A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction.
Medical physics
PURPOSE:X-ray computed tomography (CT) has become a convenient and efficient clinical medical technique. However, in the presence of metal implants, CT images may be corrupted by metal artifacts. The metal artifact reduction (MAR) methods based on deep learning are mostly supervised methods trained with labeled synthetic-artifact CT images. However, this causes the neural network to be biased toward learning specific synthetic-artifact patterns and leads to a poor generalization for unlabeled real-artifact CT images. In this study, a semi-supervised learning method of latent features based on convolutional neural networks (SLF-CNN) is developed to remove metal artifacts while ensuring a good generalization ability for real-artifact CT images. METHODS:The proposed semi-supervised method extracts CT image features in alternate iterations of a synthetic-artifact learning stage and a real-artifact learning stage. In the synthetic-artifact learning stage, SLF-CNN is fed with paired synthetic-artifact CT images and is constrained using mean-squared-error (MSE) loss and perceptual loss in a supervised learning fashion. In the real-artifact learning stage, the network weight is updated by minimizing the error between the pseudo-ground truths and the predicted latent features. The feature level pseudo-ground truths are obtained by modeling latent features using the Gaussian process. The overall framework of SLF-CNN adopts an encoder-decoder structure. The encoder is composed of artifact information collection groups to map the input artifact-affected synthetic-artifact CT images and real-artifact CT images into latent features. The decoder is composed of stacked ResNeXt blocks and is responsible for decoding latent features with high-level semantic information to reconstruct artifact-free CT images. The performance of the proposed method is evaluated through contrast experiments and ablation experiments. RESULTS:The contrast experimental results indicate that the artifact-free CT images obtained by SLF-CNN have good metrics values, which are close to or better than those of typical supervised MAR methods. The metal artifacts in artifact-affected CT images are eliminated and the tissue structure details are preserved using SLF-CNN. The ablation experiment shows that adding real-artifact CT images greatly improves the generalization ability of the network. CONCLUSIONS:The proposed semi-supervised learning method of latent features for MAR effectively suppresses metal artifacts and improves the generalization ability of the network.
10.1002/mp.15633
Completion of Metal-Damaged Traces Based on Deep Learning in Sinogram Domain for Metal Artifacts Reduction in CT Images.
Zhu Linlin,Han Yu,Xi Xiaoqi,Li Lei,Yan Bin
Sensors (Basel, Switzerland)
In computed tomography (CT) images, the presence of metal artifacts leads to contaminated object structures. Theoretically, eliminating metal artifacts in the sinogram domain can correct projection deviation and provide reconstructed images that are more real. Contemporary methods that use deep networks for completing metal-damaged sinogram data are limited to discontinuity at the boundaries of traces, which, however, lead to secondary artifacts. This study modifies the traditional U-net and adds two sinogram feature losses of projection images-namely, continuity and consistency of projection data at each angle, improving the accuracy of the complemented sinogram data. Masking the metal traces also ensures the stability and reliability of the unaffected data during metal artifacts reduction. The projection and reconstruction results and various evaluation metrics reveal that the proposed method can accurately repair missing data and reduce metal artifacts in reconstructed CT images.
10.3390/s21248164
Metal implant segmentation in CT images based on diffusion model.
BMC medical imaging
BACKGROUND:Computed tomography (CT) is widely in clinics and is affected by metal implants. Metal segmentation is crucial for metal artifact correction, and the common threshold method often fails to accurately segment metals. PURPOSE:This study aims to segment metal implants in CT images using a diffusion model and further validate it with clinical artifact images and phantom images of known size. METHODS:A retrospective study was conducted on 100 patients who received radiation therapy without metal artifacts, and simulated artifact data were generated using publicly available mask data. The study utilized 11,280 slices for training and verification, and 2,820 slices for testing. Metal mask segmentation was performed using DiffSeg, a diffusion model incorporating conditional dynamic coding and a global frequency parser (GFParser). Conditional dynamic coding fuses the current segmentation mask and prior images at multiple scales, while GFParser helps eliminate high-frequency noise in the mask. Clinical artifact images and phantom images are also used for model validation. RESULTS:Compared with the ground truth, the accuracy of DiffSeg for metal segmentation of simulated data was 97.89% and that of DSC was 95.45%. The mask shape obtained by threshold segmentation covered the ground truth and DSCs were 82.92% and 84.19% for threshold segmentation based on 2500 HU and 3000 HU. Evaluation metrics and visualization results show that DiffSeg performs better than other classical deep learning networks, especially for clinical CT, artifact data, and phantom data. CONCLUSION:DiffSeg efficiently and robustly segments metal masks in artifact data with conditional dynamic coding and GFParser. Future work will involve embedding the metal segmentation model in metal artifact reduction to improve the reduction effect.
10.1186/s12880-024-01379-1