A Novel 2-Methoxyestradiol Derivative: Disrupting Mitosis Inhibiting Cell Motility and Inducing Apoptosis in HeLa Cells In Vitro.
Pharmaceutics
The clinical application of 2-methoxyestradiol (2ME) in cancer therapy has been limited by its low solubility and rapid metabolism. Derivatives of 2ME have been synthesised to enhance bioavailability and decrease hepatic metabolism. Compound , an analog of 2ME, has demonstrated exceptional pharmacological activity, in addition to promising pharmacokinetic profile. Our study, therefore, aimed at exploring the anticancer effects of on the cervical cancer cell line, HeLa. Compound exhibited a significant and dose-dependent antimetastatic and antiinvasive impact on HeLa cells, as determined by wound-healing and Boyden chamber assays, respectively. Hoechst/Propidium iodide (HOPI) double staining showcased a substantial induction of apoptosis via , with minimal necrotic effect. Flow cytometry revealed a significant G2/M phase arrest, accompanied by a noteworthy rise in the sub-G1 cell population, indicating apoptosis, 18 h post-treatment. Moreover, a cell-independent tubulin polymerisation assay illustrated compound 's ability to stabilise microtubules by promoting tubulin polymerisation. Molecular modelling experiments depicted that interacts with the colchicine-binding site, nestled between the α and β tubulin dimers. Furthermore, displayed an affinity for binding to and activating ER-α, as demonstrated by the luciferase reporter assay. These findings underscore the potential of in inhibiting HPV18+ cervical cancer proliferation and cellular motility.
10.3390/pharmaceutics16050622
Effect of 2-methoxyestradiol on mammary tumor initiation and progression.
Cancer reports (Hoboken, N.J.)
BACKGROUND:The anti-cancer agent 2-methoxyestradiol (2-ME) has been shown to have anti-proliferative and anti-angiogenic properties. Previously, the effect of 2-ME on early- and late-stage breast cancer (BC) was investigated in vivo using a transgenic mouse model (FVB/N-Tg(MMTV-PyVT)) of spontaneous mammary carcinoma. Anti-tumor effects were observed in late-stage BC with no effect on early-stage BC. Given the contrasting results obtained from the different BC stages, we have now investigated the effect of 2-ME when administered before the appearance of palpable tumors. METHODS:Each mouse received 100 mg/kg 2-ME on day 30 after birth, twice per week for 28 days, while control mice received vehicle only. Animals were terminated on day 59. Lung and mammary tissue were obtained for immunohistochemical analysis of CD163 and CD3 expression, and histological examination was performed to analyze tumor necrosis. Additionally, blood samples were collected to measure plasma cytokine levels. RESULTS:2-ME increased tumor mass when compared to the untreated animals (p = .0139). The pro-tumorigenic activity of 2-ME was accompanied by lower CD3+ T-cell numbers in the tumor microenvironment (TME) and high levels of the pro-inflammatory cytokine interleukin (IL)-1β. Conversely, 2-ME-treatment resulted in fewer CD163+ cells detectable in the TME, increased levels of tumor necrosis, increased IL-10 plasma levels, and low IL-6 and IL-27 plasma levels. CONCLUSION:Taken together, these findings suggest that 2-ME promotes early-stage BC development.
10.1002/cnr2.2068
Protective Effects of 2-Methoxyestradiol on Acute Isoproterenol-Induced Cardiac Injury in Rats.
Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society
Myocardial injury (MI) is an important pathological driver of mortality worldwide., and arises as a result of imbalances between myocardial oxygen demand and supply. In MI, oxidative stress often leads to inflammatory changes and apoptosis. Current therapies for MI are known to cause various adverse effects. Consequently, the development of new therapeutic agents with a reduced adverse event profile is necessary. In this regard, 2-methoxyestradiol (2ME), the metabolic end-product of oestradiol, possesses anti-inflammatory and antioxidant properties. The aim of this research is to assess the impact of 2ME on cardiac injury caused by isoproterenol (ISO) in rats. Animals were separated into six groups; controls, and those receiving 2ME (1 mg/kg), ISO (85 mg/kg), ISO + 2ME (0.25 mg/kg), ISO + 2ME (0.5 mg/kg), and ISO + 2ME (1 mg/kg). 2ME significantly attenuated ISO-induced changes in electrocardiographic changes and the cardiac histological pattern. This compound also decreased lactate dehydrogenase activity, creatine kinase myocardial band and troponin levels. The ability of 2ME to act as an antioxidant was shown by a decrease in malondialdehyde concentration, and the restoration of glutathione levels and superoxide dismutase activity. Additionally, 2ME antagonized inflammation and cardiac cell apoptosis, a process determined to be mediated, at least partially, by suppression of Gal-3/TLR4/MyD88/NF-κB signaling pathway. 2ME offers protection against acute ISO-induced MI in rats and offers a novel therapeutic management option.
