crosstalk between TECs and GECs in the pathogenesis of DKD and to highlight specific clinical and potential therapeutic strategies. 10.1111/cpr.12763
AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell death & disease Renal tubulointerstitial fibrosis was a crucial pathological feature of diabetic nephropathy (DN), and renal tubular injury might associate with abnormal mitophagy. In this study, we investigated the effects and molecular mechanisms of AMPK agonist metformin on mitophagy and cellular injury in renal tubular cell under diabetic condition. The high fat diet (HFD) and streptozotocin (STZ)-induced type 2 diabetic mice model and HK-2 cells were used in this study. Metformin was administered in the drinking water (200 mg/kg/d) for 24 weeks. Renal tubulointerstitial lesions, oxidative stress and some indicators of mitophagy (e.g., LC3II, Pink1, and Parkin) were examined both in renal tissue and HK-2 cells. Additionally, compound C (an AMPK inhibitor) and Pink1 siRNA were applied to explore the molecular regulation mechanism of metformin on mitophagy. We found that the expression of p-AMPK, Pink1, Parkin, LC3II, and Atg5 in renal tissue of diabetic mice was decreased obviously. Metformin reduced the levels of serum creatinine, urine protein, and attenuated renal oxidative injury and fibrosis in HFD/STZ induced diabetic mice. In addition, Metformin reversed mitophagy dysfunction and the over-expression of NLRP3. In vitro pretreatment of HK-2 cells with AMPK inhibitor compound C or Pink1 siRNA negated the beneficial effects of metformin. Furthermore, we noted that metformin activated p-AMPK and promoted the translocation of Pink1 from the cytoplasm to mitochondria, then promoted the occurrence of mitophagy in HK-2 cells under HG/HFA ambience. Our results suggested for the first time that AMPK agonist metformin ameliorated renal oxidative stress and tubulointerstitial fibrosis in HFD/STZ-induced diabetic mice via activating mitophagy through a p-AMPK-Pink1-Parkin pathway. 10.1038/s41419-021-04184-8
Effect of Tang-Shen-Ning decoction on podocyte epithelial-esenchymal transformation via inhibiting Wnt/β-catenin pathway in diabetic mice. Annals of palliative medicine BACKGROUND:Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). Podocyte epithelial-esenchymal transformation (EMT) induced by the activated Wnt/β-catenin pathway plays a key role in DN. Tang-Shen-Ning (TSN), a Chinese herbal formula, has been shown to decrease proteinuria and protect the renal function in DN. However, the effect of TSN on the Wnt/β-catenin pathway and podocyte EMT is unclear. METHODS:TSN was orally administrated in KK-Ay mice for 4 weeks, at a daily dose of 20 g/kg body weight in our in vivo study. Rat serum containing TSN was added in podocyte cultured in high glucose for 24 h. The levels of 24 h urine protein, serum creatinine and blood urea nitrogen were detected by ELISA. Nephrin, Synaptopodin, P-cadherin, desmin, FSP-1, and collagen I protein and mRNA expressions were detected by western blot, immunohistochemistry, immunofluorescence, and RT-PCR. Snail, β-catenin, and TCF/LEF were detected by Western blot, RT-PCR and luciferase. RESULTS:TSN significantly decreased 24-h urine protein, serum creatinine, and blood urea nitrogen in DN mice. Further, TSN also significantly increased the expression of nephrin, synaptopodin, and P-cadherin, while the expression of desmin, fibroblast-specific protein 1 (FSP-1), and collagen I of podocytes was significantly decreased. Moreover, TSN significantly inhibited the activation of the Wnt/β-catenin pathway in podocytes cultured under high glucose (HG). Notably, the effect of TSN on podocyte EMT was reversed by activation of the Wnt/β-catenin pathway. CONCLUSIONS:TSN could protect podocytes from injury in DN, partly via inhibiting the activation of the Wnt/β-catenin pathway and ameliorating podocyte EMT. 10.21037/apm-20-602
