logo logo
Overexpression of , a Vascular Tissue-Specific Transcription Factor Gene, Confers Drought Tolerance in Rice. Jung Se Eun,Bang Seung Woon,Kim Sung Hwan,Seo Jun Sung,Yoon Ho-Bin,Kim Youn Shic,Kim Ju-Kon International journal of molecular sciences Abiotic stresses severely affect plant growth and productivity. To cope with abiotic stresses, plants have evolved tolerance mechanisms that are tightly regulated by reprogramming transcription factors (TFs). APETALA2/ethylene-responsive factor (AP2/ERF) transcription factors are known to play an important role in various abiotic stresses. However, our understanding of the molecular mechanisms remains incomplete. In this study, we identified the role of , a member of the AP2/ERF transcription factor family, in response to drought stress. OsERF83 is a transcription factor localized to the nucleus and induced in response to various abiotic stresses, such as drought and abscisic acid (ABA). Overexpression of in transgenic plants () significantly increased drought tolerance, with higher photochemical efficiency in rice. was also associated with growth retardation, with reduced grain yields under normal growth conditions. is predominantly expressed in the vascular tissue of all organs. Transcriptome analysis revealed that regulates drought response genes, which are related to the transporter ( lignin biosynthesis (, terpenoid synthesis (, cytochrome P450 family (), and abiotic stress-related genes ( also up-regulates biotic stress-associated genes, including (), (), (), and () genes. Our results provide new insight into the multiple roles of in the cross-talk between abiotic and biotic stress signaling pathways. 10.3390/ijms22147656
Plant disease resistance outputs regulated by AP2/ERF transcription factor family. Stress biology Plants have evolved a complex and elaborate signaling network to respond appropriately to the pathogen invasion by regulating expression of defensive genes through certain transcription factors. The APETALA2/ethylene response factor (AP2/ERF) family members have been determined as key regulators in growth, development, and stress responses in plants. Moreover, a growing body of evidence has demonstrated the critical roles of AP2/ERFs in plant disease resistance. In this review, we describe recent advances for the function of AP2/ERFs in defense responses against microbial pathogens. We summarize that AP2/ERFs are involved in plant disease resistance by acting downstream of mitogen activated protein kinase (MAPK) cascades, and regulating expression of genes associated with hormonal signaling pathways, biosynthesis of secondary metabolites, and formation of physical barriers in an MAPK-dependent or -independent manner. The present review provides a multidimensional perspective on the functions of AP2/ERFs in plant disease resistance, which will facilitate the understanding and future investigation on the roles of AP2/ERFs in plant immunity. 10.1007/s44154-023-00140-y
The transcription factor ORA59 exhibits dual DNA binding specificity that differentially regulates ethylene- and jasmonic acid-induced genes in plant immunity. Plant physiology Jasmonic acid (JA) and ethylene (ET) signaling modulate plant defense against necrotrophic pathogens in a synergistic and interdependent manner, while JA and ET also have independent roles in certain processes, e.g. in responses to wounding and flooding, respectively. These hormone pathways lead to transcriptional reprogramming, which is a major part of plant immunity and requires the roles of transcription factors. ET response factors are responsible for the transcriptional regulation of JA/ET-responsive defense genes, of which ORA59 functions as a key regulator of this process and has been implicated in the JA-ET crosstalk. We previously demonstrated that Arabidopsis (Arabidopsis thaliana) GDSL LIPASE 1 (GLIP1) depends on ET for gene expression and pathogen resistance. Here, promoter analysis of GLIP1 revealed ERELEE4 as the critical cis-element for ET-responsive GLIP1 expression. In a yeast one-hybrid screening, ORA59 was isolated as a specific transcription factor that binds to the ERELEE4 element, in addition to the well-characterized GCC box. We found that ORA59 regulates JA/ET-responsive genes through direct binding to these elements in gene promoters. Notably, ORA59 exhibited a differential preference for GCC box and ERELEE4, depending on whether ORA59 activation is achieved by JA and ET, respectively. JA and ET induced ORA59 phosphorylation, which was required for both activity and specificity of ORA59. Furthermore, RNA-seq and virus-induced gene silencing analyses led to the identification of ORA59 target genes of distinct functional categories in JA and ET pathways. Our results provide insights into how ORA59 can generate specific patterns of gene expression dynamics through JA and ET hormone pathways. 10.1093/plphys/kiab437
