Solvation of Nanoions in Aqueous Solutions.
Journal of the American Chemical Society
In recent years it has been increasingly recognized that different classes of large ions with multiple valency have effects conceptually similar to weakly solvated ions in the Hofmeister series, also labeled by the term chaotropic. The term "superchaotropic effect" has been coined because these effects are much more strongly pronounced for nanometer-sized ions, whose adsorption properties often resemble typical surfactants. Despite this growing interest in these nanometer-sized ions, a simple conceptual extension of the Hofmeister series toward nanoions has not been achieved because an extrapolation of the one-dimensional surface charge density scale does not lead to the superchaotropic regime. In this work, we discuss a generic model that is broadly applicable to ions of nearly spherical shape and thus includes polyoxometalates and boron clusters. We present a qualitative classification scheme in which the ion size appears as a second dimension. Ions of different sizes but the same charge density differ in their bulk solvation free energy. As the ions grow bigger at constant surface charge density, they become more stable in solution, but the adsorption behavior is still governed by the surface charge density. A detailed molecular dynamics simulation study of large ions that is based on a shifted Lennard-Jones potential is presented that supports the presented classification scheme.
10.1021/jacs.3c09494
Synergistic Chaotropic Effect and Cathode Interface Thermal Release Effect Enabling Ultralow Temperature Aqueous Zinc Battery.
Small (Weinheim an der Bergstrasse, Germany)
Although rechargeable zinc-ion batteries are promising candidates for next-generation energy storage devices, their inferior performance at subzero temperatures limits their practical application. Here, a strategy to destroy the H-bond network by adding synergistic chaotropic regents is reported, thus reducing the freezing point of the aqueous electrolyte below -90 °C. Owing to the synergistic chaotropic effect between urea and Zn(ClO ) and the thermal release effect on the cathode interface during charging, Zn//VO batteries feature a specific capacity of 111.4 mAh g and stability after ≈1000 cycles with 81.9% capacity retention at -40 °C. This work demonstrates that the synergistic chaotropic effect and the thermal effect on the interface can effectively widen the operation range of temperature of aqueous electrolytes and maintain fast kinetics, which provides a new design strategy for all-weather aqueous zinc batteries.
10.1002/smll.202203347
Chaotropic Effect Stabilized Radical-Containing Supramolecular Organic Frameworks for Photothermal Therapy.
Small (Weinheim an der Bergstrasse, Germany)
Radical-containing frameworks (RCFs) have emerged as promising functional materials in various fields due to the combination of the highly ordered frame structure and the fascinating property of organic radicals. Here, the first example of radical-containing supramolecular organic frameworks (SOFs) fabricated by the chaotropic effect between closo-dodecaborate cluster (B H ) and 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT ) is presented. The SOFs can be easily synthesized by stirring the B H and the TPT in aqueous solution through self-assembly. Upon 435 nm light irradiation, the SOFs exhibits photochromic behavior from slight yellow (SOF-1) to dark purple (SOF-2). Electron paramagnetic resonance spectroscopy also reveals that stable radicals are generated in situ after light irradiation. Powder X-ray diffraction demonstrates the SOFs maintain their structural stabilities upon light irradiation. More interestingly, the radical-containing SOFs exhibit efficient photothermal effect under 660 nm light irradiation, which can be applied as photothermal agent for antibacterial application both in vitro and in vivo. This work highlights the construction of RCFs through supramolecular self-assembly, which may arouse applications in energy, catalysis, photoluminescence, and biomedical fields.
10.1002/smll.202108055
The Chaotropic Effect as an Assembly Motif in Chemistry.
Angewandte Chemie (International ed. in English)
Following up on scattered reports on interactions of conventional chaotropic ions (for example, I , SCN , ClO ) with macrocyclic host molecules, biomolecules, and hydrophobic neutral surfaces in aqueous solution, the chaotropic effect has recently emerged as a generic driving force for supramolecular assembly, orthogonal to the hydrophobic effect. The chaotropic effect becomes most effective for very large ions that extend beyond the classical Hofmeister scale and that can be referred to as superchaotropic ions (for example, borate clusters and polyoxometalates). In this Minireview, we present a continuous scale of water-solute interactions that includes the solvation of kosmotropic, chaotropic, and hydrophobic solutes, as well as the creation of void space (cavitation). Recent examples for the association of chaotropic anions to hydrophobic synthetic and biological binding sites, lipid bilayers, and surfaces are discussed.
10.1002/anie.201804597