10.1016/j.jsps.2023.101787
Effect of 2-methoxyestradiol on SK-LMS-1 uterine leiomyosarcoma cells.
Lee Ji-Sun,Ahn Changhwan,Kang Hee Young,Jeung Eui-Bae
Oncology letters
An endogenous metabolite of 17β-estradiol, 2-methoxyestradiol (2-ME), has affinity for estrogen receptors. This compound was reported to be a promising antitumor drug due to its anti-proliferative effects on a wide range of tumor cell types. Numerous previous studies have been performed to evaluate the cytotoxic effects of 2-ME on tumor cell lines in following the induction of G/M cell cycle arrest and subsequent apoptosis. Uterine leiomyosarcoma (ULMS) is a relatively rare malignant smooth muscle cell tumor that develops in the uterus muscle layer. The aim of the present study was to examine the anti-proliferative effects of 2-ME on SK-LMS-1 human leiomyosarcoma cells. An MTT assay, terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling assay, immunocytochemistry and western blotting were performed. A high concentration (10 M) of 2-ME was identified to have an anti-proliferative effect on SK-LMS-1 cells. Additionally, expression of the apoptosis markers was upregulated in the presence of 10 M 2-ME, according to western blot analysis. Furthermore, the expression level of an autophagic marker, light chain 3, was increased by 2-ME treatment in a dose-dependent manner. This was associated with cell death induced by the upregulation of phosphorylated extracellular-signal-regulated kinase 1/2 signaling pathway. The results of the present study demonstrated that 2-ME, which is used as a therapeutic agent for treating solid tumors, exhibits apoptotic and anti-proliferative effects depending on the dose. Therefore, 2-ME may be a potential therapeutic reagent for human ULMS, but the appropriate dose of this compound should be carefully selected.
10.3892/ol.2017.6165
Role of 2-methoxyestradiol as inhibitor of arthritis and osteoporosis in a model of postmenopausal rheumatoid arthritis.
Stubelius Alexandra,Andréasson Emil,Karlsson Anna,Ohlsson Claes,Tivesten Asa,Islander Ulrika,Carlsten Hans
Clinical immunology (Orlando, Fla.)
In postmenopausal rheumatoid arthritis, both the inflammatory disease and estrogen deficiency contribute to the development of osteoporosis. As hormone replacement therapy is no longer an option, we hypothesized that 2-methoxyestradiol (2me2) could be beneficial, and asked if such therapy was associated with effects on reproductive organs. Mice were ovariectomized and arthritis was induced, whereafter mice were administered 2me2, estradiol, or placebo. Clinical and histological scores of arthritis, together with bone mineral density were evaluated. Uteri weight, reactive oxygen species (ROS) from spleen cells, and characterization of cells from joints and lymph nodes were analyzed. In addition, in vivo activation of estrogen response elements (ERE) by 2me2 was evaluated. Treatment with 2me2 and estradiol decreased the frequency and severity of arthritis and preserved bone. Joint destruction was reduced, neutrophils diminished and ROS production decreased. The uterine weight increased upon long-term 2me2 exposure, however short-term exposure did not activate ERE in vivo.
10.1016/j.clim.2011.03.006
Modulation of adjuvant arthritis in the rat by 2-methoxyestradiol: an effect independent of an anti-angiogenic action.