The regulatory module MdBT2-MdMYB88/MdMYB124-MdNRTs regulates nitrogen usage in apple. Plant physiology Less than 40% of the nitrogen (N) fertilizer applied to soil is absorbed by crops. Thus, improving the N use efficiency of crops is critical for agricultural development. However, the underlying regulation of these processes remains largely unknown, particularly in woody plants. By conducting yeast two-hybrid assays, we identified one interacting protein of MdMYB88 and MdMYB124 in apple (Malus × domestica), namely BTB and TAZ domain protein 2 (MdBT2). Ubiquitination and protein stabilization analysis revealed that MdBT2 ubiquitinates and degrades MdMYB88 and MdMYB124 via the 26S proteasome pathway. MdBT2 negatively regulates nitrogen usage as revealed by the reduced fresh weight, dry weight, N concentration, and N usage index of MdBT2 overexpression calli under low-N conditions. In contrast, MdMYB88 and MdMYB124 increase nitrate absorption, allocation, and remobilization by regulating expression of MdNRT2.4, MdNRT1.8, MdNRT1.7, and MdNRT1.5 under N limitation, thereby regulating N usage. The results obtained illustrate the mechanism of a regulatory module comprising MdBT2-MdMYB88/MdMYB124-MdNRTs, through which plants modulate N usage. These data contribute to a molecular approach to improve the N usage of fruit crops under limited N acquisition. 10.1093/plphys/kiaa118
Responses of root characteristics and nitrogen absorption and assimilation to different pH gradients of winter wheat at seedling stage. PloS one Nitrogen (N) and rhizosphere pH are the two main factors restricting the growth of winter wheat (Triticum aestivum L.) in North China Plain. Soil nutrient availability is affected by soil acidity and alkalinity. In order to understand the effect of rhizosphere pH value on wheat nitrogen metabolism and the response of wheat growth to pH value at seedling stage, winter wheat varieties 'Aikang 58' (AK58) and 'Bainong 4199' (BN4199) were tested in hydroponics under three pH treatments (pH = 4.0, 6.5, and 9.0). The results showed that the accumulation of dry matter in root and above ground under pH 4.0 and pH 9.0 treatments was lower than that under pH 6.5 treatments, and the root/shoot ratio increased with the increase of pH value. Regardless of pH value, 'BN4199' had higher root dry weight, root length, root surface area, root activity and root tip than 'AK58'. Therefore, wheat that is tolerant to extreme pH is able to adapt to the acid-base environment by changing root characteristics. At pH 4.0, the net H+ outflow rate of wheat roots was significantly lower than that of the control group, and the net NO3- flux of wheat roots was also low. The net H+ outflow occurred at pH 6.5 and 9.0, and at the same time, the net NO3- flux of roots also increased, and both increased with the increase of pH. The activity of nitrate reductase (NR) in stem of pH 9.0 treatment was significantly higher than that of other treatments, while the activity of glutamine synthetase (GS) in root and stem of pH 6.5 treatment was significantly higher than that of other treatments. Under pH 4.0 and pH 9.0 treatments, the activities of NR and GS in 'BN4199' were higher than those in 'AK58', The root respiration of 'BN4199' was significantly higher than that of 'AK58' under pH 4.0 and pH 9.0 treatment, and 'BN4199' had higher NO3- net flux, key enzyme activity of root nitrogen metabolism and root respiration. Therefore, we believe that 'BN4199' has strong resistance ability to extreme pH stress, and high root/shoot ratio and strong root respiration can be used as important indicators for wheat variety screening adapted to the alkaline environment at the seedling stage. 10.1371/journal.pone.0293471
Strigolactone and gibberellin signaling coordinately regulate metabolic adaptations to changes in nitrogen availability in rice. Molecular plant Modern semi-dwarf rice varieties of the "Green Revolution" require a high supply of nitrogen (N) fertilizer to produce high yields. A better understanding of the interplay between N metabolism and plant developmental processes is required for improved N-use efficiency and agricultural sustainability. Here, we show that strigolactones (SLs) modulate root metabolic and developmental adaptations to low N availability for ensuring efficient uptake and translocation of available N. The key repressor DWARF 53 (D53) of the SL signaling pathway interacts with the transcription factor GROWTH-REGULATING FACTOR 4 (GRF4) and prevents GRF4 from binding to its target gene promoters. N limitation induces the accumulation of SLs, which in turn promotes SL-mediated degradation of D53, leading to the release of GRF4 and thus promoting the expression of genes associated with N metabolism. N limitation also induces degradation of the DELLA protein SLENDER RICE 1 (SLR1) in an D14- and D53-dependent manner, effectively releasing GRF4 from competitive inhibition caused by SLR1. Collectively, our findings reveal a previously unrecognized mechanism underlying SL and gibberellin crosstalk in response to N availability, advancing our understanding of plant growth-metabolic coordination and facilitating the design of the strategies for improving N-use efficiency in high-yield crops. 10.1016/j.molp.2023.01.009
