Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement.
Hu Keming,Cao Jianbo,Zhang Jie,Xia Fan,Ke Yinggen,Zhang Haitao,Xie Wenya,Liu Hongbo,Cui Ying,Cao Yinglong,Sun Xinli,Xiao Jinghua,Li Xianghua,Zhang Qinglu,Wang Shiping
Nature plants
The major disease resistance gene Xa4 confers race-specific durable resistance against Xanthomonas oryzae pv. oryzae, which causes the most damaging bacterial disease in rice worldwide. Although Xa4 has been one of the most widely exploited resistance genes in rice production worldwide, its molecular nature remains unknown. Here we show that Xa4, encoding a cell wall-associated kinase, improves multiple traits of agronomic importance without compromising grain yield by strengthening the cell wall via promoting cellulose synthesis and suppressing cell wall loosening. Strengthening of the cell wall by Xa4 enhances resistance to bacterial infection, and also increases mechanical strength of the culm with slightly reduced plant height, which may improve lodging resistance of the rice plant. The simultaneous improvement of multiple agronomic traits conferred by Xa4 may account for its widespread and lasting utilization in rice breeding programmes globally.
10.1038/nplants.2017.9
A novel soybean malectin-like receptor kinase-encoding gene, GmMLRK1, provides resistance to soybean mosaic virus.
Journal of experimental botany
Soybean mosaic virus (SMV) severely damages soybean [Glycine max (L.) Merr.] yield and seed quality. Moreover, the underlying genetic determinants of resistance to SMV remain largely unknown. Here, we performed a genome-wide association study (GWAS) of SMV resistance in a panel of 219 diverse soybean accessions across four environments and identified a new resistance-related gene, GmMLRK1, at the major resistance locus Rsv4 on chromosome 2. GmMLRK1 encodes a malectin-like receptor kinase (RK) that was induced earlier and to a greater degree in leaves of the SMV-resistant cultivar Kefeng No. 1 than in those of the susceptible cultivar Nannong 1138-2 after inoculation. We demonstrated that soybean plants overexpressing GmMLRK1 show broad-spectrum resistance to both strains SC7 and SC3 on the basis of reduced viral accumulation, increased reactive oxygen species production, and local cell death associated with the hypersensitive response. In contrast, GmMLRK1 knockout mutants were more susceptible to both pathotypes. Haplotype analysis revealed the presence of five haplotypes (H1-H5) within the soybean population, and only H1 provided SMV resistance, which was independent of its tightly linked SMV resistance gene RNase-H at the same locus. These results report a novel gene that adds new understanding of SMV resistance and can be used for breeding resistant soybean accessions.
10.1093/jxb/erad046
A cell wall-localized NLR confers resistance to Soybean mosaic virus by recognizing viral-encoded cylindrical inclusion protein.
Molecular plant
Soybean mosaic virus (SMV) causes severe yield losses and seed quality reduction in soybean (Glycine max) production worldwide. Rsc4 from cultivar Dabaima is a dominant genetic locus for SMV resistance, and its mapping interval contains three nucleotide-binding domain leucine-rich repeat-containing (NLR) candidates (Rsc4-1, Rsc4-2, and Rsc4-3). The NLR-type resistant proteins were considered as important intracellular pathogen sensors in the previous studies. In this study, based on transient expression assay in Nicotiana benthamiana leaves, we found that the longest transcript of Rsc4-3 is sufficient to confer resistance to SMV, and CRISPR/Cas9-mediated editing of Rsc4-3 in resistant cultivar Dabaima compromised the resistance. Interestingly, Rsc4-3 encodes a cell-wall-localized NLR-type resistant protein. We found that the internal polypeptide region responsible for apoplastic targeting of Rsc4-3 and the putative palmitoylation sites on the N terminus are essential for the resistance. Furthermore, we showed that viral-encoded cylindrical inclusion (CI) protein partially localizes to the cell wall and can interact with Rsc4-3. Virus-driven or transient expression of CI protein of avirulent SMV strains is enough to induce resistance response in the presence of Rsc4-3, suggesting that CI is the avirulent gene for Rsc4-3-mediated resistance. Taken together, our work identified a unique NLR that recognizes plant virus in the apoplast, and provided a simple and effective method for identifying resistant genes against SMV infection.
10.1016/j.molp.2021.07.013
Arabidopsis ADR1 helper NLR immune receptors localize and function at the plasma membrane in a phospholipid dependent manner.
