logo logo
Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nature reviews. Drug discovery Amyotrophic lateral sclerosis (ALS) is a devastating disease caused by degeneration of motor neurons. As with all major neurodegenerative disorders, development of disease-modifying therapies has proven challenging for multiple reasons. Nevertheless, ALS is one of the few neurodegenerative diseases for which disease-modifying therapies are approved. Significant discoveries and advances have been made in ALS preclinical models, genetics, pathology, biomarkers, imaging and clinical readouts over the last 10-15 years. At the same time, novel therapeutic paradigms are being applied in areas of high unmet medical need, including neurodegenerative disorders. These developments have evolved our knowledge base, allowing identification of targeted candidate therapies for ALS with diverse mechanisms of action. In this Review, we discuss how this advanced knowledge, aligned with new approaches, can enable effective translation of therapeutic agents from preclinical studies through to clinical benefit for patients with ALS. We anticipate that this approach in ALS will also positively impact the field of drug discovery for neurodegenerative disorders more broadly. 10.1038/s41573-022-00612-2
Structure of the C9orf72 ARF GAP complex that is haploinsufficient in ALS and FTD. Nature Mutation of C9orf72 is the most prevalent defect associated with amyotrophic lateral sclerosis and frontotemporal degeneration. Together with hexanucleotide-repeat expansion, haploinsufficiency of C9orf72 contributes to neuronal dysfunction. Here we determine the structure of the C9orf72-SMCR8-WDR41 complex by cryo-electron microscopy. C9orf72 and SMCR8 both contain longin and DENN (differentially expressed in normal and neoplastic cells) domains, and WDR41 is a β-propeller protein that binds to SMCR8 such that the whole structure resembles an eye slip hook. Contacts between WDR41 and the DENN domain of SMCR8 drive the lysosomal localization of the complex in conditions of amino acid starvation. The structure suggested that C9orf72-SMCR8 is a GTPase-activating protein (GAP), and we found that C9orf72-SMCR8-WDR41 acts as a GAP for the ARF family of small GTPases. These data shed light on the function of C9orf72 in normal physiology, and in amyotrophic lateral sclerosis and frontotemporal degeneration. 10.1038/s41586-020-2633-x