Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases.
Nature reviews. Molecular cell biology
Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.
10.1038/s41580-023-00604-z
The distribution and function of phosphatidylserine in cellular membranes.
Leventis Peter A,Grinstein Sergio
Annual review of biophysics
Phosphatidylserine (PS) is the most abundant negatively charged phospholipid in eukaryotic membranes. PS directs the binding of proteins that bear C2 or gamma-carboxyglutamic domains and contributes to the electrostatic association of polycationic ligands with cellular membranes. Rather than being evenly distributed, PS is found preferentially in the inner leaflet of the plasma membrane and in endocytic membranes. The loss of PS asymmetry is an early indicator of apoptosis and serves as a signal to initiate blood clotting. This review discusses the determinants and functional implications of the subcellular distribution and membrane topology of PS.
10.1146/annurev.biophys.093008.131234
Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease.
Hernández-Alvarez María Isabel,Sebastián David,Vives Sara,Ivanova Saška,Bartoccioni Paola,Kakimoto Pamela,Plana Natalia,Veiga Sónia R,Hernández Vanessa,Vasconcelos Nuno,Peddinti Gopal,Adrover Anna,Jové Mariona,Pamplona Reinald,Gordaliza-Alaguero Isabel,Calvo Enrique,Cabré Noemí,Castro Rui,Kuzmanic Antonija,Boutant Marie,Sala David,Hyotylainen Tuulia,Orešič Matej,Fort Joana,Errasti-Murugarren Ekaitz,Rodrígues Cecilia M P,Orozco Modesto,Joven Jorge,Cantó Carles,Palacin Manuel,Fernández-Veledo Sonia,Vendrell Joan,Zorzano Antonio
Cell
Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease.
10.1016/j.cell.2019.04.010
Mineralization Profile of Annexin A6-Harbouring Proteoliposomes: Shedding Light on the Role of Annexin A6 on Matrix Vesicle-Mediated Mineralization.
International journal of molecular sciences
The biochemical machinery involved in matrix vesicles-mediated bone mineralization involves a specific set of lipids, enzymes, and proteins. Annexins, among their many functions, have been described as responsible for the formation and stabilization of the matrix vesicles' nucleational core. However, the specific role of each member of the annexin family, especially in the presence of type-I collagen, remains to be clarified. To address this issue, in vitro mineralization was carried out using AnxA6 (in solution or associated to the proteoliposomes) in the presence or in the absence of type-I collagen, incubated with either amorphous calcium phosphate (ACP) or a phosphatidylserine-calcium phosphate complex (PS-CPLX) as nucleators. Proteoliposomes were composed of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylcholine: 1,2-dipalmitoylphosphatidylserine (DPPC:DPPS), and DPPC:Cholesterol:DPPS to mimic the outer and the inner leaflet of the matrix vesicles membrane as well as to investigate the effect of the membrane fluidity. Kinetic parameters of mineralization were calculated from time-dependent turbidity curves of free Annexin A6 (AnxA6) and AnxA6-containing proteoliposomes dispersed in synthetic cartilage lymph. The chemical composition of the minerals formed was investigated by Fourier transform infrared spectroscopy (FTIR). Free AnxA6 and AnxA6-proteoliposomes in the presence of ACP were not able to propagate mineralization; however, poorly crystalline calcium phosphates were formed in the presence of PS-CPLX, supporting the role of annexin-calcium-phosphatidylserine complex in the formation and stabilization of the matrix vesicles' nucleational core. We found that AnxA6 lacks nucleation propagation capacity when incorporated into liposomes in the presence of PS-CPLX and type-I collagen. This suggests that AnxA6 may interact either with phospholipids, forming a nucleational core, or with type-I collagen, albeit less efficiently, to induce the nucleation process.
10.3390/ijms23168945
Phosphatidylserine controls calcium phosphate nucleation and growth on lipid monolayers: A physicochemical understanding of matrix vesicle-driven biomineralization.
Cruz Marcos A E,Ferreira Claudio R,Tovani Camila B,de Oliveira Flávia A,Bolean Maytê,Caseli Luciano,Mebarek Saida,Millán José Luis,Buchet Rene,Bottini Massimo,Ciancaglini Pietro,Paula Ramos Ana
Journal of structural biology
Bone biomineralization is an exquisite process by which a hierarchically organized mineral matrix is formed. Growing evidence has uncovered the involvement of one class of extracellular vesicles, named matrix vesicles (MVs), in the formation and delivery of the first mineral nuclei to direct collagen mineralization. MVs are released by mineralization-competent cells equipped with a specific biochemical machinery to initiate mineral formation. However, little is known about the mechanisms by which MVs can trigger this process. Here, we present a combination of in situ investigations and ex vivo analysis of MVs extracted from growing-femurs of chicken embryos to investigate the role played by phosphatidylserine (PS) in the formation of mineral nuclei. By using self-assembled Langmuir monolayers, we reconstructed the nucleation core - a PS-enriched motif thought to trigger mineral formation in the lumen of MVs. In situ infrared spectroscopy of Langmuir monolayers and ex situ analysis by transmission electron microscopy evidenced that mineralization was achieved in supersaturated solutions only when PS was present. PS nucleated amorphous calcium phosphate that converted into biomimetic apatite. By using monolayers containing lipids extracted from native MVs, mineral formation was also evidenced in a manner that resembles the artificial PS-enriched monolayers. PS-enrichment in lipid monolayers creates nanodomains for local increase of supersaturation, leading to the nucleation of ACP at the interface through a multistep process. We posited that PS-mediated nucleation could be a predominant mechanism to produce the very first mineral nuclei during MV-driven bone/cartilage biomineralization.
