AI总结:
Scan me!
共6篇 平均IF=7.2 (2.5-8)更多分析
  • 4区Q3影响因子: 2.5
    1. Magnetic beads-based electrochemical immunosensor for monitoring allergenic food proteins.
    作者:Čadková Michaela , Metelka Radovan , Holubová Lucie , Horák Daniel , Dvořáková Veronika , Bílková Zuzana , Korecká Lucie
    期刊:Analytical biochemistry
    日期:2015-05-09
    DOI :10.1016/j.ab.2015.04.037
    Screen-printed platinum electrodes as transducer and magnetic beads as solid phase were combined to develop a particle-based electrochemical immunosensor for monitoring the serious food allergen ovalbumin. The standard arrangement of enzyme-linked immunosorbent assay became the basis for designing the immunosensor. A sandwich-type immunocomplex was formed between magnetic particles functionalized with specific anti-ovalbumin immunoglobulin G and captured ovalbumin molecules, and secondary anti-ovalbumin antibodies conjugated with the enzyme horseradish peroxidase were subsequently added as label tag. The electrochemical signal proportional to the enzymatic reaction of horseradish peroxidase during the reduction of hydrogen peroxide with thionine as electron mediator was measured by linear sweep voltammetry. The newly established method of ovalbumin detection exhibits high sensitivity suitable for quantification in the range of 11 to 222nM and a detection limit of 5nM. Magnetic beads-based assay format using external magnets for rapid and simple separation has been proven to be an excellent basis for electrochemical detection and quantification of food allergens in highly complex sample matrices.
  • 2区Q1影响因子: 8
    跳转PDF
    2. Monitoring SARS-CoV-2 in sewage: Toward sentinels with analytical accuracy.
    期刊:The Science of the total environment
    日期:2021-09-10
    DOI :10.1016/j.scitotenv.2021.150244
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemia has been one of the most difficult challenges humankind has recently faced. Wastewater-based epidemiology has emerged as a tool for surveillance and mitigation of potential viral outbreaks, circumventing biases introduced by clinical patient testing. Due to the situation urgency, protocols followed for isolating viral RNA from sewage were not adapted for such sample matrices. In parallel to their implementation for fast collection of data to sustain surveillance and mitigation decisions, molecular protocols need to be harmonized to deliver accurate, reproducible, and comparable analytical outputs. Here we studied analytical variabilities linked to viral RNA isolation methods from sewage. Three different influent wastewater volumes were used to assess the effects of filtered volumes (50, 100 or 500 mL) for capturing viral particles. Three different concentration strategies were tested: electronegative membranes, polyethersulfone membranes, and anion-exchange diethylaminoethyl cellulose columns. To compare the number of viral particles, different RNA isolation methods (column-based vs. magnetic beads) were compared. The effect of extra RNA purification steps and different RT-qPCR strategies (one step vs. two-step) were also evaluated. Results showed that the combination of 500 mL filtration volume through electronegative membranes and without multiple RNA purification steps (using column-based RNA purification) using two-step RT-qPCR avoided false negatives when basal viral load in sewage are present and yielded more consistent results during the surveillance done during the second-wave in Delft (The Hague area, The Netherlands). By paving the way for standardization of methods for the sampling, concentration and molecular detection of SARS-CoV-2 viruses from sewage, these findings can help water and health surveillance authorities to use and trust results coming from wastewater based epidemiology studies in order to anticipate SARS-CoV-2 outbreaks.
  • 1区Q1影响因子: 7.7
    跳转PDF
    3. One-pot and rapid detection of SARS-CoV-2 viral particles in environment using SERS aptasensor based on a locking amplifier.
    期刊:Sensors and actuators. B, Chemical
    日期:2022-07-29
    DOI :10.1016/j.snb.2022.132445
    With the frequent detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dwellings and wastewater, the risk of transmission of environmental contaminants is of great concern. Fast, simple and sensitive sensors are essential for timely detecting infection and controlling transmission through environment fomites. Herein, we developed a Surface Enhanced Raman Scattering (SERS) aptasensor, which can realize ultrasensitive and rapid assay of SARS-CoV-2 viral particles. In this strategy, we designed a novel locking amplifier which is activated only in the presence of virus by aptamer recognition. The reaction process was carried out though one-pot method at 37 °C, which can save time and resources. In addition, magnetic beads used in reaction system can simplify operation, as well as provide ideas for developing biosensing robots via magnetic field. This SERS aptasensor can detect SARS-CoV-2 virus with a LOD of 260 TU/µL within 40 min in the linear range of 625-10,000 TU/µL. Therefore, this convenience, speediness, sensitivity, and selectivity of detection has great prospects in analyzing SARS-CoV-2 viral particles or other viruses in environment as well as monitoring of environmental virus sources.
