Ischemic stroke and intestinal flora: an insight into brain-gut axis.
European journal of medical research
Stroke is a type of cerebrovascular disease that significantly endangers human health and lowers quality of life. This understandably places a heavy burden on society and families. In recent years, intestinal flora has attracted increasing attention from scholars worldwide, and its association with ischemic stroke is becoming a hot topic of research amongst researchers in field of stroke. After suffering from a stroke, intestinal microbial dysbiosis leads to increased intestinal permeability and activation of the intestinal immune system, which in turn leads to ectopic intestinal bacteria and pro-inflammatory cells that enter brain tissue through the damaged blood-brain barrier. This exacerbates ischemia-reperfusion injury. Interestingly, after a stroke, some metabolites produced by the intestinal flora attenuate ischemia-reperfusion injury by suppressing the post-stroke inflammatory response and promotes the repair of neurological function. Here we elucidate the changes in gut flora after occurrence of a stroke and highlight the immunomodulatory processes of the post-stroke gut flora.
10.1186/s40001-022-00691-2
The Role of Gut Microbiota in an Ischemic Stroke.
Pluta Ryszard,Januszewski Sławomir,Czuczwar Stanisław J
International journal of molecular sciences
The intestinal microbiome, the largest reservoir of microorganisms in the human body, plays an important role in neurological development and aging as well as in brain disorders such as an ischemic stroke. Increasing knowledge about mediators and triggered pathways has contributed to a better understanding of the interaction between the gut-brain axis and the brain-gut axis. Intestinal bacteria produce neuroactive compounds and can modulate neuronal function, which affects behavior after an ischemic stroke. In addition, intestinal microorganisms affect host metabolism and immune status, which in turn affects the neuronal network in the ischemic brain. Here we discuss the latest results of animal and human research on two-way communication along the gut-brain axis in an ischemic stroke. Moreover, several reports have revealed the impact of an ischemic stroke on gut dysfunction and intestinal dysbiosis, highlighting the delicate play between the brain, intestines and microbiome after this acute brain injury. Despite our growing knowledge of intestinal microflora in shaping brain health, host metabolism, the immune system and disease progression, its therapeutic options in an ischemic stroke have not yet been fully utilized. This review shows the role of the gut microflora-brain axis in an ischemic stroke and assesses the potential role of intestinal microflora in the onset, progression and recovery post-stroke.
10.3390/ijms22020915
Influence of the brain‑gut axis on neuroinflammation in cerebral ischemia‑reperfusion injury (Review).
International journal of molecular medicine
Stroke, a debilitating cerebrovascular ailment, poses significant threats to human life and health. The intricate interplay between the gut‑brain‑microbiota axis (GBMA) and cerebral ischemia‑reperfusion has increasingly become a focal point of scientific exploration, emerging as a pivotal research avenue in stroke pathophysiology. In the present review, the authors delved into the nexus between the GBMA and neuroinflammation observed post‑stroke. The analysis underscored the pivotal roles of histone deacetylase 3 and neutrophil extracellular traps subsequent to stroke incidents. The influence of gut microbial compositions and their metabolites, notably short‑chain fatty acids and trimethylamine N‑oxide, on neuroinflammatory processes, was further elucidated. The involvement of immune cells, especially regulatory T‑cells, and the intricate signaling cascades including cyclic GMP‑AMP synthase/stimulator of interferon genes/Toll‑like receptor, further emphasized the complex regulatory mechanisms of GBMA in cerebral ischemia/reperfusion injury (CI/RI). Collectively, the present review offered a comprehensive perspective on the metabolic, immune and inflammatory modulations orchestrated by GBMA, augmenting the understanding of its role in neuroinflammation following CI/RI.
10.3892/ijmm.2024.5354