Effects of HuoxueJiangtang decoction alone or in combination with metformin on renal function and renal cortical mRNA expression in diabetic nephropathy rats. Liu Xuemei,Liu Deliang,Shuai Youyou,Li Huilin,Zhao Hengxia,Qu Xin,Chu Shufang,Zhang Xuewen Pharmaceutical biology CONTEXT:HuoxueJiangtang decoction (ZY) is a traditional Chinese medicine for the treatment of diabetes. OBJECTIVE:The protective effect of ZY on renal injury in diabetic nephropathy rats was investigated in this study. MATERIALS AND METHODS:Fifty 4-week-old SPF Wistar male rats were selected to construct diabetic nephropathy model rats (DN) group by continuous high-fat feeding for 4 weeks, followed by a tail vein injection of 30 mg/kg streptozotocin for 1 week. The experimental rats were divided into six groups of 10 rats: normal (control), DN, DN + ZY, DN + metformin, DN + metformin + ZY, and DN + metformin + captopril (positive control) groups. Among the groups, 6.25 g/kg ZY, 250 mg/kg metformin, and 17.5 mg/kg captopril were given to the rats by gavage once a day for 16 weeks. Blood glucose, dietary behaviour, biochemical indicators, and gene expression changes were measured in each group. RESULTS:Metformin + ZY treatment significantly lowered blood glucose, water intake, urine total protein, urine albumin, urine volume, serum triglyceride, and serum cholesterol levels in the DN group. The pathological changes of kidney tissue showed that the DN + metformin + ZY group had a protective effect on kidney tissue damage. And ZY and metformin + ZY treatments repaired the expression of genes in the DN group. DISCUSSION AND CONCLUSION:The ZY and metformin combined treatment showed a clear therapeutic effect on kidney damage in DN. This study provides a potential mechanism for the treatment of diabetic nephropathy with ZY combined with metformin. 10.1080/13880209.2020.1844242
Bu-Shen-Huo-Xue Decoction Ameliorates Diabetic Nephropathy by Inhibiting Rac1/PAK1/p38MAPK Signaling Pathway in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. Wang Weisong,Long Hongping,Huang Wei,Zhang Ting,Xie Lihua,Chen Cheng,Liu Jianhe,Xiong Dan,Hu Wei Frontiers in pharmacology Diabetic nephropathy (DN), a leading cause of end-stage renal disease, is associated with high morbidity and mortality rates worldwide and the development of new drugs to treat DN is urgently required. Bu-Shen-Huo-Xue (BSHX) decoction is a traditional Chinese herbal formula, made according to traditional Chinese medicine (TCM) theory, and has been used clinically to treat DN. In the present study, we established a high-fat diet/streptozotocin-induced diabetic mouse model and treated the mice with BSHX decoction to verify its therapeutic effects . Ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was applied to analyze the chemical composition and active compounds of BSHX decoction. Markers of podocyte epithelial-mesenchymal transition and the Rac1/PAK1/p38MAPK signaling pathway were evaluated to investigate the mechanism underlying function of BSHX decoction. BSHX decoction effectively alleviated diabetic symptoms, according to analysis of the renal function indicators, serum creatinine, blood urea nitrogen, serum uric acid, and urinary albumin excretion rate, as well as renal histopathology and ultrastructural pathology of DN mice. We identified 67 compounds, including 20 likely active compounds, in BSHX decoction. The podocyte markers, nephrin and podocin, were down-regulated, while the mesenchymal markers, α-SMA and FSP-1, were up-regulated in DN mouse kidney; however, the changes in these markers were reversed on treatment with BSHX decoction. GTP-Rac1 was markedly overexpressed in DN mice and its levels were significantly decreased in response to BSHX decoction. Similarly, levels of p-PAK1 and p-p38MAPK which indicate Rac1 activation, were reduced on treatment with BSHX decoction. Together, our data demonstrated that BSHX decoction ameliorated renal function and podocyte epithelial-mesenchymal transition via inhibiting Rac1/PAK1/p38MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Further, we generated a quality control standard and numerous potential active compounds from BSHX decoction for DN. 10.3389/fphar.2020.587663