Issekutz Andrew C,Sapru Kusum
International immunopharmacology
Angiogenesis is a prominent feature in rheumatoid arthritis. 2-methoxyestradiol (2ME2) inhibits endothelial cell proliferation, and angiogenesis in vivo. We evaluated the effect of 2ME2 in rats with adjuvant arthritis (AA), an autoimmune T-cell-dependent polyarticular arthritis induced by immunization with Mycobacterium organisms. Rats were immunized with Mycobacterium butyricum and arthritis was assessed clinically, by radiolabeled blood neutrophil (PMNL) migration to joints and by histology. Treatment with 2ME2 (30 mg/kg/d or 100 mg/kg/d) from day 6 post-immunization inhibited arthritis severity on day 14 (vehicle clinical score=11.2; 2ME2 groups=7-8, p<0.05). When treatment was delayed until signs of clinical arthritis on day 10 post-immunization, 2ME2 treatment still inhibited arthritis severity. PMNL migration to the joints was significantly inhibited (by 35-40%; p<0.01) by early 2ME2 treatment (day 6-14). Treatment with 2ME2 inhibited PMNL migration to dermal inflammation induced by TNF-alpha but not by LPS or C5a. Joint histology revealed decrease in leukocyte infiltration and especially in cartilage damage. However, synovial vascularity was not affected by 2ME2 treatment. The marked splenomegaly, splenitis and lymphoid hyperplasia associated with AA were prevented by 2ME2 therapy. Furthermore, the ex vivo proliferative response to mycobacterial antigen (PPD) of lymphocytes from 2ME2-treated rats with AA was markedly diminished, although response to mitogens was unaffected. Thus 2ME2 has anti-arthritic properties with a disease-modifying action, separate from its anti-angiogenic properties. The selective inhibition of TNF-alpha-induced leukocyte recruitment, lymphoid hyperplasia and attenuated recall response to antigen suggests both immunomodulatory and anti-inflammatory actions of 2ME2.
10.1016/j.intimp.2008.01.016
Disease modifying and antiangiogenic activity of 2-methoxyestradiol in a murine model of rheumatoid arthritis.
Plum Stacy M,Park Eun J,Strawn Steve J,Moore Elizabeth G,Sidor Carolyn F,Fogler William E
BMC musculoskeletal disorders
BACKGROUND:A critical component of disease progression in rheumatoid arthritis (RA) involves neovascularization associated with pannus formation. 2-methoxyestradiol (2ME2) is a naturally occurring molecule with no known physiologic function, although at pharmacologic concentrations it has antiproliferative and antiangiogenic activities. We investigated the impact of orally administered 2ME2 on the initiation and development of proliferative synovitis using the anti-collagen monoclonal antibodies (CAIA) model. METHODS:Severe polyarticular arthritis was induced in Balb/c female mice by administration of 2 mg of a monoclonal antibody cocktail intravenously into the tail vein of mice. Twenty-four hours following monoclonal antibody administration, mice were injected with 25 microg of LPS (E. coli strain 0111:B4) via the intraperitoneal route. Treatment with 2ME2 (100, 75, 50, 25, 10, 1 mg/kg, p.o., daily), or vehicle control began 24 hrs following LPS challenge and continued to day 21. Hind limbs were harvested, sectioned and evaluated for DMARD activity and general histopathology by histomorphometric analysis and immunohistochemistry (vWF staining). In a separate study, different dosing regimens of 2ME2 (100 mg/kg; q.d. vs q.w. vs q.w. x 2) were evaluated. The effect of treatment with 2ME2 on gene expression of inflammatory cytokines and angiogenic growth factors in the joint space was evaluated 5 and 14 days after the induction of arthritis. RESULTS:Mice treated with 2ME2 beginning 24 hours post anti-collagen monoclonal antibody injection, showed a dose-dependent inhibition in mean arthritic scores. At study termination (day 21), blinded histomorphometric assessments of sectioned hind limbs demonstrated decreases in synovial inflammation, articular cartilage degradation, pannus formation, osteoclast activity and bone resorption. At the maximal efficacious dosing regimen (100 mg/kg/day), administration of 2ME2 resulted in total inhibition of the study parameters and prevented neovascularization into the joint. Examination of gene expression on dissected hind limbs from mice treated for 5 or 14 days with 2ME2 showed inhibition of inflammatory cytokine message for IL-1beta, TNF-alpha, IL-6 and IL-17, as well as the angiogenic cytokines, VEGF and FGF-2. CONCLUSION:These data demonstrate that in the CAIA mouse model of RA, 2ME2 has disease modifying activity that is at least partially attributable to the inhibition of neovascular development. Further, the data suggests new mechanistic points of intervention for 2ME2 in RA, specifically inhibition of inflammatory mediators and osteoclast activity.