The New phytologist
Activation of nucleotide-binding leucine-rich repeat receptors (NLRs) results in immunity and a localized cell death. NLR cell death activity requires oligomerization and in some cases plasma membrane (PM) localization. The exact mechanisms underlying PM localization of NLRs lacking predicted transmembrane domains or recognizable lipidation motifs remain elusive. We used confocal microscopy, genetically encoded molecular tools and protein-lipid overlay assays to determine whether PM localization of members of the Arabidopsis HeLo-/RPW8-like domain 'helper' NLR (RNL) family is mediated by the interaction with negatively charged phospholipids of the PM. Our results show that PM localization and stability of some RNLs and one CC-type NLR (CNL) depend on the direct interaction with PM phospholipids. Depletion of phosphatidylinositol-4-phosphate from the PM led to a mis-localization of the analysed NLRs and consequently inhibited their cell death activity. We further demonstrate homo- and hetero-association of members of the RNL family. Our results provide new insights into the molecular mechanism of NLR localization and defines an important role of phospholipids for CNL and RNL PM localization and consequently, for their function. We propose that RNLs interact with anionic PM phospholipids and that RNL-mediated cell death and immune responses happen at the PM.
10.1111/nph.17788
Interaction of Effector Avr1b With E3 Ubiquitin Ligase GmPUB1 Is Required for Recognition by Soybeans Carrying Resistance -b and -k Genes.
Frontiers in plant science
is an oomycete that causes stem and root rot disease in soybean. delivers many RxLR effector proteins, including Avr1b, into host cells to promote infection. We show here that Avr1b interacts with the soybean U-box protein, GmPUB1-1, in yeast two-hybrid, pull down, and bimolecular fluorescence complementation (BIFC) assays. , and a homeologous copy , are induced by infection and encode 403 amino acid proteins with U-Box domains at their N-termini. Non-synonymous mutations in the Avr1b C-terminus that abolish suppression of cell death also abolished the interaction of Avr1b with GmPUB1-1, while deletion of the GmPUB1-1 C-terminus, but not the U box, abolished the interaction. BIFC experiments suggested that the GmPUB1-1-Avr1b complex is targeted to the nucleus. ubiquitination assays demonstrated that GmPUB1-1 possesses E3 ligase activity. Silencing of the genes in soybean cotyledons resulted in loss of recognition of Avr1b by gene products encoded by -b and -k. The recognition of Avr1k (which did not interact with GmPUB1-1) by -k plants was not, however, affected following - silencing. Furthermore, over-expression of GmPUB1-1 in particle bombardment experiments triggered cell death suggesting that GmPUB1 may be a positive regulator of effector-triggered immunity. In a yeast two-hybrid system, GmPUB1-1 also interacted with a number of other RxLR effectors including Avr1d, while Avr1b and Avr1d interacted with a number of other infection-induced GmPUB proteins, suggesting that the pathogen uses a multiplex of interactions of RxLR effectors with GmPUB proteins to modulate host immunity.
10.3389/fpls.2021.725571
[Preliminary analysis of the role of GmSnRK1.1 and GmSnRK1.2 in the ABA and alkaline stress response of the soybean using the CRISPR/Cas9-based gene double-knockout system].
Yi chuan = Hereditas
Sucrose non-fermenting related protein kinases (SnRKs) are a ubiquitous Ser/Thr protein kinase in the plant kingdom. These kinases play important roles in plant growth, development, metabolism and resistance to environmental stresses. The soybean (Glycine max L.) genome has four SnRK1 genes, of which GmSnRK1.1 and GmSnRK1.2 are predominant and participate in multiple stress response pathways. To dissect the mechanism of the role of GmSnRK1.1 and GmSnRK1.2 proteins in response to ABA and alkaline stresses, we constructed a dual-gRNA CRISPR vector to specifically knock out GmSnRK1.1 and GmSnRK1.2. The resultant constructs were transformed into soybean cotyledon nodes to induce hairy roots by agrobacteria (Agrobacterium rhizogenes). The soybean hairy roots obtained were genotyped, and the results showed that GmSnRK1.1 and GmSnRK1.2 were efficiently doubly knocked out in 48.6% hairy roots. We also generated control hairy roots that over-expressed GmSnRK1. The materials were treated with 25 μmol/L ABA for 15 days and the results showed that the growths of wild-type and GmSnRK1 over-expressed roots were significantly inhibited than GmSnRK1.1 GmSnRK1.2 double-knockout roots, as the controls displayed less root lengths and fresh weights. However, after treating with 50 mmol/L NaHCO for 15 days, we found that the growths of GmSnRK1.1 GmSnRK1.2 double-knockout roots were significantly inhibited than the wild-type and GmSnRK1 over-expressed control roots, as the knockout groups contained less root lengths and fresh weights. These results implied that the GmSnRK1.1 GmSnRK1.2 double knockout mitigated hairy root sensitivity to ABA and resistance to alkaline stress. Taken together, we established the CRISPR/Cas9 system to perform gene double knockout in the soybean and by using this technique, we determined the roles of GmSnRK1.1 and GmSnRK1.2 in response of abiotic stresses.