Tongluo Digui decoction treats renal injury in diabetic rats by promoting autophagy of podocytes. Han Jiarui,Zhang Yage,Shi Xiujie,Peng Zining,Xing Yufeng,Pang Xinxin Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan OBJECTIVE:To investigate the effects of Tongluo Digui decoction on renal injury and streptozotocin-induced podocyte autophagy in diabetic rats. METHODS:Male Sprague-Dawley rats were randomly divided into six groups: normal, model, Tongluo Digui decoction (high, medium, and low dose) and valsartan. Streptozotocin was injected intraperitoneally to replicate the diabetic animal model. After 8 weeks, proteinuria was evaluated to establish the diabetic nephropathy model. Treatments were administered daily via the intragastric route. At 16 weeks after gavage, we determined 24 h urine protein concentration, and blood glucose, serum creatinine, and urea nitrogen concentrations. Then, rats were sacrificed, and kidneys were harvested and stained with periodic acid-Schiff to evaluate the pathological changes in glomeruli, including glomerular podocytes by transmission electron microscopy. Western blot analysis was used to determine the expression of nephrin, podocin, p62, beclin-1, LC3Ⅱ/Ⅰ, and p-mTOR/mTOR protein in kidney tissues. RESULTS:Compared with the model group, Tongluo Digui decoction was associated with decreases in 24 h urine protein concentration, and blood glucose, hemoglobin A1c, serum creatinine, urea nitrogen concentrations, total serum protein and albumin. Concurrently, mesangial mesenteric broadening and fusion of foot processes were reduced, the glomerular basement membrane was not significantly thickened, and the number of podocytes and the number of autophagosomes in the podocytes was increased. Further, expression of nephrin, podocin, LC3Ⅱ, and beclin-1 protein in kidney tissue was up-regulated, while expression of p62 protein was down-regulated and mTOR phosphorylation was inhibited. CONCLUSION:Tongluo Digui decoction may inhibit the progression of diabetic nephropathy by inhibiting mTOR phosphorylation, thereby increasing autophagy to protect podocytes and reducing proteinuria. 10.19852/j.cnki.jtcm.2021.01.014
Qi-dan-di-huang decoction alleviates diabetic nephropathy by inhibiting the NF-kappaB pathway. Ma Fei,Li Lingxing,Wang Qian,Chen Zujiang,You Yanting,Gao Peiping,Zhao Xiaoshan,Luo Ren Frontiers in bioscience (Landmark edition) Diabetic nephropathy (DN) is one of the most serious complications of diabetes mellitus, for which no effective treatment currently exists. We tested the hypothesis that Qi-dan-di-huang (QDDH) might have therapuetic effects in an experimental rat model of DN. The levels of I kappa KinaseAlpha and Beta, p-p65, p-IκB alpha, TGF-β1 and Alpha-SMA were significantly increased in kidneys in DN. QDDH decoction only partially reversed the increased Ikappa KinaseAlpha/Beta, p-p65, p-IKappaB alpha, TGF-Beta1 and alpha-SMA in the kidneys in DN. However, treatment of diabetic rats with QDDH decoction significantly inhibited the production and release of inflammatory cytokines IL-6, IL-1 beta and TNF-alpha into the serum. QDDH decoction also significantly improved the physiologic and biochemical indicators of DN, reduced glycogen and protein deposition in DN and prevented renal fibrosis. Together, the data show that QDDH decoction exerts a protective effect on kidneys in diabetic rats and reverses the inflammatory milieu of the serum in DN. 10.2741/4792
Protective effects of Huang-Qi-Ge-Gen decoction against diabetic liver injury through regulating PI3K/AKT/Nrf2 pathway and metabolic profiling. Journal of ethnopharmacology ETHNOPHARMACOLOGICAL RELEVANCE:Huang-Qi-Ge-Gen decoction (HGD) is a traditional Chinese medicine prescription that has been used for centuries to treat "Xiaoke" (the name of diabetes mellitus in ancient China). However, the ameliorating effects of HGD on diabetic liver injury (DLI) and its mechanisms are not yet fully understood. AIM OF THE STUDY:To elucidate the ameliorative effect of HGD on DLI and explore its material basis and potential hepatoprotective mechanism. MATERIALS AND METHODS:A diabetic mice model was induced by feeding a high-fat diet and injecting intraperitoneally with streptozotocin (40 mg kg) for