Immunofluorescence Staining.
Donaldson Julie G
Current protocols in cell biology
This unit provides a protocol for indirect immunofluorescence, which is a method that provides information about the locations of specific molecules and the structure of the cell. Antibody molecules for a specific target molecule are exposed to the cell or tissue being investigated. The binding of these molecules is detected by incubating the sample with a secondary antibody specific for immunoglobulin molecules and conjugated to a fluorophore. This provides both a visible signal and amplification of the signal and the results are observed with a fluorescence microscope. This unit describes the widely used and powerful technique of localization of proteins in cells by immunofluorescence. The location can be determined by double labeling with an antibody directed against a protein of known location. The technique can be used as a supplement to immunolocalization by electron microscopy and subcellular fractionation. It allows not only identification of the antigen distribution in the cell but also a survey of the dynamic aspects of protein movements in the cell-on and off membranes, into and out of the nucleus, and through membrane traffic pathways.
10.1002/0471143030.cb0403s69
Fluorescent Immunohistochemistry.
Moreno Vanessa,Smith Elizabeth A,Piña-Oviedo Sergio
Methods in molecular biology (Clifton, N.J.)
Immunofluorescence is an important immunochemical technique that utilizes fluorescence-labeled antibodies to detect specific target antigens. It is used widely in both scientific research and clinical laboratories. Immunofluorescence allows for excellent sensitivity and amplification of signal in comparison to immunohistochemistry. However, analysis of samples labeled with fluorescence-labeled antibodies has to be performed using a fluorescence microscope or other type of fluorescence imaging. There are two methods available: direct (primary) and indirect (secondary) immunofluorescence. Here, we describe the principle of immunofluorescence methods as well as the preparation of fresh-frozen and formalin-fixed, paraffin embedded tissues for both direct and indirect immunofluorescence labeling.
10.1007/978-1-0716-1948-3_9
Immunohistochemistry and Immunofluorescence.
Methods in molecular biology (Clifton, N.J.)
Immunohistochemistry (IHC) is one of the most widely used protein detection techniques. The principle of this technique is based on the binding of a specific antibody to a matching specific antigen in tissue. The bound antigen-antibody complex then is visualized using a range of detection techniques. IHC uses a number of different enzymatic labels, such as peroxidase and alkaline phosphatase, for the detection of the antigens of interest whereas immunofluorescence (IF) uses a fluorescent signal. In this chapter, IHC will be described using the peroxidase label. Both IHC and IF can be used on formalin-fixed paraffin-embedded (FFPE) or appropriately processed fresh tissues. IHC/IF can be multiplexed to detect more than one antigen at a time, or may be sequentially stained to detect multiple targets. These techniques are routinely used in diagnostic pathology laboratories, not just for diagnostic purposes but many biomarkers are used for patient staging, treatment allocation, and prognostication. Immunofluorescence is routinely used for the detection of antibodies and antigens in freshly biopsied tissues, particularly for immune-mediated and vesiculobullous lesions. In this chapter, the principles of IHC are reviewed followed by examples of IHC and IF staining using readily available antibodies. Steps and processes involved in IHC/IF double staining are also described.
10.1007/978-1-0716-2780-8_26
Immunofluorescence Microscopy.
Current protocols
Visualizing fluorescence-tagged molecules is a powerful strategy that can reveal the complex dynamics of the cell. One robust and broadly applicable method is immunofluorescence microscopy, in which a fluorescence-labeled antibody binds the molecule of interest and then the location of the antibody is determined by fluorescence microscopy. The effective application of this technique includes several considerations, such as the nature of the antigen, specificity of the antibody, permeabilization and fixation of the specimen, and fluorescence imaging of the cell. Although each protocol will require fine-tuning depending on the cell type, antibody, and antigen, there are steps common to nearly all applications. This article provides protocols for staining the cytoskeleton and organelles in two very different kinds of cells: flat, adherent fibroblasts and thick, free-swimming Tetrahymena cells. Additional protocols enable visualization with widefield, laser scanning confocal, and eSRRF super-resolution fluorescence microscopy. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Immunofluorescence staining of adherent cells such as fibroblasts Basic Protocol 2: Immunofluorescence of suspension cells such as Tetrahymena Basic Protocol 3: Visualizing samples with a widefield fluorescence microscope Alternate Protocol 1: Staining suspension cells adhered to poly-l-lysine-coated coverslips Alternate Protocol 2: Visualizing samples with a laser scanning confocal microscope Alternate Protocol 3: Generating super-resolution images with SRRF microscopy.
10.1002/cpz1.842
An Introduction to Performing Immunofluorescence Staining.
Im Kyuseok,Mareninov Sergey,Diaz M Fernando Palma,Yong William H
Methods in molecular biology (Clifton, N.J.)
Immunofluorescence (IF) is an important immunochemical technique that allows for detection and localization of a wide variety of antigens in different types of tissues of various cell preparations. IF allows for excellent sensitivity and amplification of signal in comparison to immunohistochemistry, employing various microscopy techniques. There are two methods available, depending on the scope of the experiment or the specific antibodies in use: direct (primary) or indirect (secondary). Here, we describe preparation of specimens preserved in different types of media and step-by-step methods for both direct and indirect immunofluorescence staining.
10.1007/978-1-4939-8935-5_26