10.16288/j.yczz.17-424
Mitogen-activated protein kinases MPK3 and MPK6 phosphorylate receptor-like cytoplasmic kinase CDL1 to regulate soybean basal immunity.
The Plant cell
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe), one of the most devastating soybean (Glycine max) pathogens, causes significant yield loss in soybean production. Nematode infection triggers plant defense responses; however, the components involved in the upstream signaling cascade remain largely unknown. In this study, we established that a mitogen-activated protein kinase (MAPK) signaling module, activated by nematode infection or wounding, is crucial for soybeans to establish SCN resistance. GmMPK3 and GmMPK6 directly interact with CDG1-LIKE1 (GmCDL1), a member of the receptor-like cytoplasmic kinase (RLCK) subfamily VII. These kinases phosphorylate GmCDL1 at Thr-372 to prevent its proteasome-mediated degradation. Functional analysis demonstrated that GmCDL1 positively regulates immune responses and promotes SCN resistance in soybeans. GmMPK3-mediated and GmMPK6-mediated phosphorylation of GmCDL1 enhances GmMPK3 and GmMPK6 activation and soybean disease resistance, representing a positive feedback mechanism. Additionally, 2 L-type lectin receptor kinases, GmLecRK02g and GmLecRK08g, associate with GmCDL1 to initiate downstream immune signaling. Notably, our study also unveils the potential involvement of GmLecRKs and GmCDL1 in countering other soybean pathogens beyond nematodes. Taken together, our findings reveal the pivotal role of the GmLecRKs-GmCDL1-MAPK regulatory module in triggering soybean basal immune responses.
10.1093/plcell/koae008
Can disease resistance evolve independently at different ages? Genetic variation in age-dependent resistance to disease in three wild plant species.
The Journal of ecology
Juveniles are typically less resistant (more susceptible) to infectious disease than adults, and this difference in susceptibility can help fuel the spread of pathogens in age-structured populations. However, evolutionary explanations for this variation in resistance across age remain to be tested.One hypothesis is that natural selection has optimized resistance to peak at ages where disease exposure is greatest. A central assumption of this hypothesis is that hosts have the capacity to evolve resistance independently at different ages. This would mean that host populations have (a) standing genetic variation in resistance at both juvenile and adult stages, and (b) that this variation is not strongly correlated between age classes so that selection acting at one age does not produce a correlated response at the other age.Here we evaluated the capacity of three wild plant species (, and ) to evolve resistance to their anther-smut pathogens ( fungi), independently at different ages. The pathogen is pollinator transmitted, and thus exposure risk is considered to be highest at the adult flowering stage.Within each species we grew families to different ages, inoculated individuals with anther smut, and evaluated the effects of age, family and their interaction on infection.In two of the plant species, and , resistance to smut at the juvenile stage was not correlated with resistance to smut at the adult stage. In all three species, we show there are significant age × family interaction effects, indicating that age specificity of resistance varies among the plant families. . These results indicate that different mechanisms likely underlie resistance at juvenile and adult stages and support the hypothesis that resistance can evolve independently in response to differing selection pressures as hosts age. Taken together our results provide new insight into the structure of genetic variation in age-dependent resistance in three well-studied wild host-pathogen systems.
10.1111/1365-2745.13966
ANTHRACNOSE RESISTANCE GENE2 confers fungal resistance in sorghum.
