The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas.
Progress in retinal and eye research
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, with several underlying pathophysiological mechanisms, some of which are still uncertain. The cornea is an avascular tissue and sensitive to hyperglycemia, resulting in several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity, and tear film changes. The manifestation of DPN in the cornea is referred to as diabetic neurotrophic keratopathy (DNK). Recent studies have revealed that disturbed epithelial-neural-immune cell interactions are a major cause of DNK. The epithelium is supplied by a dense network of sensory nerve endings and dendritic cell processes, and it secretes growth/neurotrophic factors and cytokines to nourish these neighboring cells. In turn, sensory nerve endings release neuropeptides to suppress inflammation and promote epithelial wound healing, while resident immune cells provide neurotrophic and growth factors to support neuronal and epithelial cells, respectively. Diabetes greatly perturbs these interdependencies, resulting in suppressed epithelial proliferation, sensory neuropathy, and a decreased density of dendritic cells. Clinically, this results in a markedly delayed wound healing and impaired sensory nerve regeneration in response to insult and injury. Current treatments for DPN and DNK largely focus on managing the severe complications of the disease. Cell-based therapies hold promise for providing more effective treatment for diabetic keratopathy and corneal ulcers.
10.1016/j.preteyeres.2021.101039
Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy.
Nature reviews. Endocrinology
Diabetic sensorimotor peripheral neuropathy (DSPN) is a serious complication of diabetes mellitus and is associated with increased mortality, lower-limb amputations and distressing painful neuropathic symptoms (painful DSPN). Our understanding of the pathophysiology of the disease has largely been derived from animal models, which have identified key potential mechanisms. However, effective therapies in preclinical models have not translated into clinical trials and we have no universally accepted disease-modifying treatments. Moreover, the condition is generally diagnosed late when irreversible nerve damage has already taken place. Innovative point-of-care devices have great potential to enable the early diagnosis of DSPN when the condition might be more amenable to treatment. The management of painful DSPN remains less than optimal; however, studies suggest that a mechanism-based approach might offer an enhanced benefit in certain pain phenotypes. The management of patients with DSPN involves the control of individualized cardiometabolic targets, a multidisciplinary approach aimed at the prevention and management of foot complications, and the timely diagnosis and management of neuropathic pain. Here, we discuss the latest advances in the mechanisms of DSPN and painful DSPN, originating both from the periphery and the central nervous system, as well as the emerging diagnostics and treatments.
10.1038/s41574-021-00496-z
New perspectives in diabetic neuropathy.
Neuron
Diabetes prevalence continues to climb with the aging population. Type 2 diabetes (T2D), which constitutes most cases, is metabolically acquired. Diabetic peripheral neuropathy (DPN), the most common microvascular complication, is length-dependent damage to peripheral nerves. DPN pathogenesis is complex, but, at its core, it can be viewed as a state of impaired metabolism and bioenergetics failure operating against the backdrop of long peripheral nerve axons supported by glia. This unique peripheral nerve anatomy and the injury consequent to T2D underpins the distal-to-proximal symptomatology of DPN. Earlier work focused on the impact of hyperglycemia on nerve damage and bioenergetics failure, but recent evidence additionally implicates contributions from obesity and dyslipidemia. This review will cover peripheral nerve anatomy, bioenergetics, and glia-axon interactions, building the framework for understanding how hyperglycemia and dyslipidemia induce bioenergetics failure in DPN. DPN and painful DPN still lack disease-modifying therapies, and research on novel mechanism-based approaches is also covered.
10.1016/j.neuron.2023.05.003
Diabetic neuropathy.
Feldman Eva L,Callaghan Brian C,Pop-Busui Rodica,Zochodne Douglas W,Wright Douglas E,Bennett David L,Bril Vera,Russell James W,Viswanathan Vijay
Nature reviews. Disease primers
The global epidemic of prediabetes and diabetes has led to a corresponding epidemic of complications of these disorders. The most prevalent complication is neuropathy, of which distal symmetric polyneuropathy (for the purpose of this Primer, referred to as diabetic neuropathy) is very common. Diabetic neuropathy is a loss of sensory function beginning distally in the lower extremities that is also characterized by pain and substantial morbidity. Over time, at least 50% of individuals with diabetes develop diabetic neuropathy. Glucose control effectively halts the progression of diabetic neuropathy in patients with type 1 diabetes mellitus, but the effects are more modest in those with type 2 diabetes mellitus. These findings have led to new efforts to understand the aetiology of diabetic neuropathy, along with new 2017 recommendations on approaches to prevent and treat this disorder that are specific for each type of diabetes. In parallel, new guidelines for the treatment of painful diabetic neuropathy using distinct classes of drugs, with an emphasis on avoiding opioid use, have been issued. Although our understanding of the complexities of diabetic neuropathy has substantially evolved over the past decade, the distinct mechanisms underlying neuropathy in type 1 and type 2 diabetes remains unknown. Future discoveries on disease pathogenesis will be crucial to successfully address all aspects of diabetic neuropathy, from prevention to treatment.
10.1038/s41572-019-0092-1
Towards prevention of diabetic peripheral neuropathy: clinical presentation, pathogenesis, and new treatments.
The Lancet. Neurology
Diabetic peripheral neuropathy (DPN) occurs in up to half of individuals with type 1 or type 2 diabetes. DPN results from the distal-to-proximal loss of peripheral nerve function, leading to physical disability and sometimes pain, with the consequent lowering of quality of life. Early diagnosis improves clinical outcomes, but many patients still develop neuropathy. Hyperglycaemia is a risk factor and glycaemic control prevents DPN development in type 1 diabetes. However, glycaemic control has modest or no benefit in individuals with type 2 diabetes, probably because they usually have comorbidities. Among them, the metabolic syndrome is a major risk factor for DPN. The pathophysiology of DPN is complex, but mechanisms converge on a unifying theme of bioenergetic failure in the peripheral nerves due to their unique anatomy. Current clinical management focuses on controlling diabetes, the metabolic syndrome, and pain, but remains suboptimal for most patients. Thus, research is ongoing to improve early diagnosis and prognosis, to identify molecular mechanisms that could lead to therapeutic targets, and to investigate lifestyle interventions to improve clinical outcomes.
10.1016/S1474-4422(22)00188-0