five days. After the animals were in confirmed diabetic condition, they were given HGD (3 or 12 g kg, i. g.) for 14 weeks. The effectiveness of HGD in treating DLI mice was evaluated by monitoring blood glucose and blood lipid levels, liver function, and pathological conditions. Furthermore, UPLC-MS/MS was used to identify the chemical component profile in HGD and absorption components in HGD-treated plasma. Network pharmacology and molecular docking were performed to predict the potential pathway of HGD intervention in DLI. Then, the results of network pharmacology were validated by examining biochemical parameters and using western blotting. Lastly, urine metabolites were analyzed by metabolomics strategy to explore the effect of HGD on the metabolic profile of DLI mice. RESULTS:HGD exerted therapeutic potential against the disorders of glucose metabolism and lipid metabolism, liver dysfunction, liver steatosis, and fibrosis in a DLI model mice induced by HFD/STZ. A total of 108 chemical components in HGD and 18 absorption components in HGD-treated plasma were preliminarily identified. Network pharmacology and molecular docking results of the absorbed components in plasma indicated PI3K/AKT as a potential pathway for HGD to intervene in DLI mice. Further experiments verified that HGD markedly reduced liver oxidative stress in DLI mice by modulating the PI3K/AKT/Nrf2 signaling pathway. Moreover, 19 differential metabolites between normal and DLI mice were detected in urine, and seven metabolites could be significantly modulated back by HGD. CONCLUSIONS:HGD could ameliorate diabetic liver injury by modulating the PI3K/AKT/Nrf2 signaling pathway and urinary metabolic profile. 10.1016/j.jep.2023.117647
Protective effects of Huang-Lian-Jie-Du Decoction on diabetic nephropathy through regulating AGEs/RAGE/Akt/Nrf2 pathway and metabolic profiling in db/db mice. Tang Dan,He Wen-Jiao,Zhang Zhi-Tong,Shi Jing-Jing,Wang Xue,Gu Wen-Ting,Chen Zhi-Quan,Xu You-Hua,Chen Yun-Bo,Wang Shu-Mei Phytomedicine : international journal of phytotherapy and phytopharmacology BACKGROUND:Diabetic nephropathy (DN) is a severe diabetic complication that is the principal cause of end-stage kidney disease worldwide. Huang-Lian-Jie-Du Decoction (HLJDD) is widely used to treat diabetes clinically. However, the nephroprotective effects and potential mechanism of action of HLJDD against DN have not yet been fully elucidated. PURPOSE:This study aimed to investigate the potential roles of HLJDD in DN and elucidate its mechanisms in db/db mice. METHODS:An integrated strategy of network pharmacology, pharmacodynamics, molecular biology, and metabolomics was used to reveal the mechanisms of HLJDD in the treatment of DN. First, network pharmacology was utilized to predict the possible pathways for DN using the absorbed ingredients of HLJDD in rat plasma in silico. Then, combined with histopathological examination, biochemical evaluation immunohistochemistry/immunofluorescence assay, western blot analysis, and UPLC-Q-Orbitrap HRMS/MS-based metabolomics approach were applied to evaluate the efficacy of HLJDD against DN and its underlying mechanisms in vivo. RESULTS:In silico, network pharmacology indicated that the AGEs/RAGE pathway was the most prominent pathway for HLJDD against DN. In vivo, HLJDD exerted protective effects against DN by ameliorating glycolipid metabolic disorders and kidney injury. Furthermore, we verified that HLJDD protected against DN by regulating the AGEs/RAGE/Akt/Nrf2 pathway for the first time. In addition, 22 potential biomarkers were identified in urine, including phenylalanine metabolism, tryptophan metabolism, glucose metabolism, and sphingolipid metabolism. CONCLUSION:These findings suggest that HLJDD ameliorates DN by regulating the AGEs/RAGE/Akt/Nrf2 pathway and metabolic profiling. 10.1016/j.phymed.2021.153777
