SMPDL3B contributes to gastric adenocarcinoma cells progression by promoting the infiltration of M2 macrophages.
Turkish journal of medical sciences
Background/aim:The common disease gastric adenocarcinoma (GAC) has a high morbidity and mortality, so there is an urgent need for research to explore new diagnostic markers and therapeutic targets. This investigation was carried out to investigate the expression of sphingomyelin phosphodiesterase acid-like 3b (SMPDL3B) in GAC and its effects on tumor progression. Materials and methods:Samples were collected from patients who underwent radical gastrectomy from January 2021 to December 2022. Along with the normal gastric epithelial cell lines GES-1 and SGC-7901, the AGS, MGC-803, and MSN-45 human gastric cancer cell lines were used to confirm SMPDL3B expression. RT-qPCR, Western blot, immunohistochemical, cell proliferation, assay of wound healing, transwell migration assay, invasion assay, flow cytometry, and immune evaluation experiments were carried out. Results:SMPDL3B was found to be substantially expressed in GAC, and this condition has a bad prognosis. By establishing SMPDL3B knockdown and overexpression of GAC cell lines, this study confirmed that SMPDL3B promoted tumor cell proliferation, migration, and invasion. Additional bioinformatics research revealed a connection between SMPDL3B and immune cell infiltration in the GAC immunological microenvironment, which enhanced tumor cell proliferation by promoting the infiltration content of M2 macrophages. Conclusion:This study determined the function of SMPDL3B for the clinical diagnosis, prediction, and novel management of GAC.
10.55730/1300-0144.5732
Molecular and Circulating Biomarkers of Gastric Cancer.
International journal of molecular sciences
Gastric cancer (GC)-a common tumor that affects humans worldwide-is highly malignant with a poor prognosis. GC is frequently not diagnosed until a relatively advanced stage. Early detection and efficient monitoring of tumor dynamics are prerequisites for reducing disease burden and mortality. Minimally invasive methods are needed to establish a diagnosis or monitoring the response to treatment of gastric cancer. Blood-based biomarker assays for the detection of early-stage GC could be of great relevance both for the risk group or for population-wide based screening programs, The currently used tumor marker assays for detecting GC are simple and rapid, but their use is limited by their low sensitivity and specificity. In recent years, several markers have been identified and tested for their clinical relevance in the management of gastric cancer. Here we review the available literature on plasma classical tumor markers, circulating free microRNAs (cfmiRNAs), circulating cell-free DNA (cfDNA), circulating tumor cells (CTCs), autoantibodies against tumor associated antigens (TAAs), and circulating extracellular vesicles (EVs) for diagnosis and monitoring of gastric cancer. This review summarizes the present status and approaches for these biomarkers, which could be potentially used for early diagnosis and accurate prediction of therapeutic approaches. We also discuss the future perspective and challenges in the search for new biomarkers of gastric cancer.
10.3390/ijms23147588
A simple biomarker scoring matrix for early gastric cancer detection.
Wu Wei,Yong Wen Wei,Chung Maxey C M
Proteomics
Gastric cancer (GC) is a major cause of death in many parts of the world. While 90% of early GC is curable by resection, only about 5% of patients diagnosed in the late stages survive beyond five years. This provides strong impetus to push for early GC detection through the use of non-invasive biomarkers, before metastatic complications arise. It is also of strong medical interest to identify patients of the diffuse subtype at the earliest time possible, since the disease variant progresses very rapidly and is associated with much higher mortality rate. In this study, we compared quantitatively the gastric fluid proteome of 70 GC patients to 17 individuals with benign gastritis in search of potential biomarkers that aid in GC diagnosis, prognosis and subtype stratification. We report that as much as half of the gastric fluid proteome is subject to regulation in diseased states, and propose a simple biomarker panel scoring matrix for early GC detection with diagnostic sensitivity of 95.7%. We also demonstrate as proof-of-concept that a digitised record generated with SWATH-MS based on 380 protein abundance signatures from the gastric fluid could segregate patients with diffuse-type GC.
10.1002/pmic.201600194
Discovery of gastric cancer specific biomarkers by the application of serum proteomics.
Yoo Moon-Won,Park Jisook,Han Hye-Seung,Yun Yeo-Min,Kang Jeong Won,Choi Do-Young,Lee Joon Won,Jung Jae Hun,Lee Kyung-Yung,Kim Kwang Pyo
Proteomics
Current diagnostic markers for gastric cancer are not sufficiently specific or sensitive for use in clinical practice. The aims of this study are to compare the proteomes of serum samples from patients with gastric cancers and normal controls, and to develop useful tumor markers of gastric cancer by quantitative proteomic analysis. We identified a total of 388 proteins with a ≤1% FDR and with at least two unique peptides from the sera of each group. Among them, 215, 251, and 260 proteins were identified in serum samples of patients in an advanced cancer group, early cancer group, and normal control group, respectively. We selected differentially expressed proteins in cancer patients compared with those of normal controls via semiquantitative analyses comparing the spectral counts of identified proteins. These differentially expressed proteins were successfully verified using an MS-based quantitative assay, multiple reactions monitoring analysis. Four proteins (vitronectin, clusterin isoform 1, thrombospondin 1, and tyrosine-protein kinase SRMS) were shown to have significant changes between the cancer groups and the normal control group. These four serum proteins were able to discriminate gastric cancer patients from normal controls with sufficient specificity and selectivity.
10.1002/pmic.201600332
S100A9, GIF and AAT as potential combinatorial biomarkers in gastric cancer diagnosis and prognosis.
Wu Wei,Juan Wen Chun,Liang Cynthia R M Y,Yeoh Khay Guan,So Jimmy,Chung Maxey C M
Proteomics. Clinical applications
PURPOSE:We have mined the gastric fluid proteome for potential gastric cancer (GC) biomarkers that may enhance disease detection and facilitate prognostic monitoring. EXPERIMENTAL DESIGN:In biomarker discovery, a total of 12 patient gastric fluid samples (stages I, III, IV and gastritis) were analysed by 2DE for expression changes that correlated with GC status or disease progression. Gastric fluid proteins showing differential expression with GC were identified by MALDI-TOF/TOF MS as putative biomarkers. Levels of these potential biomarker candidates were independently validated by Western blotting in further 60 gastritis and GC patients. A targeted approach that recruits biomarker candidates for panel consideration was adopted to test if two or more biomarkers in combination improved diagnostic power. RESULTS:From the 15 differentially regulated proteins identified, expression levels of S100A9, GIF and AAT in the gastric fluid clearly correlated with GC status. S100A9/AAT (AUC = 0.81) and S100A9/GIF (AUC = 0.92) were revealed as promising biomarker pairs for early GC diagnosis and disease monitoring, respectively. CONCLUSION AND CLINICAL RELEVANCE:Early diagnosis, accurate staging and constant disease monitoring remain the prerequisites for effective treatment against GC. As current biomarkers like CA19-9 and carcinoembryonic antigen (CEA) lack sensitivity and specificity, there is a pressing need for novel GC detection and monitoring methods. To this end, S100A9, GIF and AAT from the gastric fluid may significantly augment existing methods of GC detection and monitoring, and eliminate the need for invasive tissue biopsies.
10.1002/prca.201100050
Integrating SWATH-MS Proteomics and Transcriptome Analysis Identifies CHI3L1 as a Plasma Biomarker for Early Gastric Cancer.
Molecular therapy oncolytics
Early diagnosis of gastric cancer (GC) provides patients opportunities for minimally invasive endoscopic resection. Here, we developed a new strategy integrated the state-of-the-art sequential windowed acquisition of all theoretical fragment ion (SWATH) mass spectra (MS) with multi-dataset joint analysis to screen for the stage-I GC plasma biomarker. In SWATH-MS assays, we identified 37 upregulated and 21 downregulated proteins in GC plasma. In the mRNA database analysis, 633 genes were identified as differentially expressed genes in at least 4 out of 5 datasets, but there were only 94 genes identified as upregulated. Only 1 gene, CHI3L1, was characterized as upregulated in both the dataset consensus list and the SWATH-MS list. Then, we detected the CHI3L1 level in the plasma of a large cohort consisting of 200 participants. The area under the ROC curve (AUC) of CHI3L1 in distinguishing GC from others was 0.788. Integrating the plasma CHI3L1 level with clinical factors further boosted the AUC to 0.887. In conclusion, we provide a novel strategy for biomarker screening, combining recent MS techniques with public database analysis, and identified plasma CHI3L1 as a potential biomarker for patients with endoscopically resectable GC.
10.1016/j.omto.2020.03.020
CircRNAs: Insights into Gastric Cancer.
Gastrointestinal tumors
BACKGROUND:Gastric cancer (GC) is recorded as the fifth most common cancer globally. The classic resemblance of early symptoms of chronic gastritis including nausea, dysphagia, and dyspepsia with GC is the current challenge limiting the early diagnosis of GC. The current diagnostic procedures of GC are limited due to their invasive nature. This directs the research question toward alternative approaches, specifically at the molecular level. Recent advances in molecular regulation of cancer suggest the prominence of circular RNAs (circRNAs) in the multistep process of tumourigenesis. SUMMARY:CircRNAs are a class of non-coding RNAs, abundant in eukaryotes, with key roles in regulating genes and miRNAs as well as the alteration of processes involved in pathological conditions. Research studies have demonstrated the participation of circRNAs in the initiation and progression of tumours. This review provides a comprehensive insight into the potential of circRNAs as disease biomarkers for the early detection and treatment of GC. KEY MESSAGES:This study is an amalgamation of the implications and future prospects of circRNAs for the detection and potential treatment of GC.
10.1159/000517303
Extracellular Vesicles Promote the Formation of Pre-Metastasis Niche in Gastric Cancer.
Tang Diya,Liu Shanshan,Shen Hong,Deng Gongping,Zeng Shan
Frontiers in immunology
Globally, gastric cancer (GC) ranks fourth in the incidence of malignant tumors. The early clinical manifestations of GC lack specificity. Most patients are already at an advanced stage when they are first diagnosed, and their late progression is mainly due to peritoneal metastasis. A pre-metastatic microenvironment is formed, before the macroscopic tumor metastasis. Extracellular vesicles (EVs) are nanovesicles released by cells into body fluids. Recent studies have shown that EVs can affect the tumor microenvironment by carrying cargos to participate in cell-to-cell communication. EVs derived from GC cells mediate the regulation of the pre-metastasis niche and act as a coordinator between tumor cells and normal stroma, immune cells, inflammatory cells, and tumor fibroblasts to promote tumor growth and metastasis. This review highlights the regulatory role of EVs in the pre-metastatic niche of GC and mulls EVs as a potential biomarker for liquid biopsy.
10.3389/fimmu.2022.813015
Gene profiling of SEC13, SMAD7, GHRL, long non-coding RNA GHRLOS, HIF-1α in gastric cancer patients.
Scientific reports
Even with considerable progress in cancer researches, gastric cancer is still one of the global health problems. Recognition of the differential expressed genes in GC is the most appropriate approach for establishing new diagnostic targets. This study evaluates SEC13, SMAD7, GHRL, lncRNA GHRLOS, HIF-1α genes profiling as well as HIF-1α protein level for GC. The expression of selected genes, serum HIF-1α and CEA protein levels were determined for 50 GC patients and 50 healthy controls by real-time RT-PCR, ELISA, and ELICA respectively. The sensitivities of these parameters as diagnostic biomarkers were evaluated. SMAD7, HIF-1α expression, serum HIF-1α, and CEA level were significantly upregulated in GC patients as compared to the control group (P = 0.024, < 0.001) and had significant positive correlations between each other except SMAD7 with serum HIF-1α, and CEA level. On the other hand, SEC13, GHRL, and lncRNA GHRLOS expression were significantly downregulated in GC patients (P = < 0.001, 0.025, < 0.001 respectively) and had significant positive correlations with each other (P < 0.001). Significant negative correlations were observed between most of both groups. All studied parameters were associated with GC clinical stages except SMAD7 was associated with stage IV only (P = 0.005) and GHRL did not associate with tumor stages (P ˃ 0.05). All studied parameters may be promising biomarkers for the early diagnosis of GC. SMAD7, HIF-1α gene, and HIF-1α protein may be jointly implicated in cancer development and prognosis, while SEC13, GHRL, and lncRNA GHRLOS may act as tumor suppressors.