  • 2区Q1影响因子: 6.3
    跳转PDF
    4. An efficient method to enhance recovery and detection of SARS-CoV-2 RNA in wastewater.
    期刊:Journal of environmental sciences (China)
    日期:2022-10-12
    DOI :10.1016/j.jes.2022.10.006
    Wastewater surveillance (WS) of SARS-CoV-2 currently requires multiple steps and suffers low recoveries and poor sensitivity. Here, we report an improved analytical method with high sensitivity and recovery to quantify SARS-CoV-2 RNA in wastewater. To improve the recovery, we concentrated SARS-CoV-2 viral particles and RNA from both the solid and aqueous phases of wastewater using an electronegative membrane (EM). The captured viral particles and RNA on the EM were incubated in our newly developed viral inactivation and RNA preservation (VIP) buffer. Subsequently, the RNA was concentrated on magnetic beads and inhibitors removed by washing. Without eluting, the RNA on the magnetic beads was directly detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Analysis of SARS-CoV-2 pseudovirus (SARS-CoV-2 RNA in a noninfectious viral coat) spiked to wastewater samples showed an improved recovery of 80%. Analysis of 120 wastewater samples collected twice weekly between May 2021 and February 2022 from two wastewater treatment plants showed 100% positive detection, which agreed with the results independently obtained by a provincial public health laboratory. The concentrations of SARS-CoV-2 RNA in these wastewater samples ranged from 2.4×10 to 2.9×10 copies per 100 mL of wastewater. Our method's capability of detecting trace and diverse concentrations of SARS-CoV-2 in complex wastewater samples is attributed to the enhanced recovery of SARS-CoV-2 RNA and efficient removal of PCR inhibitors. The improved method for the recovery and detection of viral RNA in wastewater is important for wastewater surveillance, complementing clinical diagnostic tests for public health protection.
  • 2区Q1影响因子: 8
    5. The first detection of mpox virus DNA from wastewater in China.
    期刊:The Science of the total environment
    日期:2024-04-26
    DOI :10.1016/j.scitotenv.2024.172742
    Wastewater monitoring may be a valuable early surveillance tool for studying mpox virus (MPXV) circulation in China, a country with high population density and very few mpox patients. To evaluate the effectiveness of wastewater monitoring for MPXV in detecting local hidden transmission of the epidemic in the early period, the Chinese Center for Disease Control and Prevention initiated a wastewater monitoring program for MPXV in China in July 2023. To enhance the monitoring sensitivity of the program, an MPXV monitoring point was established in a gathering place of high-risk mpox population. Three different concentration methods, PEG precipitation, ultrafiltration, and magnetic beads method were evaluated and compared. Due to its high recovery efficiency, low limit of detection, and high degree of automation, the magnetic beads method was selected for the daily surveillance of MPXV in wastewater. On September 5, 2023, MPXV DNA was detected at the MPXV monitoring point in Zibo City, marking the first instance of MPXV detection of MPXV in wastewater in China. Next-generation sequencing was conducted on the MPXV genome obtained from the positive wastewater, positive environmental samples, and the single case of mpox in Zibo in September. The results showed that the genotypes of these three genomes were different but all belong to the IIb branch of the C.1 lineage, indicating a probably hidden transmission of mpox. Wastewater monitoring is potentially an effective early surveillance tool for tracking the spread of MPXV in areas with high population density and very few mpox patients.
  • 1区Q1影响因子: 6.7
    6. Porous Agarose Layered Magnetic Graphene Oxide Nanocomposite for Virus RNA Monitoring in Wastewater.
    期刊:Analytical chemistry
    日期:2024-05-18
    DOI :10.1021/acs.analchem.4c01060
    The detection of virus RNA in wastewater has been established as a valuable method for monitoring Coronavirus disease 2019. Carbon nanomaterials hold potential application in separating virus RNA owing to their effective adsorption and extraction capabilities. However, carbon nanomaterials have limited separability under homogeneous aqueous conditions. Due to the stabilities in their nanostructure, it is a challenge to efficiently immobilize them onto magnetic beads for separation. Here, we develop a porous agarose layered magnetic graphene oxide (GO) nanocomposite that is prepared by agglutinating ferroferric oxide (FeO) beads and GO with agarose into a cohesive whole. With an average porous size of approximately 500 nm, the porous structure enables the unhindered entry of virus RNA, facilitating its interaction with the surface of GO. Upon the application of a magnetic field, the nucleic acid can be separated from the solution within a few minutes, achieving adsorption efficiency and recovery rate exceeding 90% under optimized conditions. The adsorbed nucleic acid can then be preserved against complex sample matrix for 3 days, and quantitatively released for subsequent quantitative reverse transcription polymerase chain reaction (RT-qPCR) detection. The developed method was successfully utilized to analyze wastewater samples obtained from a wastewater treatment plant, detecting as few as 10 copies of RNA molecules per sample. The developed aMGO-RT-qPCR provides an efficient approach for monitoring viruses and will contribute to wastewater-based surveillance of community infections.
logo logo
$!{favoriteKeywords}