CRTC2 activates the epithelial-mesenchymal transition of diabetic kidney disease through the CREB-Smad2/3 pathway. Molecular medicine (Cambridge, Mass.) BACKGROUND:Epithelial-mesenchymal transition (EMT) plays a key role in tubulointerstitial fibrosis, which is a hallmark of diabetic kidney disease (DKD). Our previous studies showed that CRTC2 can simultaneously regulate glucose metabolism and lipid metabolism. However, it is still unclear whether CRTC2 participates in the EMT process in DKD. METHODS:We used protein‒protein network (PPI) analysis to identify genes that were differentially expressed during DKD and EMT. Then, we constructed a diabetic mouse model by administering STZ plus a high-fat diet, and we used HK-2 cells that were verified to confirm the bioinformatics research results. The effects that were exerted by CRTC2 on epithelial-mesenchymal transition in diabetic kidney disease through the CREB-Smad2/3 signaling pathway were investigated in vivo and in vitro by real-time PCR, WB, IHC and double luciferase reporter gene experiments. RESULTS:First, bioinformatics research showed that CRTC2 may promote EMT in diabetic renal tubules through the CREB-Smad2/3 signaling pathway. Furthermore, the Western blotting and real-time PCR results showed that CRTC2 overexpression reduced the expression of E-cadherin in HK-2 cells. The CRTC2 and α-SMA levels were increased in STZ-treated mouse kidneys, and the E-cadherin level was reduced. The luciferase activity of α-SMA, which is the key protein in EMT, was sharply increased in response to the overexpression of CRTC2 and decreased after the silencing of CREB and Smad2/3. However, the expression of E-cadherin showed the opposite trends. In the real-time PCR experiment, the mRNA expression of α-SMA increased significantly when CRTC2 was overexpressed but partially decreased when CREB and Smad2/3 were silenced. However, E-cadherin expression showed the opposite result. CONCLUSION:This study demonstrated that CRTC2 activates the EMT process via the CREB-Smad2/3 signaling pathway in diabetic renal tubules. 10.1186/s10020-023-00744-0
Salvianolic acid B and tanshinone IIA synergistically improve early diabetic nephropathy through regulating PI3K/Akt/NF-κB signaling pathway. Journal of ethnopharmacology ETHNOPHARMACOLOGICAL RELEVANCE:Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, which lacks effective treatment. Salviae Miltiorrhizae Radix Et Rhizoma is one of the key compatible traditional Chinese medicine in the prescription for the treatment of DN. Salvianolic acid B and tanshinone IIA are two monomer active components with high content and clear structure in Salvia miltiorrhiza, which can effectively improve early (DN), respectively. AIM OF THE STUDY:To evaluate the compatible effect of salvianolic acid B and tanshinone IIA on early DN rats and elucidate the mechanism. METHODS:Early DN rats were induced by streptozotocin combined with high glucose and high fat diet, and intervened by salvianolic acid B, tanshinone IIA and their combinations. The pathological sections of kidney, liver and biochemical indexes were analyzed. Network pharmacology method was used to predict the possible mechanism. The mechanisms were elucidated by metabolomics, Elisa, and Western blot. RESULTS:Given our analysis, salvianolic acid B and tanshinone IIA can synergistically regulate 24 h UTP, Urea and Scr and improve kidney damage in early DN rats. The metabolic abnormalities of early DN rats were improved by regulating the biosynthesis of saturated fatty acids, glycerol phospholipid metabolism, steroid biosynthesis, alanine, and arachidonic acid. Salvianolic acid B combined with tanshinone IIA at a mass ratio of 13.4:1 can significantly reduce kidney inflammation, up-regulate p-PI3K/PI3K and p-Akt/Akt and down-regulate p-NF-κB/NF-κB, which better than the single-used group and can be reversed by PI3K inhibitor LY294002. CONCLUSION:Salvianolic acid B and tanshinone IIA can synergistically improve glucose and lipid disorders, liver and kidney damage, and resist kidney inflammation in early DN rats, and the mechanism may be related to regulating PI3K/Akt/NF-κB signaling pathway. 10.1016/j.jep.2023.117356