10.1038/s41598-022-10402-w
Circulating Tumor DNA: An Emerging Tool in Gastrointestinal Cancers.
American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting
Circulating tumor DNA (ctDNA) is tumor-derived fragmented DNA in the bloodstream that has come from primary or metastatic cancer sites. Neoplasm-specific genetic and epigenetic abnormalities are increasingly being identified through liquid biopsy: a novel, minimally invasive technique used to isolate and analyze ctDNA in the peripheral circulation. Liquid biopsy and other emerging ctDNA technologies represent a paradigm shift in cancer diagnostics because they allow for the detection of minimal residual disease in patients with early-stage disease, improve risk stratification, capture tumor heterogeneity and genomic evolution, and enhance ctDNA-guided adjuvant and palliative cancer therapy. Moreover, ctDNA can be used to monitor the tumor response to neoadjuvant and postoperative therapy in patients with metastatic disease. Using clearance of ctDNA as an endpoint for escalation/de-escalation of adjuvant chemotherapy for patients considered to have high-risk disease has become an important area of research. The possibility of using ctDNA as a surrogate for treatment response-including for overall survival, progression-free survival, and disease-free survival-is an attractive concept; this surrogate will arguably reduce study duration and expedite the development of new therapies. In this review, we summarize the current evidence on the applications of ctDNA for the diagnosis and management of gastrointestinal tumors. Gastrointestinal cancers-including tumors of the esophagus, stomach, colon, liver, and pancreas-account for one-quarter of global cancer diagnoses and contribute to more than one-third of cancer-related deaths. Given the prevalence of gastrointestinal malignancies, ctDNA technology represents a powerful tool to reduce the global burden of disease.
10.1200/EDBK_349143
Comprehensive Analysis of Epigenetic Associated Genes with Differential Gene Expression and Prognosis in Gastric Cancer.
Combinatorial chemistry & high throughput screening
BACKGROUND:Gastric cancer (GC) is the most common malignancy of the human digestive system and represents the second leading cause of cancer-related deaths. As early GC is generally mild or asymptomatic and advanced GC is commonly diagnosed, early detection has a significant impact on clinical outcomes. This study aimed to identify epigenetic factors (EFs) as potential GC biomarkers. METHODS:We identified 3572 differential expressed genes (DEGs) from 436 GC tissues and 41 non-tumor adjacent samples through The Cancer Genome Atlas (TCGA) datasets. Among them, a total of 57 overlapped genes were identified as differentially expressed EFs (DE-EFs), including 25 up-regulated DE-EFs and 32 down-regulated DE-EFs. RESULTS:Then, Gene Ontology (GO) enrichment analysis revealed that the DE-EFs were mainly associated with histone modification, chromatin remodeling, histone binding, modificationdependent protein binding, etc. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results suggested that RNA degradation, thermogenesis, shigellosis, insulin resistance, AMPK, and FoxO signaling pathways play roles in the progression of GC. Subsequently, Cox regression and Kaplan-Meier analysis showed that higher expression levels of the three hub EFs, including BRCC3, USP12, and WAC, were associated with better patients' OS. We also found that GC patients in the TCGA dataset with the earlier stage of TNM stage, invasion, depth of tumor, lymph node metastasis, distant metastasis, and younger age had significantly better GC patients' OS. DISCUSSION:Furthermore, as the pathway enrichment analysis showed that BRCC3 participated in NOD-like receptors (NLRs)-mediated signaling and the homologous recombination (HR) pathways, strong and statistically significant positive relationships were found between BRCC3 with genes in NLRs signaling and HR pathways, including BRCA1, BRCA2, Rad51, BRE, TOPBP1, HSP90AA1, CASP1, NEK7, and SUGT1, respectively. CONCLUSION:We found three hub EFs, namely BRCC3, USP12, and WAC, which were downregulated in GC tissues compared to normal tissues, associated with the overall survival of GC patients and could be used as potential biomarkers to predict prognosis in GC patients. The regulation of hub genes in GC may promote the exploration of the epigenetic mechanisms associated with tumorigenesis and provide potential targets for GC diagnosis and treatment.
10.2174/1386207325666220514142855
Differential Long Non-Coding RNA Expression Analysis in Chronic Non-Atrophic Gastritis, Gastric Mucosal Intraepithelial Neoplasia, and Gastric Cancer Tissues.
Frontiers in genetics
Gastric cancer (GC) has a high incidence worldwide, and when detected, the majority of patients have already progressed to advanced stages. Long non-coding RNAs (lncRNAs) have a wide range of biological functions and affect tumor occurrence and development. However, the potential role of lncRNAs in GC diagnosis remains unclear. We selected five high-quality samples from each group of chronic non-atrophic gastritis, gastric mucosal intraepithelial neoplasia, and GC tissues for analysis. RNA-seq was used to screen the differentially expressed lncRNAs, and we identified 666 differentially expressed lncRNAs between the chronic non-atrophic gastritis and GC groups, 13 differentially expressed lncRNAs between the gastric mucosal intraepithelial neoplasia and GC groups, and 507 differentially expressed lncRNAs between the chronic non-atrophic gastritis and gastric mucosal intraepithelial neoplasia groups. We also identified six lncRNAs (lncRNA H19, LINC00895, lnc-SRGAP2C-16, lnc-HLA-C-2, lnc-APOC1-1, and lnc-B3GALT2-1) which not only differentially expressed between the chronic non-atrophic gastritis and GC groups, but also differentially expressed between the gastric mucosal intraepithelial neoplasia and GC groups. Furthermore, RT-qPCR was used to verify the differentially co-expressed lncRNAs. LncSEA was used to conduct a functional analysis of differentially expressed lncRNAs. We also predicted the target mRNAs of the differentially expressed lncRNAs through bioinformatics analysis and analyzed targeting correlations between three differentially co-expressed lncRNAs and mRNAs (lncRNA H19, LINC00895, and lnc-SRGAP2C-16). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to explore the functions of target mRNAs of differentially expressed lncRNAs. In conclusion, our study provides a novel perspective on the potential functions of differentially expressed lncRNAs in GC occurrence and development, indicating that the differentially expressed lncRNAs might be new biomarkers for early GC diagnosis.
10.3389/fgene.2022.833857
Dynamic Network Construction for Identifying Early Warning Signals Based On a Data-Driven Approach: Early Diagnosis Biomarker Discovery for Gastric Cancer.
IEEE/ACM transactions on computational biology and bioinformatics
During the development of complex diseases, there is a critical transition from one status to another at a tipping point, which can be an early indicator of disease deterioration. To effectively enhance the performance of early risk identification, a novel dynamic network construction algorithm for identifying early warning signals based on a data-driven approach (EWS-DDA) was proposed. In EWS-DDA, the shrunken centroid was introduced to measure dynamic expression changes in assumed pathway reactions during the progression of complex disease for network construction and to define early warning signals by means of a data-driven approach. We applied EWS-DDA to perform a comprehensive analysis of gene expression profiles of gastric cancer (GC) from The Cancer Genome Atlas database and the Gene Expression Omnibus database. Six crucial genes were selected as potential biomarkers for the early diagnosis of GC. The experimental results of statistical analysis and biological analysis suggested that the six genes play important roles in GC occurrence and development. Then, EWS-DDA was compared with other state-of-the-art network methods to validate its performance. The theoretical analysis and comparison results suggested that EWS-DDA has great potential for a more complete presentation of disease deterioration and effective extraction of early warning information.
10.1109/TCBB.2022.3176319
Quantification of Tumor Abnormal Proteins in the Diagnosis and Postoperative Prognostic Evaluation of Gastric Cancer.
Clinical Medicine Insights. Oncology
Background:Abnormal glycosylation of proteins has been identified in almost all types of cancers and is closely related to the cancer progression, metastasis, and survival of cancer patients. This study was to explore the values of serum tumor abnormal protein (TAP), an abnormal glycochain protein, in the diagnosis and prognosis of gastric cancer (GC). Methods:A total of 335 GC patients were included as the study group, and another 335 subjects served as the control group. Tumor abnormal protein expression was compared between the 2 groups. Correlation analysis was used to assess the correlations of TAP with clinicopathological factors. Gastric cancer patients were divided into training set and test set at a ratio of 2:1. Univariate and multivariate Cox regression analyses in training set were used to evaluate the prognostic significance of TAP in GC patients and explore the independent risk factors for overall survival (OS) and disease-free survival (DFS) to establish a prognostic model, followed by testing of the model. According to the median of TAP, 335 GC patients were divided into 2 groups to plot the survival curves of OS and DFS. Results:Tumor abnormal protein expression in the study group was significantly higher than in the control group. Taking the best cut-off value of TAP (110.128 μm) as the diagnostic criteria for GC, the sensitivity and specificity of TAP were 83.58% and 97.61%, respectively, and the area under the receiver operating characteristics (ROC) curve was 0.935, which was not inferior to computed tomography (CT). Tumor abnormal protein expression was an independent risk factor for OS and DFS. The prognostic predictive value of TAP was better than that of pathological stage in GC patients. The model with TAP was effective in predicting prognosis. Conclusion:Tumor abnormal protein is an effective indicator for early screening and prognostic evaluation of GC and can also assist the clinical diagnosis and treatment of GC.
10.1177/11795549221104440
RPP30 is a novel diagnostic and prognostic biomarker for gastric cancer.
Frontiers in genetics
This study aimed to identify the hub gene in gastric cancer (GC) tumorigenesis. A biomarker prediction model was constructed and analyzed, and protein expression in histopathological samples was verified in a validation cohort. Differentially expressed genes (DEGs) were identified from GC projects in The Cancer Genome Atlas (TCGA) database. Functional enrichment analysis of DEGs was performed between the high- and low- Ribonuclease P protein subunit p30 (RPP30) expression groups. ROC analysis was performed to assess RPP30 expression to discriminate GC from normal tissues. Functional enrichment pathways and immune infiltration of DEGs were analyzed using GSEA and ssGSEA. Survival analysis and nomogram construction were performed to predict patient survival. Immunohistochemical staining of GC tissues was performed to validate RPP30 expression in GC and paracancerous samples. Gene expression data and clinical information of 380 cases (375 GC samples and 32 para-cancerous tissues) were collected from TCGA database. The AUC for RPP30 expression was found to be 0.785. The G alpha S signaling pathway was the most significantly enriched signaling pathway. Primary therapy outcome ( < 0.001, HR = 0.243, 95% CI = 0.156-0.379), age ( = 0.012, HR = 1.748, 95% CI = 1.133-2.698), and RPP30 expression ( < 0.001, HR = 2.069, 95% CI = 1.346-3.181) were identified as independent prognostic factors. As a quantitative approach, a nomogram constructed based on RPP30 expression, age, and primary therapy outcome performed well in predicting patient survival. Nineteen of the 25 tissue samples from the validation cohort showed positive RPP30 expression in GC tissues, whereas 16 cases showed negative RPP30 staining in normal tissues. The difference between the two was statistically significant. High RPP30 expression was significantly correlated with disease progression and poor survival in GC, promoting tumorigenesis and angiogenesis tRNA dysregulation. This study provides new and promising insights into the molecular pathogenesis of tRNA in GC.
10.3389/fgene.2022.888051
Research progress on the circRNA/lncRNA-miRNA-mRNA axis in gastric cancer.
Pathology, research and practice
Gastric cancer is one of the most common malignant tumours worldwide. Genetic and epigenetic alterations are key factors in gastric carcinogenesis and drug resistance to chemotherapy. Competing endogenous RNA (ceRNA) regulation models have defined circRNA/lncRNA as miRNA sponges that indirectly regulate miRNA downstream target genes. The ceRNA regulatory network is related to the malignant biological behaviour of gastric cancer. The circRNA/lncRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of gastric cancer and a potential therapeutic target for gastric cancer. Exosomal ncRNAs play an important role in gastric cancer and are expected to be ideal biomarkers for the diagnosis, prognosis, and treatment of gastric cancer. This review summarizes the specific ceRNA regulatory network (circRNA/lncRNA-miRNA-mRNA) discovered in gastric cancer in recent years, which may provide new ideas or strategies for early clinical diagnosis, further development, and application.
10.1016/j.prp.2022.154030
The Role of Serum CD26 in the Diagnosis of Gastric Cancer.