Nitrogen assimilation in plants: current status and future prospects. Journal of genetics and genomics = Yi chuan xue bao Nitrogen (N) is the driving force for crop yields; however, excessive N application in agriculture not only increases production cost, but also causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N use efficiency (NUE) and breeding crops with higher NUE is essential to tackle these problems. NUE of crops is determined by N uptake, transport, assimilation, and remobilization. In the process of N assimilation, nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamine-2-oxoglutarate aminotransferase (GOGAT, also known as glutamate synthase) are the major enzymes. NR and NiR mediate the initiation of inorganic N utilization, and GS/GOGAT cycle converts inorganic N to organic N, playing a vital role in N assimilation and the final NUE of crops. Besides, asparagine synthetase (ASN), glutamate dehydrogenase (GDH), and carbamoyl phosphate synthetase (CPSase) are also involved. In this review, we summarize the function and regulation of these enzymes reported in three major crops-rice, maize, and wheat, also in the model plant Arabidopsis, and we highlight their application in improving NUE of crops via manipulating N assimilation. Anticipated challenges and prospects toward fully understanding the function of N assimilation and further exploring the potential for NUE improvement are discussed. 10.1016/j.jgg.2021.12.006
Nitrogen and Phosphorus Fertilizer Increases the Uptake of Soil Heavy Metal Pollutants by Plant Community. Bulletin of environmental contamination and toxicology Soil heavy metal pollution is widespread around the world. Compared with hyperaccumulation plants, non-hyperaccumulator plant communities have many advantages in the remediation of heavy metals pollution in soil. The application of nitrogen (N) and phosphorus (P) is inexpensive and convenient, which can promote the growth of plant. N and P fertilizer might increase plant community remediation of heavy metal polluted soils. In our study, the effects of N and P fertilizer on remediation of soil Cd, Cu, Pb pollution by plant community were studied through a greenhouse experiment. Our results indicated that addition of N, P and N + P fertilizer increased plant community aboveground biomass. Simultaneously, addition of N and P fertilizer increased the accumulation of heavy metals in aboveground of the plant community and accelerated plants absorption soil heavy metals. Among them, N fertilizer had the best effect. Our results provide an inexpensive method for remediation heavy metal pollution of contaminated farmland, abandoned land and mine tailings, etc. 10.1007/s00128-022-03628-x
Nitrogen Uptake and Distribution in Different Chinese Cabbage Genotypes under Low Nitrogen Stress. Zhang Yihui,Li Jingjuan,Zhou Dandan,Song Jie,Gao Jianwei International journal of molecular sciences In order to understand the effects of low nitrogen (LN) stress on the growth and development in different genotypes of Chinese cabbage, the L40 genotype with high nitrogen utilization and the L14 genotype with LN utilization were selected as experimental materials. Field experiments and indoor hydroponic methods were used to study the different responses of two Chinese cabbage genotypes to low nitrogen levels. In this study, we also analyzed the genome-wide gene expression profiles of L40 and L14 in response to LN stress by high-throughput RNA sequencing technology. The results reveal that the L40 root system responds better to LN compared with L14. After LN stress, L40 can effectively absorb and transport NO3- and store it in the ground. It is precisely because of this characteristic of the L40 genotype that LN treatment did not have a significant effect on the chlorophyll (Chl) content and net photosynthetic rate (Pn) of the L40 Chinese cabbage compared with the L14 Chinese cabbage. These two different Chinese cabbage genotypes were shown to have differently expressed genes related to nitrate transport, auxin synthesis, and glutamate dehydrogenase synthesis. These genes function in the nitrogen pathway, which are important candidates for understanding the molecular host-response mechanisms to LN stress. 10.3390/ijms23031573
Nitrogen fertilizer affects rhizosphere Cd re-mobilization by mediating gene AmALM2 and AmALMT7 expression in edible amaranth roots. Xu Zhi-Min,Wang Jun-Feng,Li Wan-Li,Wang Yi-Fan,He Tao,Wang Fo-Peng,Lu Zi-Yan,Li Qu-Sheng Journal of hazardous materials In-situ stabilization of Cd-contaminated farmland is a commonly used remediation technology. Yet, rhizosphere metabolites (e.g., organic acids) during crop cultivation may cause Cd re-mobilization and over-accumulation. Here, we identified four pivotal cytomembrane-localized genes underlying Cd accumulation difference between two contrasting edible amaranth cultivars based on root gene expression profile, studied their subcellular localization and functional characteristics, and then investigated effects of nitrogen fertilizer on their expression and rhizosphere Cd re-mobilization. Results showed that more Cd accumulated by edible amaranth was due to rhizosphere Cd mobilization by mediating high expression of AmALMT2 and AmALMT7 genes, not Cd transporters in roots. This was confirmed by heterologous expression of AmALMT2 and AmALMT7 genes in Arabidopsis thaliana, since they mediated malic, fumaric, succinic, and aspartic acids efflux. Furthermore, nitrogen influencing rhizosphere acidification might be closely associated with organic acids efflux genes. Compared with N-NO application, N-NH was massively assimilated into glutamates and oxaloacetates through up-regulating glutamine synthetase and alanine-aspartate-glutamate metabolic pathways, thereby enhancing TCA cycle and organic acids efflux dominated by binary carboxylic acids via up-regulating AmALMT2 and AmALMT7 genes, which finally caused Cd re-mobilization. Therefore, N-NO-dominated nitrogen retarded rhizosphere Cd re-mobilization via inhibiting organic acids efflux function of AmALMT2 and AmALMT7 proteins. 10.1016/j.jhazmat.2021.126310