Ferroptosis: A new view on the prevention and treatment of diabetic kidney disease with traditional Chinese medicine. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie Diabetic kidney disease is one of the complications of diabetes mellitus, which can eventually progress to end-stage kidney disease. The increasing prevalence of diabetic kidney disease has brought huge economic burden to society and seriously jeopardized public health. Ferroptosis is an iron-dependent, non-apoptosis-regulated form of cell death. The regulation of ferroptosis involves different molecular mechanisms and multiple cellular metabolic pathways. In recent years, ferroptosis has been proved to be closely related to the occurrence and development of diabetic kidney disease, and can interact with pathological changes such as fibrosis, inflammation, oxidative stress, and disorders of glucose and lipid metabolism, destroying the structure, form and function of the inherent cells of the kidney, and promoting the progression of the disease. Traditional Chinese medicine has a long history of treating diabetic kidney disease with remarkable curative effect. Current scholars have shown that the oral administration of traditional Chinese medicine and the external treatment of Chinese medicine can regulate GPX4, Nrf2, ACSL4, PTGS2, TFR1 and other key signaling molecules, curb ferroptosis, and prevent the progressive deterioration of diabetic kidney disease. In this paper, the mechanism of ferroptosis and diabetic kidney disease and the prevention and treatment of traditional Chinese medicine are analyzed and summarized, in order to provide new ideas and new plans for the treatment of diabetic kidney disease. 10.1016/j.biopha.2023.115952
Sanziguben polysaccharides improve diabetic nephropathy in mice by regulating gut microbiota to inhibit the TLR4/NF-κB/NLRP3 signalling pathway. Pharmaceutical biology CONTEXT:Sanziguben (SZGB) is an empirical prescription used in traditional Chinese medicine to treat diabetic nephropathy (DN). As an abundant and primarily effective component of SZGB, Sanziguben polysaccharides (SZP) can be digested by flora to generate biological activity. OBJECTIVE:Our study aimed to clarify the potential mechanism of SZP in improving chronic DN. MATERIALS AND METHODS:Male db/db mice were randomized into DN, SZP (500 mg/kg) and metformin (MET, 300 mg/kg) groups. Wild-type littermates served as the normal control (NC) group. The drug was orally administered for 8 weeks. Enzyme-linked immunosorbent assay was used to detect the inflammatory factors. Proteins related to inflammation were evaluated using western blotting and immunohistochemical examination. Gut microbiota was analysed using 16S rRNA sequencing. RESULTS:SZP significantly reduced 24 h urine albumin ( < 0.05) of DN mice. Compared to DN group, SZP significantly decreased the homeostasis model assessment of insulin resistance index, serum creatinine and blood urea nitrogen levels (20.27 ± 3.50 vs. 33.64 ± 4.85, 19.22 ± 3.77 vs. 32.52 ± 3.05 μmol/L, 13.23 ± 1.42 vs. 16.27 ± 0.77 mmol/L, respectively), and mitigated renal damage. SZP also regulated gut microbiota and decreased the abundance of Gram-negative bacteria (Proteobacteria, and ). Subsequently, SZP reduced lipopolysaccharides levels (1.06- to 1.93-fold) of DN mice. Furthermore, SZP inhibited the expression levels of TLR4, phospho-NF-κB p65, NLRP3 proteins and interleukin (IL)-18 and IL-1β. CONCLUSIONS:These results demonstrated that SZP improved intestinal flora disorder and inhibited the TLR4/NF-κB/NLRP3 pathway to alleviate DN. 10.1080/13880209.2023.2174145
Mitochondrial dysfunction in diabetic nephropathy: insights and therapeutic avenues from traditional Chinese medicine. Frontiers in endocrinology Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus. The progressive damage to glomeruli, tubules, and interstitium in the kidneys can lead to the development of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Most of the energy we need comes from mitochondria. Mitochondria are best known as the sites for production of respiratory ATP and are essential for eukaryotic life. The pathogenesis of DN involves a variety of factors, such as altered haemodynamics, oxidative stress, and inflammation, and studies from animal models suggest that mitochondrial