International journal of general medicine
Purpose:The value of serum cluster of differentiation 26 (CD26) in gastric cancer remains unknown. We investigated serum CD26 as a non-invasive serological marker for the diagnosis of gastric cancer and its relationship with serum human epidermal growth factor receptor-2 (HER2) levels. Patients and Methods:We enrolled 393 gastric cancer patients treated with endoscopic resection or surgery, and 90 healthy controls. HER2 positivity in tissue was evaluated by immunohistochemistry staining, and the serum CD26 and HER2 levels were measured using an enzyme-linked immunosorbent assay. Results:Serum CD26 levels were significantly lower in gastric cancer patients than in healthy controls (582.2 ± 254.3 vs 862.7 ± 410.6 ng/mL, P<0.001). Serum CD26 levels were significantly lower in advanced gastric cancer compared to early gastric cancer (642.2 ± 333.9 vs 503.4 ± 332.7 ng/mL, P<0.001), and tended to decrease with gastric cancer progression. To diagnose gastric cancer, the optimal cut-off value of serum CD26 was 762.7 ng/mL with 75.6% sensitivity and 64.4% specificity. Serum CD26 levels were weakly correlated with serum HER2 levels (rs=0.363, P<0.001). However, no difference in serum CD26 levels was observed between tissue HER2-negative and HER2-positive gastric cancer groups (586.2 ± 362.1 vs 579.6 ± 264.8 ng/mL, P=0.898). Conclusion:CD26 is a useful non-invasive serological marker for gastric cancer diagnosis; however, its levels do not correlate with HER2 status.
10.2147/IJGM.S378620
Biomarkers of gastric cancer: current advancement.
Heliyon
Gastric cancer (GC) is one of the most prevalent malignant types worldwide, especially in East Asia. Due to its frequently advanced stage at diagnosis, the mortality from GC is high and the prognosis is still unsatisfactory. Thus, early detection using effective screening approaches is vital to decrease the morbidity and mortality of GC. Interestingly, biomarkers can be used for diagnosis, prediction of sensitivity to treatment, and prognosis in GC. The potential biomarkers detectable in liquid biopsies such as circulating tumor cells (CTCs), long non-coding RNAs (lncRNAs), cell-free DNA (cfDNA), microRNAs, and exosomes reveal numerous information regarding the early prediction and the outcomes for GC patients. Additionally, using the novel serum biomarkers has opened up new opportunities for diagnosing and monitoring patients with GC. This review mainly summarizes the novel progress and approaches in GC biomarkers, which could be potentially used for early diagnosis and therapy monitoring. Meanwhile, we also discussed the advantages, disadvantages, and future perspectives of GC biomarkers.
10.1016/j.heliyon.2022.e10899
Urinary Biomarkers for the Noninvasive Detection of Gastric Cancer.
Journal of gastric cancer
Gastric cancer (GC) is associated with high morbidity and mortality rates. Thus, early diagnosis is important to improve disease prognosis. Endoscopic assessment represents the most reliable imaging method for GC diagnosis; however, it is semi-invasive and costly and heavily depends on the skills of the endoscopist, which limit its clinical applicability. Therefore, the search for new sensitive biomarkers for the early detection of GC using noninvasive sampling collection methods has attracted much attention among scientists. Urine is considered an ideal biofluid, as it is readily accessible, less complex, and relatively stable than plasma and serum. Over the years, substantial progress has been made in screening for potential urinary biomarkers for GC. This review explores the possible applications and limitations of urinary biomarkers in GC detection and diagnosis.
10.5230/jgc.2022.22.e28
Circular RNAs as diagnostic biomarkers for gastric cancer: A comprehensive update from emerging functions to clinical significances.
Frontiers in genetics
The incidence and mortality of gastric cancer ranks as a fouth leading cause of cancer death worldwide, especially in East Asia. Due to the lack of specific early-stage symptoms, the majority of patients in most developing nations are diagnosed at an advanced stage. Therefore, it is urgent to find more sensitive and reliable biomarkers for gastric cancer screening and diagnosis. Circular RNAs (circRNAs), a novel type of RNAs with covalently closed loops, are becoming a latest hot spot in the field of. In recent years, a great deal of research has demonstrated that abnormal expression of circRNAs was associated with the development of gastric cancer, and suggested that circRNA might serve as a potential biomarker for gastric cancer diagnosis. In this review, we summarize the structural characteristics, formation mechanism and biological function of circRNAs, and elucidate research progress and existing problems in early screening of gastric cancer.
10.3389/fgene.2022.1037120
Functional properties of circular RNAs and research progress in gastric cancer.
Frontiers in oncology
Circular RNAs (circRNAs) are a class of closed circular non-coding RNAs widely exist in eukaryotes, with high stability and species conservation. A large number of studies have shown that circRNAs are abnormally expressed in various tumor tissues, and are abundant in plasma with long half-life and high specificity, which may be served as potential tumor biomarkers for early diagnosis, treatment and prognosis of malignant tumors. However, the role of circRNAs is still poorly understood in gastric cancer. This article reviews the research progress of circRNAs in gastric cancer in recent years so as to explore the relationship between circRNAs and the occurrence and the development of gastric cancer, and provide new ideas for the diagnosis and treatment of gastric cancer.
10.3389/fonc.2022.954637
Data-independent acquisition mass spectrometry identification of extracellular vesicle biomarkers for gastric adenocarcinoma.
Frontiers in oncology
Early diagnosis of gastric adenocarcinoma (GAC) can effectively prevent the progression of the disease and significantly improve patient survival. Currently, protein markers in clinical practice barely meet patient needs; it is therefore imperative to develop new diagnostic biomarkers with high sensitivity and specificity. In this study, we extracted extracellular vesicles (EV) from the sera of 33 patients with GAC and 19 healthy controls, then applied data-independent acquisition (DIA) mass spectrometry to measure protein expression profiles. Differential protein expression analysis identified 23 proteins showing expression patterns across different cancer stages, from which 15 proteins were selected as candidate biomarkers for GAC diagnosis. From this subset of 15 proteins, up to 6 proteins were iteratively selected as features and logistic regression was used to distinguish patients from healthy controls. Furthermore, serum-derived EV from a new cohort of 12 patients with gastric cancer and 18 healthy controls were quantified using the same method. A classification panel consisting of GSN, HP, ORM1, PIGR, and TFRC showed the best performance, with a sensitivity and negative predictive value (NPV) of 0.83 and 0.82. The area under curve (AUC) of the receiver operating characteristic (ROC) is 0.80. Finally, to facilitate the diagnosis of advanced stage GAC, we identified a 3-protein panel consisting of LYZ, SAA1, and F12 that showed reasonably good performance with an AUC of 0.83 in the validation dataset. In conclusion, we identified new protein biomarker panels from serum EVs for early diagnosis of gastric cancer that worth further validation.
10.3389/fonc.2022.1051450
DNA Methylation-Mediated Overexpression of in -Induced Gastric Cancer: In Silico- and In Vitro-Based Identification of a Potential Biomarker for Carcinogenesis.
International journal of molecular sciences
Given the high global prevalence and mortality associated with gastric cancer, and its known causal link with infection, it is important to have a biomarker to identify malignant transformation at early stages. Previously, we, and others, have reported that -induced epigenetic changes could mediate carcinogenic transformation of the gastric cells. Also, CXCL1 secreted by gastric cancer cells was reported as a key diagnostic and prognostic biomarker for the pathogenic progression of gastric cancer. In this study, for the first time, we aimed to investigate the role of -induced DNA methylation-based epigenetic regulation of . In silico analysis of publicly available datasets and in vitro experiments were performed. Our results showed that is highly expressed in both gastric cancer tissues and gastric cancer cells infected with . Further, we showed and confirmed that -mediated overexpression of is due to hypomethylation of its promoter region. Since epigenetic events such as DNA methylation happen early in the sequence; -induced hypomethylation could likely be detected at an early stage of gastric cancer development. Epigenetic modifications, such as hypomethylation, are reversible and could potentially be a therapeutic target using demethylation drugs.
10.3390/ijms24010795
Dynamic gene screening enabled identification of a 10-gene panel for early detection and progression assessment of gastric cancer.
Computational and structural biotechnology journal
Early diagnosis and progression assessment are critical for the timely detection and treatment of gastric cancer (GC) patients. Identification of diagnostic biomarkers for early detection of GC represents an unmet clinical need, and how these markers further influence GC progression is explored rarely. We performed dynamic gene screening based on high-throughput data analysis from patients with precancerous lesions and early gastric cancer (EGC) and identified a 10-gene panel by the lasso regression model. This panel demonstrated good diagnostic performance in TCGA (AUC = 0.95, sensitivity = 86.67 %, specificity = 90.63 %) and GEO (AUC = 0.84, sensitivity = 91.67 %, specificity = 78.13 %) cohorts. Moreover, three GC subtypes were clustered based on this panel, in which cluster 2 (C2) demonstrated the highest tumor progression level with a high expression of 10 genes, showing a decreased tumor mutation burden, significantly enriched epithelial-mesenchymal transition hallmark and increased immune exclusion/exhausted features. Finally, the cell localization of these panel genes was explored in scRNA-seq data based on more than 40,000 cells. The 10-gene panel is expected to be a new clinical early detection signature for GC and may aid in progression assessment and personalized treatment of patients.
10.1016/j.csbj.2022.12.036
Metabolomics Reveals Novel Serum Metabolic Signatures in Gastric Cancer by a Mass Spectrometry Platform.
Journal of proteome research
Gastric cancer (GAS) is one of the malignant tumors of the gastrointestinal system. Alterations in metabolite composition can reflect pathological processes of GAS and constitute a basis for diagnosis and treatment improvements. In this study, a total of 301 serum samples from 150 GAS patients at different tumor-node-metastasis (TNM) stages and 151 healthy controls were collected. Mass spectrometry platforms were performed to investigate the changes in GAS-related metabolites and explore the new potential serum biomarkers and the metabolic dysregulation associated with GAS progression. Twelve differential metabolites (ethyl 2,4-dimethyl-1,3-dioxolane-2-acetate, D-urobilinogen, 14-HDoHE, 13-hydroxy-9-methoxy-10-oxo-11-octadecenoic acid, 5,6-dihydroxyprostaglandin F1a, 9'-carboxy-gamma-tocotrienol, glutaric acid, alanine, tyrosine, C18:2(FFA), adipic acid, and suberic acid) were identified to establish the diagnosis model for GAS. The defined biomarker panel was also statistically significant for GAS progression with different TNM stages. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment revealed the metabolic dysregulation associated with GAS progression. In conclusion, a diagnostic panel was established and validated, which could be used to further stage the early and advanced GAS patients from healthy controls. These findings may provide useful information for explaining the GAS metabolic alterations and try to facilitate the characterization of GAS patients in the early stage.
10.1021/acs.jproteome.2c00295
Identification of PRTN3 as a novel biomarker for the diagnosis of early gastric cance.
Journal of proteomics
Gastric cancer (GC) remains one of the most common types of cancer worldwide and has a high mortality rate. However, tools for the early detection of gastric cancer are still lacking. Isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic assays were conducted to identify and quantify the differentially expressed proteins (DEPs) in the gastric mucosal tissues of GC patients at different stages. Bioinformatics analysis was used to identify the pathways enriched among the DEPs and candidate marker proteins. The expression levels and distribution of candidate proteins were confirmed by parallel reaction monitoring (PRM) analysis. In this study, by using the iTRAQ quantitative proteomic strategy, we identified 727 and 502 DEPs that were upregulated in EGC vs. PGC and EGC vs. NGC, respectively. These DEPs were mainly involved in the innate immune response and RNA binding. PRTN3 was identified as a marker of early gastric cancer by Gene Ontology enrichment analysis. Furthermore, the PRM assay confirmed the significant overexpression of PRTN3 in EGC gastric mucosa compared to PGC and NGC mucosa. Our data demonstrated that PRTN3 in the gastric mucosa could be used as a novel biomarker to identify patients with early gastric cancer via endoscopy. SIGNIFICANCE: Gastric cancer remains one of the most common types of cancer worldwide and has a high mortality rate. Patients with progressive gastric cancer and gastroesophageal junction cancer have a poor prognosis, with a 5-year relative survival rate of 6%. Therefore, early detection and diagnosis of gastric cancer is a key step toward improving the survival rate. The present study identified PRTN3 as a marker of early gastric cancer by an iTRAQ quantitative proteomic strategy. The PRM assay confirmed the significant overexpression of PRTN3 in EGC gastric mucosa compared to PGC and NGC mucosa. This study discovered that PRTN3 in the gastric mucosa could be used as a novel biomarker to identify patients with early gastric cancer via endoscopy.