10.1186/1471-2474-10-46
2-Methoxyestradiol inhibits experimental autoimmune encephalomyelitis through suppression of immune cell activation.
Duncan Gordon S,Brenner Dirk,Tusche Michael W,Brüstle Anne,Knobbe Christiane B,Elia Andrew J,Mock Thomas,Bray Mark R,Krammer Peter H,Mak Tak W
Proceedings of the National Academy of Sciences of the United States of America
The endogenous metabolite of estradiol, 2-Methoxyestradiol (2ME2), is an antimitotic and antiangiogenic cancer drug candidate that also exhibits disease-modifying activity in animal models of rheumatoid arthritis (RA). We found that 2ME2 dramatically suppresses development of mouse experimental autoimmune encephalomyelitis (EAE), a rodent model of multiple sclerosis (MS). 2ME2 inhibits in vitro lymphocyte activation, cytokine production, and proliferation in a dose-dependent fashion. 2ME2 treatment of lymphocytes specifically reduced the nuclear translocation and transcriptional activity of nuclear factor of activated T-cells (NFAT) c1, whereas NF-κB and activator protein 1 (AP-1) activation were not adversely affected. We therefore propose that 2ME2 attenuates EAE through disruption of the NFAT pathway and subsequent lymphocyte activation. By extension, our findings provide a molecular rationale for the use of 2ME2 as a tolerable oral immunomodulatory agent for the treatment of autoimmune disorders such as MS in humans.
10.1073/pnas.1215558110
An angiogenesis inhibitor, 2-methoxyestradiol, involutes rat collagen-induced arthritis and suppresses gene expression of synovial vascular endothelial growth factor and basic fibroblast growth factor.
Brahn Ernest,Banquerigo Mona L,Lee John K,Park Eun J,Fogler William E,Plum Stacy M
The Journal of rheumatology
OBJECTIVE:Rheumatoid arthritis (RA) pannus may be dependent on angiogenesis and several critical growth factors including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). 2-Methoxyestradiol (2ME2), an endogenous metabolite with low estrogen receptor affinity, has both antiangiogenic and antiproliferative activity. 2ME2 was assessed in the rat collagen-induced arthritis (CIA) model to determine if it could prevent or involute established synovitis. METHODS:Rats were immunized on Day 0 with collagen and randomized to a vehicle control or two 2ME2 prevention arms. In additional studies, multiple parallel treatment arms were initiated at Day 10 after arthritis onset. RESULTS:2ME2 in preventive protocols at 30 or 100 mg/kg significantly delayed the onset and reduced the severity of clinical and radiographic CIA. In established CIA, oral 2ME2 at 50 mg/kg/bid, 100 mg/kg/day, and 300 mg/kg/day reduced severity compared to vehicle controls. Efficacy of 2ME2 delivery by osmotic pumps at 60 mg/kg/day was equivalent to 300 mg/kg/day by daily gavage. The 3 oral treatment protocols all significantly reduced radiographic scores in a dose-dependent fashion, with the greatest benefit at 300 mg/kg. 2ME2 showed marked suppression of synovial gene expression of proangiogenic bFGF and VEGF, with parallel reduction of synovial blood vessels. Serum antibody levels to native type II collagen were not reduced, suggesting that 2ME2 did not influence humoral immunity. CONCLUSION:Our results indicate that 2ME2 may represent a novel agent for the treatment of inflammatory autoimmune diseases such as RA.
10.3899/jrheum.080302
2-Methoxyestradiol inhibits bleomycin-induced systemic sclerosis through suppression of fibroblast activation.
