logo logo
Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Contreras Osvaldo,Rebolledo Daniela L,Oyarzún Juan Esteban,Olguín Hugo C,Brandan Enrique Cell and tissue research Fibrosis occurs in skeletal muscle under various pathophysiological conditions such as Duchenne muscular dystrophy (DMD), a devastating disease characterized by fiber degeneration that results in progressive loss of muscle mass, weakness and increased extracellular matrix (ECM) accumulation. Fibrosis is also observed after skeletal muscle denervation and repeated cycles of damage followed by regeneration. The ECM is synthesized largely by fibroblasts in the muscle connective tissue under normal conditions. Myofibroblasts, cells that express α-smooth muscle actin (α-SMA), play a role in many tissues affected by fibrosis. In skeletal muscle, fibro/adipogenic progenitors (FAPs) that express cell-surface platelet-derived growth factor receptor-α (PDGFR-α) and the transcription factor Tcf4 seem to be responsible for connective tissue synthesis and are good candidates for the origin of myofibroblasts. We show that cells positive for Tcf4 and PDGFR-α are expressed in skeletal muscle under normal conditions and are increased in various skeletal muscles of mdx mice, a murine model for DMD, wild type muscle after sciatic denervation and muscle subjected to chronic damage. These cells co-label with the myofibroblast marker α-SMA in dystrophic muscle but not in normal tissue. The Tcf4-positive cells lie near macrophages mainly concentrated in dystrophic necrotic-regenerating foci. The close proximity of Tcf4-positive cells to inflammatory cells and their previously described role in muscle regeneration might reflect an active interaction between these cell types and growth factors, possibly resulting in a muscular regenerative or fibrotic condition. 10.1007/s00441-015-2343-0
Role of the Notch Signaling Pathway in Fibrosis of Denervated Skeletal Muscle. Feng Fei,Shan Lu,Deng Jing-Xiu,Luo Ling-Li,Huang Qi-Shun Current medical science In order to investigate the role of the Notch signaling pathway in skeletal muscle fibrosis after nerve injury, 60 Sprague-Dawley rats were selected and divided randomly into a control and two experimental groups. Group A served as controls without any treatment. Rats in groups B were injected intraperitoneally with 0.2 mL PBS and those in group C were injected intraperitoneally with 0.2 mL PBS+100 μmol/L, 0.2 mL N-[N-(3,5-difluorophenacetyl)-l-alanyl]- S-phenylglycine t-butyl ester (DAPT, a gamma-secretase inhibitor that suppresses Notch signaling) respectively, on postoperative days 1, 3, 7, 10, and 14 in a model of denervation-induced skeletal muscle fibrosis by right sciatic nerve transection. Five rats from each group were euthanized on postoperative days 1, 7, 14, and 28 to collect the right gastrocnemii, and hematoxylin and eosin (HE) staining, immunohistochemistry test, real-time PCR, and Western blotting were performed to assess connective tissue hyperplasia and fibroblast density as well as expression of Notch 1, Jagged 1, and Notch downstream molecules Hes 1 and collagen I (COL I) on day 28. There was no significant difference in HE-stained fibroblast density between group B and C on postoperative day 1. However, fibroblast density was significantly higher in group B than in group C on postoperative days 7, 14, and 28. Notch 1, Jagged 1, Hes 1, and COL I proteins in the gastrocnemius were expressed at very low levels in group A but at high levels in group B. Expression levels of these proteins were significantly lower in group C than in group B (P<0.05), but they were higher in group C than in group A (P<0.05) on postoperative day 28. We are led to conclude that locking the Notch signaling pathway inhibits fibrosis progression of denervated skeletal muscle. Thus, it may be a new approach for treatment of fibrosis of denervated skeletal muscle. 10.1007/s11596-019-2053-z