10.1016/j.jprot.2023.104852
TUBA1C: a new potential target of LncRNA EGFR-AS1 promotes gastric cancer progression.
BMC cancer
BACKGROUND:The lack of obvious symptoms of early gastric cancer (GC) as well as the absence of sensitive and specific biomarkers results in poor clinical outcomes. Tubulin is currently emerging as important regulators of the microtubule cytoskeleton and thus have a strong potential to be implicated in a number of disorders, however, its mechanism of action in gastric cancer is still unclear. Tubulin alpha-1 C (TUBA1C) is a subtype of α-tubulin, high TUBA1C expression has been shown to be closely related to a poor prognosis in various cancers, this study, for the first time, revealed the mechanism of TUBA1C promotes malignant progression of gastric cancer in vitro and in vivo. METHODS:The expression of lncRNA EGFR-AS1 was detected in human GC cell lines by qRT-PCR. Mass spectrometry experiments following RNA pulldown assays found that EGFR-AS1 directly binds to TUBA1C, the CCK8, EdU, transwell, wound-healing, cell cycle assays and animal experiments were conducted to investigate the function of TUBA1C in GC. Combined with bioinformatics analyses, reveal interaction between Ki-67, E2F1, PCNA and TUBA1C by western blot. Rescue experiments furtherly demonstrated the relationship of EGFR-AS1and TUBA1C. RESULTS:TUBA1C was proved to be a direct target of EGFR-AS1, and TUBA1C promotes gastric cancer proliferation, migration and invasion by accelerating the progression of the cell cycle from the G1 phase to the S phase and activating the expression of oncogenes: Ki-67, E2F1 and PCNA. CONCLUSION:TUBA1C is a new potential target of LncRNA EGFR-AS1 promotes gastric cancer progression and could be a novel biomarker and therapeutic target for GC.
10.1186/s12885-023-10707-7
Cancer Progress and Priorities: Gastric Cancer.
Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
Gastric cancer, the fifth leading cause of cancer worldwide, is estimated to be responsible for approximately 1.4% of all new cancers and 1.8% of all cancer-related deaths in the United States. Despite declining incidence rates and improved survival rates, however, gastric cancer continues to disproportionately affect racial and ethnic minorities and individuals of lower socioeconomic status at higher rates than the general population. To improve outcomes globally and address disparities within the United States, continued improvements are needed in risk factor modification and biomarker development and to improve access to existing preventative measures such as genetic testing and H. pylori eradication testing, in addition to expanding upon current clinical guidelines for premalignant disease to address gaps in endoscopic surveillance and early detection.
10.1158/1055-9965.EPI-22-0994
Application of artificial intelligence for improving early detection and prediction of therapeutic outcomes for gastric cancer in the era of precision oncology.
Seminars in cancer biology
Gastric cancer is a leading contributor to cancer incidence and mortality globally. Recently, artificial intelligence approaches, particularly machine learning and deep learning, are rapidly reshaping the full spectrum of clinical management for gastric cancer. Machine learning is formed from computers running repeated iterative models for progressively improving performance on a particular task. Deep learning is a subtype of machine learning on the basis of multilayered neural networks inspired by the human brain. This review summarizes the application of artificial intelligence algorithms to multi-dimensional data including clinical and follow-up information, conventional images (endoscope, histopathology, and computed tomography (CT)), molecular biomarkers, etc. to improve the risk surveillance of gastric cancer with established risk factors; the accuracy of diagnosis, and survival prediction among established gastric cancer patients; and the prediction of treatment outcomes for assisting clinical decision making. Therefore, artificial intelligence makes a profound impact on almost all aspects of gastric cancer from improving diagnosis to precision medicine. Despite this, most established artificial intelligence-based models are in a research-based format and often have limited value in real-world clinical practice. With the increasing adoption of artificial intelligence in clinical use, we anticipate the arrival of artificial intelligence-powered gastric cancer care.
10.1016/j.semcancer.2023.04.009
The Comprehensive Analysis of Specific Proteins as Novel Biomarkers Involved in the Diagnosis and Progression of Gastric Cancer.
International journal of molecular sciences
Gastric cancer (GC) cases are predicted to rise by 2040 to approximately 1.8 million cases, while GC-caused deaths to 1.3 million yearly worldwide. To change this prognosis, there is a need to improve the diagnosis of GC patients because this deadly malignancy is usually detected at an advanced stage. Therefore, new biomarkers of early GC are sorely needed. In the present paper, we summarized and referred to a number of original pieces of research concerning the clinical significance of specific proteins as potential biomarkers for GC in comparison to well-established tumor markers for this malignancy. It has been proved that selected chemokines and their specific receptors, vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR), specific proteins such as interleukin 6 (IL-6) and C-reactive protein (CRP), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), as well as DNA- and RNA-based biomarkers, and c-MET (tyrosine-protein kinase Met) play a role in the pathogenesis of GC. Based on the recent scientific literature, our review indicates that presented specific proteins are potential biomarkers in the diagnosis and progression of GC as well as might be used as prognostic factors of GC patients' survival.
10.3390/ijms24108833
A comprehensive evaluation of serum tRF-29-R9J8909NF5JP as a novel diagnostic and prognostic biomarker for gastric cancer.
Molecular carcinogenesis
Gastric cancer (GC) is a common malignant digestive system tumor. Since the early symptoms of GC are usually vague and the positive rate of common biomarkers of GC is low, it is of urgent need to find new biomarkers with good sensitivity and specificity to screen and diagnose GC patients. The tRNA-derived small RNAs (tsRNAs) are emerging small noncoding RNAs that play an essential role in cancer progression. In this study, we explored whether novel tsRNAs have the potential to serve as biomarkers for GC. Three tsRNAs significantly upregulated in GC were screened by the tsRFun database. The expression level of tRF-29-R9J8909NF5JP was detected by real-time fluorescence quantitative polymerase chain reaction. Agarose gel electrophoresis and Sanger sequencing were used to verify the characteristics of tRF-29-R9J8909NF5JP. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of tRF-29-R9J8909NF5JP. The χ test was used to analyze the correlation between tRF-29-R9J8909NF5JP expression level and clinicopathological parameters. Kaplan-Meier survival curves were used to analyze the correlation between tRF-29-R9J8909NF5JP expression levels and survival time of GC patients. In this study, the expression level of tRF-29-R9J8909NF5JP was significantly increased in GC tissues. The expression level of tRF-29-R9J8909NF5JP was considerably higher in the serum of GC patients than in the serum of gastritis patients and in the serum of healthy donors, and the expression level of tRF-29-R9J8909NF5JP was significantly decreased in the serum of GC patients after surgery. In addition, the χ test showed that the expression level of tRF-29-R9J8909NF5JP in GC serum was correlated with differentiation grade, T-stage, lymph node metastasis, tumor node metastasis stage, and neurological/vascular invasion. The results of the survival curve showed that the high expression of serum tRF-29-R9J8909NF5JP was associated with a low survival rate. ROC analysis showed that serum tRF-29-R9J8909NF5JP had higher diagnostic efficiency than common GC biomarkers, and the diagnostic efficiency was further improved by combining them. At the end of the study, we predicted the downstream of tRF-29-R9J8909NF5JP. The expression level of tRF-29-R9J8909NF5JP in the serum of GC patients can effectively identify GC patients and has higher efficacy than conventional biomarkers. In addition, serum tRF-29-R9J8909NF5JP can monitor the postoperative condition of GC patients, suggesting that it has the potential to become a biomarker for GC.
10.1002/mc.23592
Transfer RNA-derived fragments as novel biomarkers of the onset and progression of gastric cancer.
Experimental biology and medicine (Maywood, N.J.)
Gastric cancer (GC) is a particularly malignant disease; thus, early diagnosis and treatment are especially important. Transfer RNA-derived small RNAs (tsRNAs) have been implicated in the onset and progression of various cancers. Therefore, the aim of this study was to explore the role of tRF-18-79MP9P04 (previously named tRF-5026a) in the onset and progression of GC. Expression levels of tRF-18-79MP9P04 were quantified in gastric mucosa specimens of healthy controls and plasma samples of patients with different stages of GC. The results showed that plasma levels of tRF-18-79MP9P04 were significantly decreased in the early and advanced stages of GC. The results of the nucleocytoplasmic separation assay found that tRF-18-79MP9P04 was localized in the nuclei of GC cells. High-throughput transcriptome sequencing identified genes regulated by tRF-18-79MP9P04 in GC cells, and the function of tRF-18-79MP9P04 was predicted by bioinformatics. Collectively, the findings of this study suggest that tRF-18-79MP9P04 would be useful as non-invasive biomarker for early diagnosis of GC and is related to cornification, the type I interferon signaling pathway, RNA polymerase II activities, and DNA binding.
10.1177/15353702231179415
miR-199a and miR-199b facilitate diffuse gastric cancer progression by targeting Frizzled-6.
Scientific reports
Pathological markers that can monitor the progression of gastric cancer (GC) may facilitate the diagnosis and treatment of patients with diffuse GC (DGC). To identify microRNAs (miRNAs) that can differentiate between early and advanced DGC in the gastric mucosa, miRNA expression profiling was performed using the NanoString nCounter method in human DGC tumors. Ectopic expression of miR-199a and miR-199b (miR-199a/b) in SNU601 human GC cells accelerated the growth rate, viability, and motility of cancer cells and increased the tumor volume and weight in a mouse xenograft model. To study their clinicopathological roles in patients with GC, miR-199a/b levels were measured in human GC tumor samples using in situ hybridization. High miR-199a/b expression level was associated with enhanced lymphovascular invasion, advanced T stage, and lymph-node metastasis. Using the 3'-untranslated region (UTR) luciferase assay, Frizzled-6 (FZD6) was confirmed to be a direct target of miR-199a/b in GC cells. siRNA-mediated depletion of FZD6 enhanced the motility of SNU601 cells, and addback of FZD6 restored cancer cell motility stimulated by miR-199a/b. In conclusion, miR-199a/b promotes DGC progression by targeting FZD6, implying that miR-199a/b can be used as prognostic and diagnostic biomarkers for the disease.
10.1038/s41598-023-44716-0
An updated meta-analysis investigating the association between DNMTs gene polymorphism andgastric cancer risk.
PloS one
Gastric cancer (GC) is a prominent global health issue, as it ranks as the fifth most prevalent type of cancer and the fourth most significant cause of cancer-related mortality worldwide. Although H. pylori is known to play a role in the development of GC, genetic factors also play a role in its onset and progression. Recent studies have shown that genetic polymorphisms are strongly associated with the development of GC and that certain single nucleotide polymorphisms (SNPs) can be used as biomarkers for early diagnosis and prevention. Epigenetic disturbances, such as DNA methylation, are involved in the development of GC, and mutations in the DNA methyltransferase (DNMT) gene have been found to increase the risk of GC. However, previous findings on the association between DNMTs SNPs and GC risk have been inconsistent. In this study, an updated meta-analysis of three well-studied and controversial DNMTs polymorphic loci, DNMT1 rs16999593, DNMT3A rs1550117 and DNMT3B rs1569686, was performed to provide more reliable results. It was found that DNMT1 rs16999593 was not associated with GC, DNMT3A rs1550117 may have a positive association with GC risk, and DNMT3B rs1569686 may be a protective factor for GC. These findings may provide valuable information for early diagnosis and prevention of GC, but further studies are needed to confirm these results.
10.1371/journal.pone.0293466
Spatiotemporal genomic profiling of intestinal metaplasia reveals clonal dynamics of gastric cancer progression.