Empowering rice breeding with NextGen genomics tools for rapid enhancement nitrogen use efficiency. Gene As rice has no physiological capacity of fixing nitrogen in the soil, its production had always been reliant on the external application of nitrogen (N) to ensure enhanced productivity. In the light of improving nitrogen use efficiency (NUE) in rice, several advanced agronomic strategies have been proposed. However, the soared increase of the prices of N fertilizers and subsequent environmental downfalls caused by the excessive use of N fertilizers, reinforces the prerequisite adaptation of other sustainable, affordable, and globally acceptable strategies. An appropriate alternative approach would be to develop rice cultivars with better NUE. Conventional breeding techniques, however, have had only sporadic success in improving NUE, and hence, this paper proposes a new schema that employs the wholesome benefits of the recent advancements in omics technologies. The suggested approach promotes multidisciplinary research, since such cooperation enables the synthesis of many viewpoints, approaches, and data that result in a comprehensive understanding of NUE in rice. Such collaboration also encourages innovation that leads to developing rice varieties that use nitrogen more effectively, facilitate smart technology transfer, and promotes the adoption of NUE practices by farmers and stakeholders to minimize ecological impact and contribute to a sustainable agricultural future. 10.1016/j.gene.2024.148715
Agritech to Tame the Nitrogen Cycle. Cold Spring Harbor perspectives in biology While the Haber-Bosch process for N-fixation has enabled a steady food supply for half of humanity, substantial use of synthetic fertilizers has caused a radical unevenness in the global N-cycle. The resulting increases in nitrate production and greenhouse gas (GHG) emissions have contributed to eutrophication of both ground and surface waters, the growth of oxygen minimum zones in coastal regions, ozone depletion, and rising global temperatures. As stated by the Food and Agriculture Organization of the United Nations, agriculture releases ∼9.3 Gt CO equivalents per year, of which methane (CH) and nitrous oxide (NO) account for 5.3 Gt CO equivalents. N-pollution and slowing the runaway N-cycle requires a combined effort to replace chemical fertilizers with biological alternatives, which after a 10-yr span of usage could eliminate a minimum of 30% of ag-related GHG emissions (∼1.59 Gt), protect waterways from nitrate pollution, and protect soils from further deterioration. Agritech solutions include bringing biological fertilizers and biological nitrification inhibitors to the marketplace to reduce the microbial conversion of fertilizer nitrogen into GHGs and other toxic intermediates. Worldwide adoption of these plant-derived molecules will substantially elevate nitrogen use efficiency by crops while blocking the dominant source of NO to the atmosphere and simultaneously protecting the biological CH sink. Additional agritech solutions to curtail N-pollution, soil erosion, and deterioration of freshwater supplies include soil-free aquaponics systems that utilize improved microbial inocula to enhance nitrogen use efficiency without GHG production. With adequate and timely investment and scale-up, microbe-based agritech solutions emphasizing N-cycling processes can dramatically reduce GHG emissions on short time lines. 10.1101/cshperspect.a041668
Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules Plants uptake and assimilate nitrogen from the soil in the form of nitrate, ammonium ions, and available amino acids from organic sources. Plant nitrate and ammonium transporters are responsible for nitrate and ammonium translocation from the soil into the roots. The unique structure of these transporters determines the specificity of each transporter, and structural analyses reveal the mechanisms by which these transporters function. Following absorption, the nitrogen metabolism pathway incorporates the nitrogen into organic compounds via glutamine synthetase and glutamate synthase that convert ammonium ions into glutamine and glutamate. Different isoforms of glutamine synthetase and glutamate synthase exist, enabling plants to fine-tune nitrogen metabolism based on environmental cues. Under stressful conditions, nitric oxide has been found to enhance plant survival under drought stress. Furthermore, the interaction between salinity stress and nitrogen availability in plants has been studied, with nitric oxide identified as a potential mediator of responses to salt stress. Conversely, excessive use of nitrate fertilizers can lead to health and environmental issues. Therefore, alternative strategies, such as establishing nitrogen fixation in plants through diazotrophic microbiota, have been explored to reduce reliance on synthetic fertilizers. Ultimately, genomics can identify new genes related to nitrogen fixation, which could be harnessed to improve plant productivity. 10.3390/biom13101443