dysfunction plays an important role in the development of DN. Traditional Chinese medicine (TCM) has a history of more than 2,500 years and has rich experience and remarkable efficacy in the treatment of DN. Recent studies have found that TCM may have great potential in regulating mitochondrial dysfunction in the treatment of DN. This review will elucidate the main causes of mitochondrial dysfunction and the relationship with DN, and explore in depth the potential mechanisms of TCM to protect the kidney by improving mitochondrial dysfunction. Current pharmacological treatments for patients with DN do not prevent the inevitable progression to ESRD. With the rich variety of Chinese herbs, TCM is expected to be the most promising candidate for the treatment of DN as we continue to learn more about the mechanisms of DN and incorporate the current advances in extraction techniques. 10.3389/fendo.2024.1429420
Effects of a combined fucoidan and traditional Chinese medicine formula on hyperglycaemia and diabetic nephropathy in a type II diabetes mellitus rat model. Peng Yongbo,Ren Dandan,Song Yuefan,Hu Yue,Wu Long,Wang Qiukuan,He Yunhai,Zhou Hui,Liu Shu,Cong Haihua International journal of biological macromolecules In this study, we innovatively propose a fucoidan mixed with traditional Chinese medicine formula (FCM) and evaluate its effects on hyperglycaemia and diabetic nephropathy in a type II diabetes mellitus Wistar rat model. After treatment with FCM for 8 weeks, the blood glucose, insulin resistance, serum lipid and antioxidant stress levels were significantly decreased (P < 0.05 or P < 0.01, vs. negative group). Via gene expression analysis, we found that three genes (InsR, GCK and GLUT-2) in the glucose metabolism pathway were significantly increased (P < 0.01, vs. negative group) in the FCM-treated groups and play important roles in hypoglycaemic activity. Moreover, FCM treatments alleviated (P < 0.01, vs. negative group) the urine protein, urine creatinine and pathological changes in the kidneys, producing significant improvements in renal function and structure. In summary, FCM exerts protective effects in diabetic rats and could be used in medicinal treatment for diabetes mellitus and its complications. 10.1016/j.ijbiomac.2019.12.201
Glabridin, a bioactive component of licorice, ameliorates diabetic nephropathy by regulating ferroptosis and the VEGF/Akt/ERK pathways. Molecular medicine (Cambridge, Mass.) BACKGROUND:Glabridin (Glab) is a bioactive component of licorice that can ameliorate diabetes, but its role in diabetic nephropathy (DN) has seldom been reported. Herein, we explored the effect and underlying mechanism of Glab on DN. METHODS:The bioactive component-target network of licorice against DN was by a network pharmacology approach. The protective effect of Glab on the kidney was investigated by a high-fat diet with streptozotocin induced-diabetic rat model. High glucose-induced NRK-52E cells were used for in vitro studies. The effects of Glab on ferroptosis and VEGF/Akt/ERK pathways in DN were investigated in vivo and in vitro using qRT-PCR, WB, and IHC experiments. RESULTS:Bioinformatics analysis constructed a network comprising of 10 bioactive components of licorice and 40 targets for DN. 13 matching targets of Glab were mainly involved in the VEGF signaling pathway. Glab treatment ameliorated general states and reduced FBG, HOMA-β, and HOMA-insulin index of diabetic rats. The renal pathological changes and the impaired renal function (the increased levels of Scr, BUN, UREA, KIM-1, NGAL, and TIMP-1) were also improved by Glab. Moreover, Glab repressed ferroptosis by increasing SOD and GSH activity, and GPX4, SLC7A11, and SLC3A2 expression, and decreasing MDA and iron concentrations, and TFR1 expression, in vivo and in vitro. Mechanically, Glab significantly suppressed VEGF, p-AKT, p-ERK1/2 expression in both diabetic rats and HG-induced NRK-52E cells. CONCLUSIONS:This study revealed protective effects of Glab on the kidney of diabetic rats, which might exert by suppressing ferroptosis and the VEGF/Akt/ERK pathway. 10.1186/s10020-022-00481-w