Intermittent stretching induces fibrosis in denervated rat muscle. Faturi Fernanda M,Franco Rúbia C,Gigo-Benato Davilene,Turi Andriette C,Silva-Couto Marcela A,Messa Sabrina P,Russo Thiago L Muscle & nerve INTRODUCTION:Stretching (St) has been used for treating denervated muscles. However, its effectiveness and safety claims require further study. METHODS:Rats were divided into: (1) those with denervated (D) muscles, evaluated 7 or 15 days after sciatic nerve crush injury; (2) those with D muscles submitted to St during 7 or 15 days; and (3) those with normal muscles. Muscle fiber cross-sectional area, serial sarcomere number, sarcomere length, and connective tissue density were measured. MMP-2, MMP-9, TIMP-1, TGF-β1, and myostatin mRNAs were determined by real-time polymerase chain reaction. MMP-2 and MMP-9 activity was evaluated by zymography. Collagen I was localized using immunofluorescence. RESULTS:St did not prevent muscle atrophy due to denervation, but it increased fibrosis and collagen I deposition at day 15. St also upregulated MMP-9 and TGF-β1 gene expressions at day 7, and myostatin at day 15. CONCLUSIONS:Stretching denervated muscle does not prevent atrophy, but it increases fibrosis via temporal modulation of TGF-β1/myostatin and MMP-9 cascades. 10.1002/mus.24702
P2Y2 promotes fibroblasts activation and skeletal muscle fibrosis through AKT, ERK, and PKC. BMC musculoskeletal disorders BACKGROUND:Skeletal muscle atrophy and fibrosis are pathological conditions that contribute to morbidity in numerous conditions including aging, cachexia, and denervation. Muscle atrophy is characterized as reduction of muscle fiber size and loss of muscle mass while muscle fibrosis is due to fibroblasts activation and excessive production of extracellular matrix. Purinergic receptor P2Y2 has been implicated in fibrosis. This study aims to elucidate the roles of P2Y2 in sleketal muscle atrophy and fibrosis. METHODS:Primary muscle fibroblasts were isolated from wild type and P2Y2 knockout (KO) mice and their proliferating and migrating abilities were assessed by CCK-8 and Transwell migration assays respectively. Fibroblasts were activated with TGF-β1 and assessed by western blot of myofibroblast markers including α-SMA, CTGF, and collagen I. Muscle atrophy and fibrosis were induced by transection of distal sciatic nerve and assessed using Masson staining. RESULTS:P2Y2 KO fibroblasts proliferated and migrated significantly slower than WT fibroblasts with or without TGF-β1.The proliferation and ECM production were enhanced by P2Y2 agonist PSB-1114 and inhibited by antagonist AR-C118925. TGF-β1 induced fibrotic activation was abolished by P2Y2 ablation and inhibited by AKT, ERK, and PKC inhibitors. Ablation of P2Y2 reduced denervation induced muscle atrophy and fibrosis. CONCLUSIONS:P2Y2 is a promoter of skeletal muscle atrophy and activation of fibroblasts after muscle injury, which signaling through AKT, ERK and PKC. P2Y2 could be a potential intervention target after muscle injury. 10.1186/s12891-021-04569-y
Muscle fibrosis in the soft palate: Delivery of cells, growth factors and anti-fibrotics. Von den Hoff Johannes W,Carvajal Monroy Paola L,Ongkosuwito Edwin M,van Kuppevelt Toin H,Daamen Willeke F Advanced drug delivery reviews The healing of skeletal muscle injuries after major trauma or surgical reconstruction is often complicated by the development of fibrosis leading to impaired function. Research in the field of muscle regeneration is mainly focused on the restoration of muscle mass while far less attention is paid to the prevention of fibrosis. In this review, we take as an example the reconstruction of the muscles in the soft palate of cleft palate patients. After surgical closure of the soft palate, muscle function during speech is often impaired by a shortage of muscle tissue as well as the development of fibrosis. We will give a short overview of the most common approaches to generate muscle mass and then focus on strategies to prevent fibrosis. These include anti-fibrotic strategies that have been developed for muscle and other organs by the delivery of small molecules, decorin and miRNAs. Anti-fibrotic compounds should be delivered in aligned constructs in order to obtain the organized architecture of muscle tissue. The available techniques for the preparation of aligned muscle constructs will be discussed. The combination of approaches to generate muscle mass with anti-fibrotic components in an aligned muscle construct may greatly improve the functional outcome of regenerative therapies for muscle injuries. 10.1016/j.addr.2018.08.002