The Plant journal : for cell and molecular biology
Sorghum is an important food and feed crop globally; its production is hampered by anthracnose disease caused by the fungal pathogen Colletotrichum sublineola (Cs). Here, we report identification and characterization of ANTHRACNOSE RESISTANCE GENE 2 (ARG2) encoding a nucleotide-binding leucine-rich repeat (NLR) protein that confers race-specific resistance to Cs strains. ARG2 is one of a cluster of several NLR genes initially identified in the sorghum differential line SC328C that is resistant to some Cs strains. This cluster shows structural and copy number variations in different sorghum genotypes. Different sorghum lines carrying independent ARG2 alleles provided the genetic validation for the identity of the ARG2 gene. ARG2 expression is induced by Cs, and chitin induces ARG2 expression in resistant but not in susceptible lines. ARG2-mediated resistance is accompanied by higher expression of defense and secondary metabolite genes at early stages of infection, and anthocyanin and zeatin metabolisms are upregulated in resistant plants. Interestingly, ARG2 localizes to the plasma membrane when transiently expressed in Nicotiana benthamiana. Importantly, ARG2 plants produced higher shoot dry matter than near-isogenic lines carrying the susceptible allele suggesting an absence of an ARG2 associated growth trade-off. Furthermore, ARG2-mediated resistance is stable at a wide range of temperatures. Our observations open avenues for resistance breeding and for dissecting mechanisms of resistance.
10.1111/tpj.16048
Enhanced pest resistance of maize leaves expressing monocot crop plant-derived ribosome-inactivating protein and agglutinin.
Dowd Patrick F,Johnson Eric T,Price Neil P
Journal of agricultural and food chemistry
Although many insect resistance genes have been identified, the number of studies examining their effects in combination using transgenic systems is limited. This study introduced a construct into maize containing the coding sequence for maize ribosome-inactivating protein (MRIP) and wheat germ agglutinin (WGA). Many transformants produced both the MRIP and WGA in leaves. Mature leaves expressing higher levels of these two proteins were more resistant to feeding by first-instar larvae of fall armyworms (Spodoptera frugiperda) and corn earworms (Helicoverpa zea), and the level of resistance was correlated with levels of MRIP and WGA. There was also some indication that resistance to Fusarium verticillioides was increased in the transgenic plant leaves. No statistically significant synergism or antagonism occurred between the activities of the two proteins. MRIP and WGA represent compatible class examples of food plant-derived proteins for multigene resistance to insects.
10.1021/jf3041337
Characterization and application of a gall midge resistance gene (Gm6) from Oryza sativa 'Kangwenqingzhan'.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
KEY MESSAGE:The resistance gene Gm6 was mapped and characterized using near-isogenic and pyramided lines, followed by marker-assisted selection to develop lines with resistance to both gall midge and brown planthopper. The Asian rice gall midge (GM; Orseolia oryzae; Diptera: Cecidomyiidae) is a major destructive pest affecting rice cultivation regions. The characterization of GM-resistance genes and the breeding of resistant varieties are together considered the most efficient strategy for managing this insect. Here, the Gm6 resistance gene derived from the Kangwenqingzhan (KW) variety was found to be located on the long arm of chromosome 4 using the F population of 9311/KW. The region was narrowed to a 90-kb segment flanked by the markers YW91 and YW3-4 using backcrossing populations. Based on no-choice feeding and host choice tests, GM development and growth in near-isogenic lines (NILs) were severely restricted compared to that in the 9311 control. On day 8, the average GM body length was 0.69 mm and 0.56 mm on NILs and 9311, respectively, and the differences were more significant at later time points. However, GM insects exhibited no host preference between NILs and 9311, and there was normal egg hatching on the resistant plants. We developed pyramided lines carrying BPH27, BPH36, and Gm6 by crossing and backcrossing with marker-assisted selection. These lines were similar to the KW parent in terms of agronomic traits while also exhibiting high resistance to brown planthopper (BPH) and GM. The present mapping and characterization of Gm6 will facilitate map-based cloning of this important resistance gene and its application in the breeding of insect-resistant rice varieties.
10.1007/s00122-019-03488-w
Increasing the activities of protective enzymes is an important strategy to improve resistance in cucumber to powdery mildew disease and melon aphid under different infection/infestation patterns.