Zhu Lubing,Song Yinghua,Li Ming
Journal of dermatological science
BACKGROUND:The most dominant feature of systemic sclerosis (SSc) is fibrosis, which is caused by overproduction of collagen by fibroblasts. 2-Methoxyestradiol (2-ME) has exhibited disease-modifying activity in animal models of rheumatoid arthritis and autoimmune encephalomyelitis and inhibitory effect in cell proliferation and collagen synthesis. Therefore, we hypothesized that 2-ME may exhibit antifibrotic effect in SSc. OBJECTIVE:To investigate the antifibrotic effect of 2-ME in SSc. METHODS:We established a bleomycin-induced SSc mice model by injection with bleomycin daily for 21 days. 2-ME (100mg/kg/d) was simultaneously administered for 14 days. On the end of Week1 (W1), W2, W3 and W4, skins and lungs were collected for histological examination and analysis of hydroxyproline content and mRNA level of α1(I) procollagen (COL1A1) and COL1A2. In skin fibroblasts derived from SSc patients and healthy subjects treated with 2-ME (1, 5, or 25 μM), we examined cell proliferation, expression of α-smooth muscle actin (SMA) and mRNA level of COL1A1, COL1A2, COL3A1, matrix metalloproteinase(MMP)-1 and tissue inhibitors of MMP (TIMP)-1. RESULTS:We found reduced dermal thickness and lung fibrosis and decreased hydroxyproline content and mRNA level of COL1A1 and COL1A2 in skin and lung in SSc mice treated with 2-ME. In cell study, we observed a dose- and time-dependent inhibitory effect on proliferation of SSc fibroblasts by 2-ME. We also detected reduced α-SMA expression, decreased mRNA level of COL1A1, COL1A2, COL3A1 and TIMP-1, and increased mRNA level of MMP-1 in SSc fibroblasts treated with 2-ME. CONCLUSION:2-ME could suppress SSc tissue fibrosis, which may be attributable to its inhibitory effect on the excessive proliferation, differentiation and production of collagen in fibroblasts. 2-ME is rising as a prospective agent for control of fibrosis in SSc.
10.1016/j.jdermsci.2014.10.007
2-methoxyestradiol inhibits differentiation and is cytotoxic to osteoclasts.
Maran A,Gorny G,Oursler M J,Zhang M,Shogren K L,Yaszemski M J,Turner R T
Journal of cellular biochemistry
2-Methoxyestradiol (2-ME), a naturally occurring metabolite of 17beta-estradiol, is highly cytotoxic to a wide range of tumor cells but is harmless to most normal cells. However, 2-ME prevented bone loss in ovariectomized rats, suggesting it inhibits bone resorption. These studies were performed to determine the direct effects of 2-ME on cultured osteoclasts. 2-ME (2 microM) reduced osteoclast number by more than 95% and induced apoptosis in three cultured osteoclast model systems (RAW 264.7 cells cultured with RANKL, marrow cells co-cultured with stromal support cells, and spleen cells cultured without support cells in media supplemented with RANKL and macrophage colony stimulating factor (M-CSF)). The 2-ME-mediated effect was ligand specific; 2-hydroxyestradiol (2-OHE), the immediate precursor to 2-ME, exhibited less cytotoxicity; and 2-methoxyestrone (2-MEOE1) the estrone analog of 2-ME, was not cytotoxic. Co-treatment with ICI 182,780 did not antagonize 2-ME, suggesting that the cytotoxicity was not estrogen receptor-dependent. 2-ME-induced cell death in RAW 264.7 cells coincided with an increase in gene expression of cytokines implicated in inhibition of differentiation and induction of apoptosis. In addition, the 2-ME-mediated decrease in cell survival was partially inhibited by anti-lymphotoxin(LT)beta antibodies, suggesting that 2-ME-dependent effects involve LTbeta. These results suggest that 2-ME could be useful for treating skeletal diseases in which bone resorption is increased, such as postmenopausal osteoporosis and cancer metastasis to bone.
10.1002/jcb.20924
Mechanism of action of 2-methoxyestradiol: new developments.
Mooberry Susan L
Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy
2-Methoxyestradiol (2ME2) is an endogenous metabolite of estrogen that has both antiangiogenic and antitumor effects. In preclinical models, 2ME2 showed promising activity that led to its clinical development as an orally active, small-molecule inhibitor of angiogenesis. Initial results suggest that 2ME2 is well tolerated and several Phase I and II clinical trials are evaluating 2ME2 in multiple tumor types. While many studies over the past 10 years have increased our understanding of how 2ME2 exerts its pleiotropic effects, its molecular mechanisms of action are not yet clear. Recent data have shown that 2ME2 inhibits HIF-1alpha, a key angiogenic transcription factor. The ability of 2ME2 to inhibit HIF-1alpha correlates with its microtubule-depolymerizing effects. The extrinsic and intrinsic pathways of apoptosis and reactive oxygen species are involved in apoptosis initiated by 2ME2; the relative contribution of each pathway appears to vary depending on the cell type. This review focuses on papers published within the past 2 years up to September 2003 that provide significant new insights into how 2ME2 exerts its diverse effects.
10.1016/j.drup.2003.10.001