Cancer cell
Intestinal metaplasia (IM) is a pre-malignant condition of the gastric mucosa associated with increased gastric cancer (GC) risk. Analyzing 1,256 gastric samples (1,152 IMs) across 692 subjects from a prospective 10-year study, we identify 26 IM driver genes in diverse pathways including chromatin regulation (ARID1A) and intestinal homeostasis (SOX9). Single-cell and spatial profiles highlight changes in tissue ecology and IM lineage heterogeneity, including an intestinal stem-cell dominant cellular compartment linked to early malignancy. Expanded transcriptome profiling reveals expression-based molecular subtypes of IM associated with incomplete histology, antral/intestinal cell types, ARID1A mutations, inflammation, and microbial communities normally associated with the healthy oral tract. We demonstrate that combined clinical-genomic models outperform clinical-only models in predicting IMs likely to transform to GC. By highlighting strategies for accurately identifying IM patients at high GC risk and a role for microbial dysbiosis in IM progression, our results raise opportunities for GC precision prevention and interception.
10.1016/j.ccell.2023.10.004
The Role of Mucin Expression in the Diagnosis of Oesophago-Gastric Cancer: A Systematic Literature Review.
Cancers
Survival in oesophago-gastric cancer (OGC) is poor due to early diagnostic challenges. Non-invasive risk stratification may identify susceptible patients with pre-malignant or benign disease. Following diagnostic confirmation with endoscopic biopsy, early OGC may be treated sooner. Mucins are transmembrane glycoproteins implicated in OGC with potential use as biomarkers of malignant transformation. This systematic review defines the role of mucins in OGC diagnosis. A literature search of MEDLINE, Web of Science, Embase and Cochrane databases was performed following PRISMA protocols for studies published January 1960-December 2022. Demographic data and data on mucin sampling and analysis methods were extracted. The review included 124 studies ( = 11,386 patients). Gastric adenocarcinoma (GAc) was the commonest OG malignancy ( = 101) followed by oesophageal adenocarcinoma (OAc, = 24) and squamous cell carcinoma (OSqCc, = 10). Mucins MUC1, MUC2, MUC5AC and MUC6 were the most frequently implicated. High MUC1 expression correlated with poorer prognosis and metastases in OSqCc. MUC2 expression decreases during progression from healthy mucosa to OAc, causing reduced protection from gastric acid. MUC5AC was upregulated, and MUC6 downregulated in GAc. Mucin expression varies in OGC; changes may be epigenetic or mutational. Profiling upper GI mucin expression in OGC, with pre-malignant, benign and healthy controls may identify potential early diagnostic biomarkers.
10.3390/cancers15215252
Role of non-coding RNAs as new therapeutic targets in regulating the EMT and apoptosis in metastatic gastric and colorectal cancers.
Cell cycle (Georgetown, Tex.)
Colorectal cancer (CRC) and gastric cancer (GC), are the two most common cancers of the gastrointestinal tract, and are serious health concerns worldwide. The discovery of more effective biomarkers for early diagnosis, and improved patient prognosis is important. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), can regulate cellular processes such as apoptosis and the epithelial-mesenchymal transition (EMT) leading to progression and resistance of GC and CRC tumors. Moreover these pathways (apoptosis and EMT) may serve as therapeutic targets, to prevent metastasis, and to overcome drug resistance. A subgroup of ncRNAs is common to both GC and CRC tumors, suggesting that they might be used as biomarkers or therapeutic targets. In this review, we highlight some ncRNAs that can regulate EMT and apoptosis as two opposite mechanisms in cancer progression and metastasis in GC and CRC. A better understanding of the biological role of ncRNAs could open up new avenues for the development of personalized treatment plans for GC and CRC patients.
10.1080/15384101.2023.2286804
Survivin as a potential biomarker for early diagnosis of the progression of precancerous lesions to gastric cancer.
The International journal of biological markers
BACKGROUND:Gastric cancer is a common cancer developed in a carcinogenesis process from precancerous lesions including chronic gastritis, intestinal metaplasia, and dysplasia. Survivin, an inhibitor-of-apoptosis protein, is associated with the initiation and progression of gastric cancer. The present study aimed to evaluate the immunohistochemical expression patterns of survivin and its relationship with early diagnosis of gastric cancer in Iranian patients. METHODS:In this retrospective case-control study, immunoexpression of survivin was investigated on sections obtained from formalin-fixed paraffin-embedded tissue blocks of 38 chronic gastritis, 32 intestinal metaplasia, 20 dysplasia, 28 gastric adenocarcinoma, and 22 controls. RESULTS:Survivin immunoexpression in chronic gastritis was higher than controls, but this difference was not statistically significant ( > 0.05). However, survivin immunoexpression had a steady significant increase from control and chronic gastritis to intestinal metaplasia to dysplasia to gastric adenocarcinoma ( < 0.05). Sensitivity, specificity, and area under the curve of survivin immunohistochemical test for the diagnosis of gastric cancer were 87.5%, 74.4%, and 0.85, respectively. Males had a significantly higher survivin expression than females ( < 0.001). Also, survivin expression was significantly higher in older patients than in younger ones ( < 0.001). CONCLUSION:It seems that the steady increase in survivin expression from different precancerous lesions to gastric adenocarcinoma suggests that survivin can be used as a potential biomarker for the prevention and early diagnosis of gastric cancer.
10.1177/03936155231217268
Potential lncRNA diagnostic biomarkers for early gastric cancer.
Lu Qin,Yu Ting,Ou Xilong,Cao Dazhong,Xie Ting,Chen Xia
Molecular medicine reports
Long noncoding RNAs (lncRNAs) serve important functions in many crucial biological processes; however, the effects of lncRNAs in early gastric cancer (EGC) are not entirely clear. The present study aimed to demonstrate the potential of lncRNAs to be used as biomarkers in EGC. Reverse transcription‑quantitative polymerase chain reaction was used to measure the expression levels of lncRNAs, including X inactive‑specific transcript (XIST), Yiya, brain cytoplasmic RNA 1 (BCYRN1), ribosomal RNA processing 1B (RRP1B), KCNQ1 opposite transcript 1 (KCNQ1OT1) and testes development related 1 (TDRG1), in EGC tissues compared with normal adjacent tissues (NATs). XIST, BCYRN1, RRP1B and TDRG1 were identified as differentially expressed in EGC tissues compared with NATs. The specificity and sensitivity of XIST, BCYRN1, RRP1B and TDRG1 were determined by receiver operating characteristic curve analysis. In addition, RRP1B expression was revealed to be significantly correlated with distal metastasis (P=0.020) and tumor‑node‑metastasis staging (P=0.018), and TDRG1 expression was significantly correlated with lymph node metastasis (P=0.001). Furthermore, BCYRN1, RRP1B and TDRG1 expression levels were compared between EGC tissues and plasma, and the results indicated that there were significant positive correlations of XIST, BCYRN1, RRP1B and TDRG1 expression levels between the EGC tissues and plasma. Therefore, the present study suggested that XIST, BCYRN1, RRP1B and TDRG1 may be served as potential diagnostic biomarkers for EGC.
10.3892/mmr.2017.7770
Five common tumor biomarkers and CEA for diagnosing early gastric cancer: A protocol for a network meta-analysis of diagnostic test accuracy.
Shen Minghui,Wang Hui,Wei Kongyuan,Zhang Jianling,You Chongge
Medicine
BACKGROUND:Although surgical resection is the recommended treatment for the patients with gastric cancer, lots of patients show advanced or metastatic gastric cancer at the time of diagnosis. Detection of gastric cancer at early stages is a huge challenge because of lack of appropriate detection tests. Unfortunately, existing clinical guidelines focusing on early diagnosis of gastric cancer do not provide consistent and prudent evidence. Serum carcinoembryonic antigen was considered as a complementary test, although it is not good enough to diagnose early gastric cancer. There are no other tumor markers recommended for diagnosing early gastric cancer. This study aims to evaluate and compare the diagnostic accuracy of 5 common tumor biomarkers (CA19-9, CA125, PG, IncRNA, and DNA methylation) and CEA and their combinations for diagnosing gastric cancer through network meta-analysis method, and to rank these tests using a superiority index. METHODS:PubMed, EMBASE.com, and the Cochrane Central Register of Controlled Trials (CENTRAL) will be searched from their inception to March 2018. We will include diagnostic tests which assessed the accuracy of the above-mentioned tumor biomarkers and CEA for diagnosing gastric cancer. The risk of bias for each study will be independently assessed as low, moderate, or high using criteria adapted from Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Network meta-analysis will be performed using STATA 12.0 and R 3.4.1 software. The competing diagnostic tests will be ranked by a superiority index. RESULTS:This study is ongoing and will be submitted to a peer-reviewed journal for publication. CONCLUSION:This study will provide systematically suggestions to select different tumor biomarkers for detecting the early gastric cancer.
10.1097/MD.0000000000010577
Combination of Four Serum Exosomal MiRNAs as Novel Diagnostic Biomarkers for Early-Stage Gastric Cancer.
Tang Shuli,Cheng Jianan,Yao Yuanfei,Lou Changjie,Wang Liang,Huang Xiaoyi,Zhang Yanqiao
Frontiers in genetics
Gastric cancer (GC) remains a leading cause of cancer-related mortality in the United States and China, there is an urgent need to discover novel non-invasive biomarkers for the early diagnosis of GC to improve the prognosis of GC patients. Exosomal miRNAs are considered promising biomarkers for cancer diagnosis. Using next-generation sequencing (NGS), bioinformatics and further validation, we identified and evaluated exosomal miRNAs in serum as early diagnostic markers for GC. NGS revealed that the average mappable reads in the RNA libraries were about 6.5 million per patient including miRNAs (73.38%), rRNAs (17.10%), snRNAs (8.83%), snoRNAs (0.65%), and tRNAs (0.04%). A total of 66 up and 13 down-regulated exosomal miRNAs were found in the screened cohort. In the validation cohort, by comparing with healthy individuals, higher levels of serum exosomal miR-92b-3p, let-7g-5p, miR-146b-5p, and miR-9-5p were found to be significantly associated with early-stage GC ( < 0.05). Diagnostic power of the combined panels of the exosomal miRNAs or the combination of exosomal miRNAs and CEA outperformed that of single exosomal miRNA marker for establishing a diagnosis of early-stage GC. The combined diagnosis of exosomal miR-92b-3p + let-7g-5p + miR-146b-5p + miR-9-5p with CEA had the most powerful efficiency with an AUC up to 0.786. In addition, serum levels of exosomal miR-92b-3p were significantly associated with poor cohesiveness ( = 0.0021), let-7g-5p and miR-146b-5p were significantly correlated with nerve infiltration ( = 0.0234 and = 0.0126, respectively), and miR146b-5p was statistically correlated with tumor invasion depth in early-stage GC ( = 0.0089). In conclusion, serum exosomal miR-92b-3p, -146b-5p, -9-5p, and let-7g-5p may serve as potential non-invasive biomarkers for early diagnosis of GC.
10.3389/fgene.2020.00237
Diagnostic value of macrophage inhibitory cytokine 1 as a novel prognostic biomarkers for early gastric cancer screening.
Ge Xin,Zhang Xiaolei,Ma Yanling,Chen Shaohua,Chen Zhaowu,Li Ming
Journal of clinical laboratory analysis
BACKGROUND:Early diagnosis is very important to improve the survival rate of patients with gastric cancer (GC), especially in asymptomatic participants. However, low sensitivity of common biomarkers has caused difficulties in early screening of GC. In this study, we explored whether MIC-1 can improve the detection rate of early GC. METHODS:We screened 8257 participants based on risk factors such as age, gender, and family history for physical examination including gastroscopy. Participant blood samples were taken for measure MIC-1, CA-199, CA72-4, and PG1/PG2 levels. The diagnostic performance of MIC-1 was assessed and compared with CA-199, CA72-4, and PG1/PG2, and its role in early GC diagnosis and the assessment of the risk of precancerous lesions have also been studied. RESULTS:Based on endoscopic and histopathological findings, 55 participants had GC, 566 participants had low-grade neoplasia, and 2605 participants had chronic gastritis. MIC-1 levels were significantly elevated in GC serum samples as compared to controls (P < .001). The sensitivity of serum MIC-1 for GC diagnosis was much higher than that of CA-199 (49.1% vs 20.0%) with similar specificities. Moreover, receiver operating characteristic (ROC) curve analysis also showed that serum MIC-1 had a better performance compared with CA-199, CA72-4, and PG1/PG2 in distinguishing early-stage GC (AUC: 72.9% vs 69.5%, 67.5%, 44.0%, respectively). CONCLUSIONS:Serum MIC-1 is significantly elevated in most patients with early GC. MIC-1 can serve as a novel diagnostic marker of early GC and value the risk of GC.