Frontiers in plant science
Powdery mildew, caused by (Schlecht.) Poll., and melon aphids ( Glover) are a typical disease and insect pest, respectively, that affect cucumber production. Powdery mildew and melon aphid often occur together in greenhouse production, resulting in a reduction in cucumber yield. At present there are no reports on the physiological and biochemical effects of the combined disease and pest infection/infestation on cucumber. This study explored how cucumbers can regulate photosynthesis, protective enzyme activity, and basic metabolism to resist the fungal disease and aphids. After powdery mildew infection, the chlorophyll and free proline contents in cucumber leaves decreased, while the activities of POD (peroxidase) and SOD (superoxide dismutase) and the soluble protein and MDA (malondialdehyde) contents increased. Cucumber plants resist aphid attack by increasing the rates of photosynthesis and basal metabolism, and also by increasing the activities of protective enzymes. The combination of powdery mildew infection and aphid infestation reduced photosynthesis and basal metabolism in cucumber plants, although the activities of several protective enzymes increased. Aphid attack after powdery mildew infection or powdery mildew infection after aphid attack had the opposite effect on photosynthesis, protective enzyme activity, and basal metabolism regulation. Azoxystrobin and imidacloprid increased the contents of chlorophyll, free proline, and soluble protein, increased SOD activity, and decreased the MDA content in cucumber leaves. However, these compounds had the opposite effect on the soluble sugar content and POD and CAT (catalase) activities. The mixed ratio of the two single agents could improve the resistance of cucumber to the combined infection of powdery mildew and aphids. These results show that cucumber can enhance its pest/pathogen resistance by changing physiological metabolism when exposed to a complex infection system of pathogenic microorganisms and insect pests.
10.3389/fpls.2022.950538
The soybean plasma membrane GmDR1 protein conferring broad-spectrum disease and pest resistance regulates several receptor kinases and NLR proteins.
Scientific reports
Overexpression of Glycine max disease resistant 1 (GmDR1) exhibits broad-spectrum resistance against Fusarium virguliforme, Heterodera glycines (soybean cyst nematode), Tetranychus urticae (Koch) (spider mites), and Aphis glycines Matsumura (soybean aphids) in soybean. To understand the mechanisms of broad-spectrum immunity mediated by GmDR1, the transcriptomes of a strong and a weak GmDR1-overexpressor following treatment with chitin, a pathogen- and pest-associated molecular pattern (PAMP) common to these organisms, were investigated. The strong and weak GmDR1-overexpressors exhibited altered expression of 6098 and 992 genes, respectively, as compared to the nontransgenic control following chitin treatment. However, only 192 chitin- and 115 buffer-responsive genes exhibited over two-fold changes in expression levels in both strong and weak GmDR1-overexpressors as compared to the control. MapMan analysis of the 192 chitin-responsive genes revealed 64 biotic stress-related genes, of which 53 were induced and 11 repressed as compared to the control. The 53 chitin-induced genes include nine genes that encode receptor kinases, 13 encode nucleotide-binding leucine-rich repeat (NLR) receptor proteins, seven encode WRKY transcription factors, four ethylene response factors, and three MYB-like transcription factors. Investigation of a subset of these genes revealed three receptor protein kinases, seven NLR proteins, and one WRKY transcription factor genes that are induced following F. virguliforme and H. glycines infection. The integral plasma membrane GmDR1 protein most likely recognizes PAMPs including chitin and activates transcription of genes encoding receptor kinases, NLR proteins and defense-related genes. GmDR1 could be a pattern recognition receptor that regulates the expression of several NLRs for expression of PAMP-triggered immunity and/or priming the effector triggered immunity.
10.1038/s41598-024-62332-4
Functional characterization of wild soybean (Glycine soja) GsSnRK1.1 protein kinase in plant resistance to abiotic stresses.
Journal of plant physiology
Protein kinases play crucial roles in the regulation of plant resistance to various stresses. In this work, we determined that GsSnRK1.1 was actively responsive to saline-alkali, drought, and abscisic acid (ABA) stresses by histochemical staining and qRT-PCR analyses. The wild-type GsSnRK1.1 but not the kinase-dead mutant, GsSnRK1.1(K49M), demonstrated in vitro kinase activity by phosphorylating GsABF2. Intriguingly, we found that GsSnRK1.1 could complement the loss of SNF1 kinase in yeast Msy1193 (-snf1) mutant, rescue growth defects of yeast cells on medium with glycerol as a carbon resource, and promote yeast resistance to NaCl or NaHCO. To further elucidate GsSnRK1.1 function in planta, we knocked out SnRK1.1 gene from the Arabidopsis genome by the CRISPR/Cas9 approach, and then expressed GsSnRK1.1 and a series of mutants into snrk1.1-null lines. The transgenic Arabidopsis lines were subjected to various abiotic stress treatments. The results showed that GsSnRK1.1(T176E) mutant with enhanced protein kinase activity significantly promoted, but GsSnRK1.1(K49M) and GsSnRK1.1(T176A) mutants with disrupted protein kinase activity abrogated, plant stomatal closure and tolerance to abiotic stresses. In conclusion, this study provides the molecular clues to fully understand the physiological functions of plant SnRK1 protein kinases.
10.1016/j.jplph.2022.153881