10.1016/j.jsb.2020.107607
Phosphatidylserine liposomes containing curcumin inhibit bone loss in osteoporotic rats: A possible synergy through a common signaling pathway.
Journal of food biochemistry
The present study aimed to investigate the effect of phosphatidylserine liposomes containing curcumin (PSLs-Cur) on the development of osteoporosis induced by glucocorticoids (GCs) in the rat model. PSL-Cur, phosphatidylserine (PSL), curcumin (Cur), and alendronate (AL) drugs as a positive control were administrated orally to evaluate the beneficial effects of 3-week treatments on osteoporotic rats. The biochemical and biomechanical properties of bone parameters as well as gene expression were evaluated in treated rats. Moreover, histomorphometric examinations were performed on the bone tissues of the animals. The results revealed that PSL-Cur oral administration caused a significant improvement in serum markers, mechanical strength, and OPG gene expression rather than PSL or Cur administration in osteoporotic rats. Also, PSL-Cur significantly increased the thickness and volume of cortical and trabecular bone mass in comparison with the untreated osteoporotic group. The results of this study indicated that PSL-Cur had a more inhibitory effect on bone loss induced by GCs compared to AL standard drug. Our findings suggested that PSL-loaded Cur may be an appropriate alternative therapy for glucocorticoid-induced osteoporosis. PRACTICAL APPLICATIONS: Osteoporosis is one of the most serious metabolic chronic diseases that causes fragile bone due to decreased mineral density and microarchitectural deterioration in humans. The osteoprotective effects of curcumin and phosphatidylserine, as a food spice and supplementary diet, respectively, have been shown, previously. However, the low bioavailability of curcumin (Cur) due to its poor absorption, rapid metabolism, and fast systemic elimination, limits its benefits. This deficit can be modified with phosphatidylserine liposome (PSL) formulation that facilitates the gastrointestinal delivery of Cur. Moreover, PSL is known as an osteoprotective agent that may make synergy effect with Cur against GC-induced osteoporosis. In this study, daily oral administration of phosphatidylserine liposomes containing curcumin (PSL-Cur) for 3 weeks, considerably improved biochemical, biomechanical, and gene expression of bone parameters in the treated animals subjected to osteoporosis. PSL-Cur can significantly increase the thickness and volume of cortical and trabecular bone mass as well as the mechanical bone strength in animals. Experimental findings proposed PSL-Cur consumption as a proper and safe supplementary medication in the controlling of bone loss in patients with a high risk of osteoporosis.
10.1111/jfbc.14120
Single-molecule analysis of phospholipid scrambling by TMEM16F.
Watanabe Rikiya,Sakuragi Takaharu,Noji Hiroyuki,Nagata Shigekazu
Proceedings of the National Academy of Sciences of the United States of America
Transmembrane protein 16F (TMEM16F) is a Ca-dependent phospholipid scramblase that translocates phospholipids bidirectionally between the leaflets of the plasma membrane. Phospholipid scrambling of TMEM16F causes exposure of phosphatidylserine in activated platelets to induce blood clotting and in differentiated osteoblasts to promote bone mineralization. Despite the importance of TMEM16F-mediated phospholipid scrambling in various biological reactions, the fundamental features of the scrambling reaction remain elusive due to technical difficulties in the preparation of a platform for assaying scramblase activity in vitro. Here, we established a method to express and purify mouse TMEM16F as a dimeric molecule by constructing a stable cell line and developed a microarray containing membrane bilayers with asymmetrically distributed phospholipids as a platform for single-molecule scramblase assays. The purified TMEM16F was integrated into the microarray, and monitoring of phospholipid translocation showed that a single TMEM16F molecule transported phospholipids nonspecifically between the membrane bilayers in a Ca-dependent manner. Thermodynamic analysis of the reaction indicated that TMEM16F transported 4.5 × 10 lipids per second at 25 °C, with an activation free energy of 47 kJ/mol. These biophysical features were similar to those observed with channels, which transport substrates by facilitating diffusion, and supported the stepping-stone model for the TMEM16F phospholipid scramblase.
10.1073/pnas.1717956115