10.1002/jcla.23568
Identification of early diagnostic biomarkers via WGCNA in gastric cancer.
Rezaei Zohreh,Ranjbaran Javad,Safarpour Hossein,Nomiri Samira,Salmani Fatemeh,Chamani Elham,Larki Pegah,Brunetti Oronzo,Silvestris Nicola,Tavakoli Tahmine
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
BACKGROUND:Gastric cancer (GC) is the world's second-leading cause of cancer-related mortality, continuing to make it a serious healthcare concern. Even though the prevalence of GC reduces, the prognosis for GC patients remains poor in terms of a lack of reliable biomarkers to diagnose early GC and predict chemosensitivity and recurrence. METHODS AND MATERIAL:We integrated the gene expression patterns of gastric cancers from four RNAseq datasets (GSE113255, GSE142000, GSE118897, and GSE130823) from Gene Expression Omnibus (GEO) database to recognize differentially expressed genes (DEGs) between normal and GC samples. A gene co-expression network was built using weighted co-expression network analysis (WGCNA). Furthermore, RT-qPCR was performed to validate the in silico results. RESULTS:The red modules in GSE113255, Turquoise in GSE142000, Brown in GSE118897, and the green-yellow module in GSE130823 datasets were found to be highly correlated with the anatomical site of GC. ITGAX, CCL14, ADHFE1, and HOXB13) as the hub gene are differentially expressed in tumor and non-tumor gastric tissues in this study. RT-qPCR demonstrated a high level of the expression of this gene. CONCLUSION:The expression levels of ITGAX, CCL14, ADHFE1, and HOXB13 in GC tumor tissues are considerably greater than in adjacent normal tissues. Systems biology approaches identified that these genes could be possible GC marker genes, providing ideas for other experimental studies in the future.
10.1016/j.biopha.2021.112477
Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer.
Molecular cancer
BACKGROUND:Majority of gastric cancers (GC) are diagnosed at advanced stages which contributes towards their poor prognosis. In view of this clinical challenge, identification of non-invasive biomarker for early diagnosis is imperative. Herein, we aimed to develop a non-invasive, liquid-biopsy based assay by using circular RNAs (circRNAs) as molecular biomarkers for early detection of GC. METHODS:We performed systematic biomarker discovery and validation of the candidate circRNAs in matched tissue specimens of GC and adjacent normal mucosa. Next, we translated the discovered circRNA based biomarker panel into serum samples in a training and validation cohort of GC patients (n = 194) and non-disease controls (n = 94) and evaluated their diagnostic performance. In addition, we measured the expression of circRNAs in serum samples of pre- and post-surgical GC patients and evaluated the specificity of circRNAs biomarker panel with respect to other gastro-intestinal (GI) malignancies. RESULTS:We identified 10-circRNAs in the discovery phase with subsequent validation in a pilot cohort of GC tissue specimens. Using a training cohort of patients, we developed an 8-circRNA based risk-prediction model for the diagnosis of GC. We observed that our biomarker panel robustly discriminated GC patients from non-disease controls with an AUC of 0.87 in the training, and AUC of 0.83 in the validation cohort. Notably, the biomarker panel could robustly identify even early-stage GC patients, regardless of their tumor histology (diffuse vs. intestinal). The decreased expression of circRNAs in post-surgery serum specimens indicated their tumor-specificity and their potential source of origin in the systemic circulation. CONCLUSIONS:We identified a panel of 8-circRNAs as non-invasive, liquid-biopsy biomarkers which might serve as potential diagnostic biomarkers for the early detection of GC.
10.1186/s12943-022-01527-7
Atrophic gastritis and gastric cancer tissue miRNome analysis reveals hsa-miR-129-1 and hsa-miR-196a as potential early diagnostic biomarkers.
World journal of gastroenterology
BACKGROUND:Gastric cancer (GC) is one of the most frequently diagnosed tumor globally. In most cases, GC develops in a stepwise manner from chronic gastritis or atrophic gastritis (AG) to cancer. One of the major issues in clinical settings of GC is diagnosis at advanced disease stages resulting in poor prognosis. MicroRNAs (miRNAs) are small noncoding molecules that play an essential role in a variety of fundamental biological processes. However, clinical potential of miRNA profiling in the gastric cancerogenesis, especially in premalignant GC cases, remains unclear. AIM:To evaluate the AG and GC tissue miRNomes and identify specific miRNAs' potential for clinical applications ( non-invasive diagnostics). METHODS:Study included a total of 125 subjects: Controls (CON), AG, and GC patients. All study subjects were recruited at the Departments of Surgery or Gastroenterology, Hospital of Lithuanian University of Health Sciences and divided into the profiling ( = 60) and validation ( = 65) cohorts. Total RNA isolated from tissue samples was used for preparation of small RNA sequencing libraries and profiled using next-generation sequencing (NGS). Based on NGS data, deregulated miRNAs hsa-miR-129-1-3p and hsa-miR-196a-5p were analyzed in plasma samples of independent cohort consisting of CON, AG, and GC patients. Expression level of hsa-miR-129-1-3p and hsa-miR-196a-5p was determined using the quantitative real-time polymerase chain reaction and 2 method. RESULTS:Results of tissue analysis revealed 20 differentially expressed miRNAs in AG group compared to CON group, 129 deregulated miRNAs in GC compared to CON, and 99 altered miRNAs comparing GC and AG groups. Only 2 miRNAs (hsa-miR-129-1-3p and hsa-miR-196a-5p) were identified to be step-wise deregulated in healthy-premalignant-malignant sequence. Area under the curve (AUC)-receiver operating characteristic analysis revealed that expression level of hsa-miR-196a-5p is significant for discrimination of CON AG, CON GC and AG GC and resulted in AUCs: 88.0%, 93.1% and 66.3%, respectively. Compar-ing results in tissue and plasma samples, hsa-miR-129-1-3p was significantly down-regulated in GC compared to AG ( = 0.0021 and = 0.024, tissue and plasma, respectively). Moreover, analysis revealed that hsa-miR-215-3p/5p and hsa-miR-934 were significantly deregulated in GC based on () infection status [log2 fold change (FC) = -4.52, -adjusted = 0.02; log2FC = -4.00, -adjusted = 0.02; log2FC = 6.09, -adjusted = 0.02, respectively]. CONCLUSION:Comprehensive miRNome study provides evidence for gradual deregulation of hsa-miR-196a-5p and hsa-miR-129-1-3p in gastric carcinogenesis and found hsa-miR-215-3p/5p and hsa-miR-934 to be significantly deregulated in carrying GC patients.
10.3748/wjg.v28.i6.653
Early diagnostic and prognostic biomarkers for gastric cancer: systems-level molecular basis of subsequent alterations in gastric mucosa from chronic atrophic gastritis to gastric cancer.
Journal, genetic engineering & biotechnology
PURPOSE:It is important to comprehend how the molecular mechanisms shift when gastric cancer in its early stages (GC). We employed integrative bioinformatics approaches to locate various biological signalling pathways and molecular fingerprints to comprehend the pathophysiology of the GC. To facilitate the discovery of their possible biomarkers, a rapid diagnostic may be made, which leads to an improved diagnosis and improves the patient's prognosis. METHODS:Through protein-protein interaction networks, functional differentially expressed genes (DEGs), and pathway enrichment studies, we examined the gene expression profiles of individuals with chronic atrophic gastritis and GC. RESULTS:A total of 17 DEGs comprising 8 upregulated and 9 down-regulated genes were identified from the microarray dataset from biopsies with chronic atrophic gastritis and GC. These DEGs were primarily enriched for CDK regulation of DNA replication and mitotic M-M/G1 phase pathways, according to KEGG analysis (p > 0.05). We discovered two hub genes, MCM7 and CDC6, in the protein-protein interaction network we obtained for the 17 DEGs (expanded with increased maximum interaction with 110 nodes and 2103 edges). MCM7 was discovered to be up-regulated in GC tissues following confirmation using the GEPIA and Human Protein Atlas databases. CONCLUSION:The elevated expression of MCM7 in both chronic atrophic gastritis and GC, as shown by our comprehensive investigation, suggests that this protein may serve as a promising biomarker for the early detection of GC.
10.1186/s43141-023-00539-0
Polymorphisms in HLA-DQ genes, together with age, sex, and Helicobacter pylori infection, as potential biomarkers for the early diagnosis of gastric cancer.
Pérez-Rodríguez Martha,Partida-Rodríguez Oswaldo,Camorlinga-Ponce Margarita,Flores-Luna Lourdes,Lazcano Eduardo,Gómez Alejandro,Herrera-Goepfert Roberto,Medrano-Guzmán Rafael,Torres Javier
Helicobacter
BACKGROUND:Polymorphisms in inflammation-related genes are factors associated with the development of gastroduodenal diseases in Helicobacter pylori-infected individuals. MATERIALS AND METHODS:We aimed to analyze polymorphisms in HLA-DQ, together with other host and H. pylori variables as risk factors for precancerous and cancerous gastric lesions. 1052 individuals were studied, including nonatrophic gastritis (NAG), intestinal metaplasia (IM), gastric cancer (GC) or duodenal ulcer (DU) patients, and healthy volunteers. RESULTS:Patients with alleles DQA*01:01 (OR 0.78), *01:02 (OR 0.29), *01:03 (OR 0.31), and DQB*02:01/02 (OR 0.40) showed a reduced risk for GC. A multivariate logistic regression analyses showed that patients with homozygote genotypes DQA1*03:01 (OR 7.27) and DQA1*04:01 (OR 8.99) and DQB1*05:01:01 (OR 12.04) were at significantly increased risk for GC. Multivariate analyses also demonstrated that age (OR>10.0) and gender (OR>2.0) were variables that influenced significantly the risk for GC, while H. pylori infection (OR>2.5) increased the risk for IM. CONCLUSIONS:We identified HLA-DQ alleles associated with IM and GC, and confirm that age, sex, and H. pylori infection are variables that also influence the risk for disease. The use of multiple markers, HLA-DQ alleles, age, sex, and H. pylori infection may be useful biomarkers for the early diagnosis of patients with IM and GC.
10.1111/hel.12326
[Advances in serum biomarkers for early diagnosis of gastric cancer].
Zhang Yunzhu,Zhu Chunpeng,Lu Xinliang
Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences
Early diagnosis is the key to improve the prognosis of gastric cancer. How to screen out high-risk subjects of gastric cancer in population is a hot spot. Serum-based early detection of gastric cancer is suitable for high-risk population screening, which is more convenient and safer. This article reviews the diagnostic value of serum biomarkers for gastric cancer, including serum DNA methylation, various RNAs, pepsinogen, gastrin, osteopontin, MG7-Ag and CA724. Until now, there is still lack of ideal biomarkers for gastric cancer, and searching for specific RNAs may be promising for early diagnosis and screening of gastric cancer.
10.3785/j.issn.1008-9292.2019.06.14
Serum phospholipids are potential biomarkers for the early diagnosis of gastric cancer.
Zou Long,Guo Lei,Zhu Cheng,Lai Zhizhen,Li Zhili,Yang Aiming
Clinica chimica acta; international journal of clinical chemistry
BACKGROUND AND AIMS:Early diagnosis is key to improving the prognosis of gastric cancer. Altered phospholipid metabolism has been observed in different types of cancer. This study assessed serum phospholipid levels of patients with gastric cancer to explore biomarkers for its early diagnosis. MATERIALS AND METHODS:A total of 199 participants were enrolled, including patients with early gastric cancer or precancerous gastric lesions and healthy controls. Serum phospholipids were extracted and identified using mass spectrometry. The relative abundances of these phospholipids were compared among patients at different disease stages. Twenty-four patients with early gastric cancer were followed up, and their serum phospholipid levels were compared beween before and after resection. RESULTS:Fifty-four phospholipids were identified. Phosphatidylethanolamine (36:3), phosphatidylethanolamine (36:2), phosphatidylcholine (32:0), and sphingomyelin (d18:0/18:1(9Z)) were more abundant in patients with early gastric cancer than in healthy controls. The area under the receiver operating curve of sphingomyelin (d18:0/18:1(9Z)) reached 0.883 in the training set (sensitivity 81.08%, specificity 78.82%) and 0.874 in the validation set. The levels of phosphatidylethanolamine (36:2), phosphatidylcholine (32:0), and sphingomyelin (d18:0/18:1(9Z)) significantly declined after the cancerous lesions were resected. CONCLUSION:Serum phospholipids can serve as potential biomarkers for the early diagnosis of gastric cancer.
10.1016/j.cca.2021.05.002
LINC02688 and PP7080 as novel biomarkers in early diagnosis of gastric cancer.
Non-coding RNA research
Despite considerable progress in gastric cancer screening, prevention, and treatment, it remains a major cause of morbidity and mortality worldwide. Due to late diagnosis of the disease, early potential diagnostic biomarkers are needed. Accumulating evidence indicates that non-coding RNAs have potential applications as diagnostic and prognostic biomarkers in gastric cancer. Herein, we investigated the expression levels of two novel non-coding RNAs, long intergenic non-protein coding RNA 2688 () and () by real-time PCR for the first time in 47 gastric cancer patients. We found significant downregulation of LINC02688 and () with 3.44 and 2.2-fold decrease, respectively in tumoral tissues in comparison with their adjacent non-tumoral counterparts (P < 0.0001). Our data also indicates that more than 96% and 88% of patients showed unchanged or decreased expression of LINC02688 and (), respectively. As most gastric cancer patients showed lower expression of these two lncRNAs, no significant association between clinicopathological features of the patients and the level of LINC02688 and () expression could be detected. Furthermore, ROC curve analysis indicated that LINC02688 and can serve as good predictive biomarkers for distinguishing tumoral tissues from their adjacent non-tumoral counterparts. Taken together, our findings suggested that these two novel tumor suppressor non-coding RNAs may act as novel diagnostic biomarkers for diagnosis of carcinogenesis event even at earlier stages of gastric adenocarcinoma.
10.1016/j.ncrna.2021.04.002
Biomarkers for Gastric Cancer Screening and Early Diagnosis.
Herrera-Pariente Cristina,Montori Sheyla,Llach Joan,Bofill Alex,Albeniz Eduardo,Moreira Leticia
Biomedicines
Gastric cancer is one of the most common cancers worldwide, with a bad prognosis associated with late-stage diagnosis, significantly decreasing the overall survival. This highlights the importance of early detection to improve the clinical course of these patients. Although screening programs, based on endoscopic or radiologic approaches, have been useful in countries with high incidence, they are not cost-effective in low-incidence populations as a massive screening strategy. Additionally, current biomarkers used in daily routine are not specific and sensitive enough, and most of them are obtained invasively. Thus, it is imperative to discover new noninvasive biomarkers able to diagnose early-stage gastric cancer. In this context, liquid biopsy is a promising strategy. In this review, we briefly discuss some of the potential biomarkers for gastric cancer screening and diagnosis identified in blood, saliva, urine, stool, and gastric juice.
10.3390/biomedicines9101448
Identification and evaluation of novel serum autoantibody biomarkers for early diagnosis of gastric cancer and precancerous lesion.
Journal of cancer research and clinical oncology
PURPOSE:Early diagnosis is crucial for optimal prognosis of gastric cancer (GC). Hereby, we aimed to identify novel serum autoantibody-based biomarkers for precancerous lesion (PL) and early GC. METHODS:We performed serological proteome analysis (SERPA) combined with nanoliter-liquid chromatography combined with quadrupole time of flight tandem mass spectrometry (Nano-LC-Q-TOF-MS/MS) to screen for GC-associated autoantibodies. The identified autoantibodies were analyzed for potential detection value for PL and GC by enzyme-linked immunosorbent assay (ELISA). Receiver operating characteristic (ROC) curves analysis was conducted to evaluate the accuracy of the biomarkers. RESULTS:We identified seven candidates, such as mRNA export factor (RAE1), Nucleophosmin 1 (NPM1), phosphoglycerate kinase 1 (PGK1), and ADP-ribosylation factor 4 (ARF4). Antibodies against all seven proteins were present at higher levels in sera from 242 patients (51 PL, 78 early GC, 113 advanced GC) compared with sera from 122 healthy individuals. RAE1-specific autoantibody discriminated best between patients at different GC stages, with area under the curve (AUC) values of 0.710, 0.745, and 0.804 for PL, early GC, and advanced GC, respectively. Two predictive models composed of gender, RAE1, PGK1, NPM1, and ARF4 autoantibodies (Model 2 for PL) and of age, gender, RAE1, PGK1, and NPM1 autoantibodies (Model 3 for early GC) had improved diagnostic efficiencies, with AUCs of 0.803 and 0.857, sensitivities of 66.7% and 75.6%, and specificities of 78.7% and 87.7%, respectively. CONCLUSION:The identified serum tumor-associated autoantibodies (TAAbs) may have good potential for early detection of GC and PL.
10.1007/s00432-023-04732-z
Recent progress in biomarker-based diagnostics of , gastric cancer-causing bacteria.
Biomarkers in medicine
The progression of any disease and its outcomes depend on the complicated interaction between pathogens, host and environmental factors. Thus, complete knowledge of bacterial toxins involved in pathogenesis is necessary to develop diagnostic methods and alternative therapies, including vaccines. This review summarizes recently employed biomarkers to diagnose the presence of bacteria. The authors review distinct types of disease-associated biomarkers such as urease, DNA, miRNA, aptamers and bacteriophages that can be utilized as targets to detect and, moreover, gastric cancer in its early stage. A detailed explanation is also given in the context of the recent utilization of these biomarkers in the development of a highly specific and sensitive biosensing platform.
10.2217/bmm-2023-0316
Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer.
Tsai Ming-Ming,Wang Chia-Siu,Tsai Chung-Ying,Huang Hsiang-Wei,Chi Hsiang-Cheng,Lin Yang-Hsiang,Lu Pei-Hsuan,Lin Kwang-Huei
International journal of molecular sciences
Human gastric cancer (GC) is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients' survival rate. MicroRNAs (miRNAs) play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets.
10.3390/ijms17060945
A clinical metabolomics-based biomarker signature as an approach for early diagnosis of gastric cardia adenocarcinoma.
Sun Yuanfang,Li Shasha,Li Jin,Xiao Xue,Hua Zhaolai,Wang Xi,Yan Shikai
Oncology letters
Gastric cardia adenocarcinoma (GCA) has a high mortality rate worldwide; however, current early diagnostic methods lack efficacy. Therefore, the aim of the present study was to identify potential biomarkers for the early diagnosis of GCA. Global metabolic profiles were obtained from plasma samples collected from 21 patients with GCA and 48 healthy controls using ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. The orthogonal partial least squares discrimination analysis model was applied to distinguish patients with GCA from healthy controls and to identify potential biomarkers. Metabolic pathway analysis was performed using MetaboAnalyst (version 4.0) and revealed that 'glycerophospholipid metabolism', 'linoleic acid metabolism', 'fatty acid biosynthesis' and 'primary bile acid biosynthesis' were significantly associated with GCA. In addition, an early diagnostic model for GCA was established based on the relative levels of four key biomarkers, including phosphorylcholine, glycocholic acid, L-acetylcarnitine and arachidonic acid. The area under the receiver operating characteristic curve revealed that the diagnostic model had a sensitivity and specificity of 0.977 and 0.952, respectively. The present study demonstrated that metabolomics may aid the identification of the mechanisms underlying the pathogenesis of GCA. In addition, the proposed diagnostic method may serve as a promising approach for the early diagnosis of GCA.
10.3892/ol.2019.11173
Status of CHEK2 and p53 in patients with early-onset and conventional gastric cancer.
Machlowska Julita,Kapusta Przemysław,Szlendak Małgorzata,Bogdali Anna,Morsink Folkert,Wołkow Paweł,Maciejewski Ryszard,Offerhaus G Johan A,Sitarz Robert
Oncology letters
Gastric cancer (GC) is the fourth most common cause of cancer-associated death. Based on the age at diagnosis, GC is divided into early-onset GC (EOGC; ≤45 years) and conventional GC (CGC; >45 years). Mutations in the cell cycle checkpoint kinase 2 () and genes are associated with several types of cancer; however, their genetic defects in GC remain poorly understood. The aim of the present study was to determine the subcellular distribution of the CHEK2 protein and its redistribution following DNA damage, to improve the understanding of the DNA damage response. Genetic alterations and patterns of expression of CHEK2 and p53 proteins were investigated to identify potential biological markers and indicators of GC development. Additionally, the affected signaling pathways and their clinical importance in GC development and associated syndromes were investigated. A total of 196 GC samples (89 CGC and 107 EOGC samples) were used in the present study. DNA from 53 samples (18 CGC and 35 EOGC samples) was sequenced using targeted next-generation sequencing technology to identify and compare common and rare mutations associated with GC. Subsequently, the cytoplasmic and nuclear expression levels of CHEK2, phosphorylated (p)-CHEK2 at threonine 68 and p53 in GC tissues were determined via immunohistochemistry. Sequencing resulted in the identification of 63 single nucleotide polymorphisms (SNPs) in the gene amongst 5 different variants, and the intron variant c.319+379A>G was the most common SNP. In the gene, 57 different alterations were detected amongst 9 variant types, and the missense variant c.215C>G was the most common. Nuclear CHEK2 expression was high in both the EOGC and CGC subtypes. However, the prevalence of cytoplasmic CHEK2 expression (P<0.001) and nuclear p-CHEK2 expression (P=0.011) was significantly higher in CGC compared with in EOGC tissues. There was a statistically significant difference between high and low cytoplasmic CHEK2 expression in patients with p53-positive EOGC compared with in patients with p53-positive CGC (P=0.002). The present study was designed to determine the association between CHEK2 and p53 expression patterns in patients with EOGC and CGC, as well as genetic alterations in the and genes.
10.3892/ol.2021.12609
Novel biomarkers for early detection of gastric cancer.
World journal of gastroenterology
Gastric cancer (GC) remains a leading cause of cancer-related death worldwide. Less than half of GC cases are diagnosed at an advanced stage due to its lack of early symptoms. GC is a heterogeneous disease associated with a number of genetic and somatic mutations. Early detection and effective monitoring of tumor progression are essential for reducing GC disease burden and mortality. The current widespread use of semi-invasive endoscopic methods and radiologic approaches has increased the number of treatable cancers: However, these approaches are invasive, costly, and time-consuming. Thus, novel molecular noninvasive tests that detect GC alterations seem to be more sensitive and specific compared to the current methods. Recent technological advances have enabled the detection of blood-based biomarkers that could be used as diagnostic indicators and for monitoring postsurgical minimal residual disease. These biomarkers include circulating DNA, RNA, extracellular vesicles, and proteins, and their clinical applications are currently being investigated. The identification of ideal diagnostic markers for GC that have high sensitivity and specificity would improve survival rates and contribute to the advancement of precision medicine. This review provides an overview of current topics regarding the novel, recently developed diagnostic markers for GC.
10.3748/wjg.v29.i17.2515
Phosphorylated STAT3 expression linked to methylation is associated with proliferative ability of gastric mucosa in patients with early gastric cancer.
Fukui Hirokazu,Watari Jiro,Zhang Xinxing,Ran Ying,Tomita Toshihiko,Oshima Tadayuki,Hirota Seiichi,Miwa Hiroto
Oncology letters
Gastric cancers (GCs) may develop in the gastric mucosa after elimination of () using eradication therapy. Cytokine signaling is a key mechanism underlying GC development and progression, and STAT3 signaling may serve a central role in gastritis-associated tumorigenesis. In the present study, () methylation was examined, as an activator of phosphorylated (p-)STAT3 expression in the non-neoplastic gastric mucosa (non-NGM) of patients with early GC. The methylation status of the gene promoter was analyzed using methylation-specific PCR in the non-NGM of patients with or without early GC. Expression levels of p-STAT3 and Ki67 were investigated immunohistochemically in non-NGM with early GC before and after eradication. In non-NGM, promoter methylation was detected in 17/51 patients (33.3%) with early GC. In those patients, the non-NGM labeling indices of both Ki67 and p-STAT3 were significantly higher compared with that in patients with early GC without methylation. A significant correlation between Ki67 and p-STAT3 expression levels was demonstrated in the non-NGM of patients with early GC. In patients with early GC without methylation, the labeling indices of both Ki67 and p-STAT3 in non-NGM were significantly reduced after eradication, whereas no such change was observed in patients with early GC with methylation. methylation is associated with continuous p-STAT3 overexpression and enhanced epithelial cell proliferation in non-NGM of patients with early GC.
10.3892/ol.2020.11462
Significant function and research progress of biomarkers in gastric cancer.
Oncology letters
Gastric cancer is one of the most common gastrointestinal tumor types, and the incidence and mortality rates are higher in men compared with women. Various studies have revealed that gastric cancer is a spectrum of tumor types, which have biological and genetic diversity. It has proven to be difficult to improve the overall survival and disease-free survival of patients with gastric cancer through the use of traditional surgery and chemoradiation, as gastric cancer is usually identified at an advanced stage. In consequence, the outcome is frequently poor. Thus, novel biomarkers and anticancer targets are required to improve the outcome. As the identification of biomarkers has increased due to advances in research and the greater availability of bioinformatics and functional genomics, the potential therapeutic regimens available have also increased concurrently. These advances have also improved the ability to predict responses to chemotherapy, targeted therapy and immunotherapy, whilst other biomarkers predict post-treatment survival and recurrence based on their expression. This review focuses closely on the important functions of biomarkers in the timely diagnosis and treatment of gastric cancer, in addition to the advances in the study of certain novel markers in gastric cancer.
10.3892/ol.2019.11078
Circulating miR-19a-3p and miR-483-5p as Novel Diagnostic Biomarkers for the Early Diagnosis of Gastric Cancer.
Cheng Jieyao,Yang Aiming,Cheng Shujun,Feng Lin,Wu Xi,Lu Xinghua,Zu Ming,Cui Jianfang,Yu Hang,Zou Long
Medical science monitor : international medical journal of experimental and clinical research
BACKGROUND MicroRNAs (miRNAs) are attracting substantial interest as promising noninvasive biomarkers for gastric cancer (GC). Our study aimed to identify circulating miRNAs that are potential noninvasive markers for precancerous lesions and early gastric cancers (EGCs). MATERIAL AND METHODS Plasma specimens were obtained from 58 gastritis subjects, 54 patients with precancerous lesions, and 38 EGC patients for study. RESULTS Significant differences in the plasma expression levels of miR-19a-3p, miR-22-3p, miR-146a-5p, and miR-483-5p (all P<0.05) were observed between EGC patients and gastritis subjects. Multivariable analysis showed that age (OR, 1.054; 95% CI, 1.006-1.104), miR-19a-3p expression (OR, 3.676; 95% CI, 1.914-7.061), and miR-483-5p expression (OR, 1.589; 95% CI, 1.242-2.033) were independently associated with EGCs and precancerous lesions. A combined diagnostic model incorporating these 3 variables for the prediction of EGCs and precancerous lesions was derived. The area under the receiver operating characteristic curve (AUC) of the model was 0.84; the sensitivity was 87.7% and the specificity was 62.8% at the cutoff value of -0.08. CONCLUSIONS Plasma miR-19a-3p and miR-483-5p are promising and powerful noninvasive markers for the early detection of GC. Patients are more willing to undergo noninvasive diagnostic procedures than gastroscopy for cancer screening, economizing limited medical resources.
10.12659/MSM.923444
Validity of serum amyloid A and HMGB1 as biomarkers for early diagnosis of gastric cancer.
Cancer management and research
BACKGROUND AND AIM:Gastric carcinomais a frequent neoplasm with poor outcome, and its early detection would improve prognosis. This study was designed to evaluate the possible use of new biomarkers, namely SAA and HMGB1, for early diagnosis of gastric cancer. METHODS:A total of 100 patients presenting with gastric symptoms were included. All patients underwent upper endoscopic evaluation, histopathological diagnosis and serum CEA, SAA, and HMGB1 measurements. RESULTS:Patients were classed endoscopically with neoplastic, inflammatory, and normal-appearing gastric mucosa: 50, 25, and 25 patients, respectively. Histologically, half the patients had chronic gastritis and the remaining cases gastric carcinoma of diffuse (n=28) or intestinal (n=22) type. SAA at cutoff of 18.5 mg/L had the best validity to differentiate gastritis from gastric carcinoma, with AUC, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of 0.99, 98%, 100%, 100%, and 98%, respectively, followed by HMGB1 at cutoff of 14.5 pg/μL, with AUC, sensitivity, specificity, PPV, and NPV of 0.91, 70%, 96%, 94.6%, and 76.2%, respectively. Sensitivity, specificity, PPV, and NPV of serum CEA at cutoff of 2.9 ng/mL to differentiate gastritis from gastric carcinoma were 42%, 72%, 60%, and 55.4%, respectively, with AUC of 0.53. Nonetheless, higher serum levels of both SAA and HMGB1 reflected higher tumor grade (=0.027 and =0.016, respectively) and advanced tumor stage (-OBrk-0.001 for both). CONCLUSION:Serum levels of both SAA and HMGB1 could be of great value for early diagnosis of gastric carcinoma, comparable to the diagnostic role of serum CEA, which is not valid for early diagnosis of gastric cancer.
10.2147/CMAR.S207934
Evaluation of the value of multiparameter combined analysis of serum markers in the early diagnosis of gastric cancer.
Zhang Zhi-Guo,Xu Liang,Zhang Peng-Jun,Han Lei
World journal of gastrointestinal oncology
BACKGROUND:In early gastric cancer (GC), tumor markers are increased in the blood. The levels of these markers have been used as important indexes for GC screening, early diagnosis and prognostic evaluation. However, specific tumor markers have not yet been discovered. Diagnosis based on a single tumor marker has limited significance. The detection rate of GC is still very low. AIM:To improve the diagnostic value of blood markers for GC. METHODS:We used a multiparameter joint analysis of 77 indexes of malignant GC and gastric polyp (GP), 64 indexes of GC and healthy controls (Ctrls). RESULTS:By analyzing the data, there are 27 indexes in the final Ctrls GC with values < 0.01, the area under the curve (AUC) of albumin is the largest in Ctrls GC, and the AUC was 0.907. 30 indexes in GP GC have values < 0.01. Among them, the D-dimer showed an AUC of 0.729. The 27 indexes in Ctrls GC and 30 indexes in GP GC were used for binary logistic regression, discriminant analysis, classification tree analysis and artificial neural network analysis model. For the ability to distinguish between Ctrls GC, GP GC, artificial neural networks had better diagnostic value when compared with classification tree, binary logistic regression, and discriminant analysis. When compared Ctrl and GC, the overall prediction accuracy was 92.9%, and the AUC was 0.992 (0.980, 1.000). When compared GP and GC, the overall prediction accuracy was 77.9%, and the AUC was 0.969 (0.948, 0.990). CONCLUSION:The diagnostic effect of multi-parameter joint artificial neural networks analysis is significantly better than the single-index test diagnosis, and it may provide an assistant method for the detection of GC.
10.4251/wjgo.v12.i4.483
Efficacy of circulating microRNA-130b and blood routine parameters in the early diagnosis of gastric cancer.
Chen Jianlin,Liu Zhaohui,Gao Gan,Mo Yuandong,Zhou Hongling,Huang Wenjie,Wu Lihua,He Xiaoling,Ding Junping,Luo Changjun,Long Haihua,Feng Jingrong,Sun Yifan,Guan Xiaoyong
Oncology letters
Patients with gastric cancer (GC) have a poor prognosis, which is mainly due to the low rate of early diagnosis. The present study aimed to evaluate whether circulating microRNA-130b (miR-130b) and blood routine parameters [neutrophil count (N#), lymphocyte count (L#), monocyte count (M#), neutrophil percentage (N%), lymphocyte percentage (L%), monocyte percentage (M%), hemoglobin (Hb) level, hematocrit (Hct), red blood cell distribution width (RDW), platelet count, platelet distribution width (PDW), mean platelet volume (MPV), MPV to platelet count ratio (MPV/PC), monocyte to lymphocyte ratio (MLR), neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR)] are useful biomarkers for GC, early stage GC (EGC) and precancerous lesion (Pre) detection, and to identify more effective diagnostic models by combining circulating blood markers. Circulating levels of M#, M%, RDW-coefficient of variation (RDW-CV), MPV, PDW, MLR and NLR were significantly higher, and the levels of Hb and L% were significantly lower in patients with GC and Pre compared with those in healthy controls (NCs) (all P<0.05). The N#, N% and PLR in patients with GC were significantly higher and the Hct was significantly lower than those in the NCs (all P<0.05). The values of MPV/PC were significantly higher in the Pre cohort compared with those in the NCs. The area under the curve (AUC) of the receiver operating characteristic curve of potential biomarkers for GC was 0.634-0.887 individually, and this increased to 0.978 in the combination model of miR-130b-PDW-MLR-Hb. Additionally, the values for RDW-CV, PLR, NLR, N# and N% were positively correlated with cancer stage, while the values for MPV, L#, L%, Hb and Hct were negatively correlated with cancer stage. Furthermore, the circulating levels of miRNA-130b, and the values for NLR, RDW-CV, PDW, M%, red blood cell count, Hct, Hb and MLR differed between the EGC and NC groups. The AUC values of these biomarkers were 0.6491-0.911 individually in the diagnosis of EGC, and these increased to 0.960 in combination. In addition, the AUC values for miR-130b, RDW-CV, MPV/PC ratio, MLR, NLR, PDW, L%, M%, M# and Hb in the diagnosis of Pre were 0.638-0.811 individually. The dual-model of miR-130b-PDW manifested the largest AUC of 0.896 in the diagnosis of Pre, and the sensitivity and accuracy were increased when miR-130b and PDW were combined. All these results suggested that circulating miR-130b and blood routine parameters might be potential biomarkers, and combinations of measurements of these biomarkers may improve the GC, EGC and Pre diagnostic accuracy.
10.3892/ol.2021.12986
Circular RNAs in gastric cancer: Biomarkers for early diagnosis.
Yang Chun-Mei,Qiao Guang-Lei,Song Li-Na,Bao Shisan,Ma Li-Jun
Oncology letters
Circular RNAs (circRNAs) are highly conserved and stable closed-loop non-coding RNAs. They are involved in numerous biological functions, including regulating gene transcription or protein translation by interacting with proteins and regulating expression of microRNAs. The aberrant expression of circRNAs has been reported in many cancers, including gastric cancer. By regulating gene expression, circRNAs are able to affect the proliferation, invasion and metastasis of gastric cancer. The current review focused on the characteristics and biological functions of circRNAs, the carcinogenic potential and the possible implications of circRNAs on the diagnosis and treatment of gastric cancer. In conclusion, circRNAs may serve as potential biomarkers for diagnosis, as well as therapeutic targets.
10.3892/ol.2020.11623
ICAM1 Regulates the Development of Gastric Cancer and May Be a Potential Biomarker for the Early Diagnosis and Prognosis of Gastric Cancer.
Cancer management and research
BACKGROUND:Gastric cancer (GC) is among the most common forms of cancer affecting the digestive system. This study sought to identify hub genes regulating early GC (EGC) in order to explore their potential for early diagnosis and prognosis of patients. METHODS:We utilized a publically available dataset from the Gene Expression Omnibus database (GSE55696). Differences between EGC and LGIN with respect to gene expression were compared using the limma software. Identified differentially expressed genes (DEGs) were subjected to gene ontology (GO) and pathway enrichment analyses with the DAVID application, and the STRING website and Cytoscape software were used to construct a protein-protein interaction (PPI) network incorporating these DEGs. This network was in turn used to identify hub genes among selected DEGs, which were analyzed with the Kaplan-Meier Plotter database. In addition, Western blotting, qRT-PCR, immunohistochemistry, and UALCAN were all employed to validate the relationship between the expression of these genes and GC patient prognosis. RESULTS:A total of 482 DEGs were identified, with GO analyses indicating an increase in the expression of genes linked with the development of cancer. Pathway analyses also indicated that these genes play a role in certain cancer-related pathways. The PPI network highlighted four potential hub genes, of which only ICAM1 was linked to a poor GC patient prognosis. This link between ICAM1 and GC patient outcomes was confirmed via UALCAN, Western blotting, immunohistochemistry, and qRT-PCR. CONCLUSION:ICAM1 may therefore modulate tumor progression in GC, thus potentially representing a valuable prognostic and diagnostic biomarker of EGC.
10.2147/CMAR.S237443